
The state-of-the-art of preconditioners
for sparse linear least-squares problems

NIM Gould, J Scott,

November 2015

Submitted for publication in ACM Transactions on Mathematical Software

 Preprint
RAL-P-2015-010

RAL Library
STFC Rutherford Appleton Laboratory
R61
Harwell Oxford
Didcot
OX11 0QX

Tel: +44(0)1235 445384
Fax: +44(0)1235 446403
email: libraryral@stfc.ac.uk

Science and Technology Facilities Council preprints are available online
at: http://epubs.stfc.ac.uk

ISSN 1361- 4762

Neither the Council nor the Laboratory accept any responsibility for
loss or damage arising from the use of information contained in any of
their reports or in any communication about their tests or
investigations.

mailto:libraryral@stfc.ac.uk�
http://epubs.stfc.ac.uk/�

The state-of-the-art of preconditioners for

sparse linear least-squares problems

Nicholas Gould1 and Jennifer Scott1

ABSTRACT

In recent years a variety of preconditioners have been proposed for use in solving large sparse linear least-

squares problems. These include simple diagonal preconditioning, preconditioners based on a number of

different approaches to incomplete factorization and stationary inner iterations used with Krylov subspace

methods. In this study, we briefly review available preconditioners for which software has been made

available and then present a numerical evaluation of them using performance profiles and a large set of

problems arising from practical applications. Comparisons are made with state-of-the-art sparse direct

methods.

Keywords: least-squares problems, normal equations, augmented system, sparse matrices, iterative

solvers, preconditioning.

AMS(MOS) subject classifications: 65F05, 65F50

1 Scientific Computing Department, STFC Rutherford Appleton Laboratory, Harwell Oxford,

Oxfordshire, OX11 0QX, UK.

nick.gould@stfc.ac.uk and jennifer.scott@stfc.ac.uk

Project supported by EPSRC grants EP/I013067/1 and EP/M025179/1.

November 23, 2015

1 Introduction

The method of least-squares is a commonly used approach to find an approximate solution of

overdetermined or inexactly specified systems of equations. Since its development in the 18th century [21],

the solution of least-squares problems has been, and continues to be, a fundamental method in scientific

data fitting. least-squares solvers are used across a wide range of disciplines, for everything from simple

curve fitting, through the estimation of satellite image sensor characteristics, data assimilation for weather

forecasting and for climate modelling, to powering internet mapping services, exploration seismology,

NMR spectroscopy, piezoelectric crystal identification (used in ultrasound for medical imaging), aerospace

systems, and neural networks.

In this study, we are interested in the important special case of the linear least-squares problem,

min
x
‖b−Ax‖2, (1.1)

where A ∈ IRm×n with m ≥ n is large and sparse and b ∈ IRm. Solving (1.1) is mathematically equivalent

to solving the n× n normal equations

Cx = AT b, C = ATA, (1.2)

and this, in turn, is equivalent to solving the (m+ n)× (m+ n) augmented system

Ky = c, K =

[
Im A

AT 0

]
, y =

[
r(x)

x

]
, c =

[
b

0

]
, (1.3)

where r(x) = b−Ax is the residual vector and Im is the m×m identity matrix. Increasingly, the sizes of

the problems that scientists and engineers wish to solve are getting larger (problems in many millions of

variables are becoming typical); they are also often ill-conditioned. In other applications, it is necessary

to solve many thousands of problems of modest size and so efficiency in this case is essential. The normal

equations are attractive in that, if A is of full column rank, they involve a symmetric positive definite

linear system. However, a well-known drawback is that the condition number of C is the square of the

condition number of A so that the normal equations are often highly ill-conditioned [8]. Furthermore, the

density of C can be much greater than that of A (if A has a single dense row, C will be dense). The

main disadvantages of working with the augmented system are that K is symmetric indefinite and is much

larger than C (particularly if m� n).

Two main classes of method may be used to try and solve these linear systems: direct methods and

iterative methods. A direct method proceeds by computing an explicit factorization, either a sparse LLT

Cholesky factorization of the normal equations (1.2) (assuming A is of full column rank so that C is positive

definite) or a sparse LDLT factorization of the augmented system (1.3). Alternatively, a QR factorization

of A may be used, that is, a “thin” QR factorization of the form

A = Q

[
R

0

]
,

where Q is an m×m orthogonal matrix and R is an n×n upper triangular matrix. Whilst direct solvers are

generally highly reliable, iterative methods may be preferred because they often require significantly less

storage and in some applications it may not be necessary to solve the system with the high accuracy offered

by a direct solver. However, the successful application of an iterative method often requires a suitable

preconditioner to achieve acceptable (and ideally, fast) convergence rates. Currently, there is much less

knowledge of preconditioners for least-squares problems than there is for sparse symmetric linear systems

and, as remarked in [9], “the problem of robust and efficient iterative solution of least-squares problems is

much harder than the iterative solution of systems of linear equations”. This is, at least in part, because

A does not have the properties of differential problems that can make standard preconditioners effective.

In the past decade or so, a number of different techniques for preconditioning Krylov subspace methods

for least-squares problems have been developed. A brief overview with a comprehensive list of references

1

is included in the introduction to the recent paper by Bru et al [9]. However, in the literature the reported

experiments on the performance of different preconditioners are often limited to a small set of problems,

generally arising from a specific application. Moreover, they may use prototype codes that are not available

for others to test and they may only be run using MATLAB. Our aim is to perform a wider study in which

we use a large set of test problems to evaluate the performance of a range of preconditioners for which

software has been made available. The intention is to gain a clearer understanding of when particular

preconditioners perform well (or, indeed, perform poorly) and we will use this to influence our future work

on linear least-squares. Our attention is limited to preconditioners for which software in Fortran or C is

available; it is beyond the scope of this work to provide efficient and robust implementations for all the

approaches that have appeared in the literature (although even then, as we discuss in Section 8, we have

found it necessary in some cases to modify and possibly re-engineer some of the existing software to make

it suitable for use in this study).

The rest of the paper is organised as follows. In Section 2, we describe our test environment, including

the set of problems used in this study. Direct solvers for solving the normal equations and/or the

augmented system are briefly recalled in Section 3. One of these (HSL MA97) is used for comparison

with the performance of the preconditioned iterative methods. In Section 4, we report on experiments

with two methods, LSQR and LSMR, that are mathematically equivalent to applying conjugate gradients

and MINRES, respectively, to the normal equations but have favourable numerical properties. On the

basis of our findings, LSMR is used in the rest of our experiments. Preconditioning strategies are briefly

described in Sections 5 to 7. The software used in our experiments is discussed in Section 8. We present

numerical results in Section 9 and finally, in Section 10, concluding remarks are made.

2 Test environment

The characteristics of the machine used to perform our tests are given in Table 2.1. In our experiments,

Table 2.1: Test machine characteristics

Processor 8× Intel i7-4790 (3.6 GHz)

Memory 15.6 Gbytes

Compiler gfortran version 4.7 with option -O

BLAS open BLAS

the direct solvers (see Section 3) are run in parallel, using 4 processors. We do not attempt to parallelize

the sparse matrix-vector products used by the iterative solvers and all tests with these solvers are run in

serial (although where BLAS are used, these take advantage of parallelism).

For each solver and each problem, an elapsed time limit of 600 seconds is imposed; if this limit is

exceeded, the solver is flagged as having failed on that problem. Failures resulting from insufficient memory

are also flagged and, in the case of the iterative solvers, the number of iterations per problem is limited to

100,000. We observe that, although the tests were performed on a lightly loaded machine, the timings can

vary if the experiments are repeated. In our experience, this variation is small (typically less than 5%),

although for large problems for which memory becomes an issue, the variation can be more significant.

Unfortunately, given the large scale nature of this study and time taken to perform the experiments, it

was not possible to produce average timings. However, variations in time that may arise from reruns will

have little effect on the conclusions we can draw from the performance profiles that we use as our main

tool for assessing performance (see Section 2.3).

2

2.1 Test problems

The problems used in our study are all taken from the CUTEst linear programme set [24] and the UFL

Collection [16]. To determine the test set that we shall use for the majority of our experiments, we

selected all the rectangular matrices A and removed “duplicates” (that is, similar problems belonging to

same group), leaving a single representative. This gave us a set of 921 problems. In all our tests, we check

A for duplicate entries (they are summed), out-of-range entries (they are removed) and explicit zeros (they

are removed). In addition, A is checked for null rows and columns. Any such rows or columns are removed

and if, after removal n < m, the matrix is transposed. The computation then continues with the resulting

cleaned matrix.

To ensure we only include non-trivial problems, for each cleaned matrix we solved the normal equations

(1.2) using LSMR (see Section 4, with the local reorthogonalization parameter set to 10) without

preconditioning and retained those problems for which convergence (using the stopping criteria discussed

in Section 2.2) was not achieved within 100,000 iterations or required more than 10 seconds. Using the

provided right-hand side vector b if available or taking b to be the vector of 1’s if not (so that the problems

are not necessarily consistent but at the same time this choice makes it straightforward to regenerate the

same b for running tests with a range of solvers) resulted in a test set T of 83 problems. This set is listed

along with some of the characteristics of each problem (including the number of entries, the density of the

row with the most entries, an estimate of the deficiency in the rank) in Table A.1 in the Appendix (see

[28] for details of the full set).

Having chosen our test set, for each solver, we impose a time limit of 600 seconds per problem. For

the iterative methods, the number of iterations for each problem is limited to 100,000.

2.2 Stopping criteria

Recall that the linear LS problem we seek to solve is

minφ(x), φ(x) = ‖r(x)‖2,

where r(x) = Ax − b is the residual. If the minimum residual is zero, φ(x) is non differentiable at the

solution and so the first check we make at iteration k is on the kth residual ‖rk‖2, where rk = b − Axk
with xk the computed solution on the kth iteration. If the minimum residual is non zero then

∇φ(x) =
AT r(x)

‖r(x)‖2
,

and we want to terminate once ∇φ(x) is small. Thus, in our tests with iterative solvers we use the following

stopping rules:

C1: Stop if ‖rk‖2 < δ1

C2: Stop if
‖AT rk‖2
‖rk‖2

<
‖AT r0‖2
‖r0‖2

∗ δ2,

where A is the “cleaned” matrix and δ1 and δ2 are convergence tolerances that we set to 10−8 and 10−6,

respectively. In all our experiments, we take the initial solution guess to be x0 = 0 and in this case C2

reduces to
‖AT rk‖2
‖rk‖2

<
‖AT b‖2
‖b‖2

∗ δ2.

Note that these stopping criteria are independent of the preconditioner and thus they enable

us to compare the performances of different preconditioners. In the case of no preconditioning, these

stopping criteria are closely related to those used by Fong and Saunders [22] in their implementation

of LSMR (see http://web.stanford.edu/group/SOL/download.html). However, if a preconditioner is

3

used, the Fong and Saunders implementation bases the stopping criteria on ‖(AM−1)T r‖2, where M is

the (right) preconditioner. This means that a different test is applied for different preconditioners and

thus is not appropriate for comparing the performances of different preconditioners. Using C1 and C2

involves additional work; in our tests, we have chosen to exclude the cost of computing the residuals for

testing C1 and C2 from the reported runtimes (and from the 600s time limit per problem) and we use a

modified reverse communication version of LSMR that enables us to use C1 and C2 in place of the Fong

and Saunders stopping criteria.

2.3 Performance profiles

To assess the performance of different solvers on our test set T , we report the raw data but we also employ

performance profiles [17], which in recent years have become a popular and widely used tool for providing

objective information when benchmarking software. The performance ratio for an algorithm on a particular

problem is the performance measure for that algorithm divided by the smallest performance measure for

the same problem over all the algorithms being tested (here we are assuming that the performance measure

is one for which smaller is better, for example, the iteration count or time taken). The performance profile

is the set of functions {pi(f) : f ∈ [1,∞)}, where pi(f) is the proportion of problems where the performance

ratio of the ith algorithm is at most f . Thus pi(f) is a monotonically increasing function taking values in

the interval [0, 1]. In particular, pi(1) gives the fraction of the examples for which algorithm i is the winner

(that is, the best according to the performance measure), while if we assume failure to solve a problem (for

example, through the maximum iteration count or time limit being exceeded) is signaled by a performance

measure of infinity, p∗i := limf→∞ pi(f) gives the fraction for which algorithm i is successful. If we are just

interested in the number of wins, we need only compare the values of pi(1) for all the algorithms but, if

we are interested in algorithms with a high probability of success, we should choose the ones for which p∗i
has the largest values. In our performance profile plots, we use a logarithmic scale in order to observe the

performance of the algorithms over a large range of f while still being able to discern in some detail what

happens for small f .

Whilst performance profiles are a very helpful tool when working with a large test set and several

algorithms, as Dolan and Moré point out, they do need to be used and interpreted with care. This is

especially true if we want to try and rank the algorithms in order. Our preliminary experiments for this

study led us to re-examine performance profiles [27]. We found that, while they give a clear measure of

which is the better algorithm for a chosen f and given set T , if performance profiles are used to compare

more than two algorithms, they determine which algorithm has the best probability pi(f) for f in a chosen

interval, but we cannot necessarily assess the performance of one algorithm relative to another that is not

the best using a single performance profile plot. Thus in Section 9, we limit some of our performance

profiles to two solvers at a time.

2.4 Parameter setting

Where codes offer a number of options (such as orderings and scalings), we normally use the default or

otherwise recommended settings; no attempt is made to tune the parameters for a particular problem

(this would not be realistic given the size of the test set and number of solvers). However, it is recognised

that, for some examples, choosing settings other than the defaults may significantly enhance performance

(or adversely effect it) and, in practice, a user may find it advisable to invest time in experimenting with

difference choices to try and optimize performance for his/her application. Details of the software we use

are given in Section 8, together with the parameter settings.

3 Direct solvers

While the focus of our study is on preconditioning iterative methods for least-squares problems, it is

of interest to look at how these methods perform in comparison to sparse direct methods. For the

4

normal equations, a positive definite solver that computes a sparse Cholesky factorization can be used,

such as CHOLMOD [11] or HSL MA87 [34]. Alternatively, there are sparse packages that can factorize

both positive definite and indefinite systems. These include a number of HSL codes (notably, MA57 [18],

HSL MA86 [36], and HSL MA97 [35]) as well as MUMPS [46], WSMP [30], PARDISO [52] and SPRAL SSIDS

[33]. Comparisons of some of these packages for solving sparse linear systems may be found in [23, 26].

When used to solve the augmented system, the solvers employ some kind of pivoting to try and ensure

numerical stability, and this can impose a non trivial runtime overhead (as well as adding significantly to

the complexity of the software and the memory requirements).

Most modern sparse direct solvers are designed to run in parallel, either through the use of MPI,

OpenMP or GPUs. It is beyond the scope of the current study to compare the performance of direct

solvers on least-squares problems; instead we opt to use HSL MA97 (Version 2.3.0) for our comparisons

with iterative methods. This choice was made since HSL MA97 is a recent state-of-the-art package that

is designed for multicore machines, it can solve both the normal equations and augmented system and,

because we are responsible for its development, we find it convenient to use and to incorporate into our

test environment. We note that CHOLMOD has an attractive feature that is not currently offered by any

of the HSL codes which is that it can factor the normal equations without being given C explicitly; just

providing AT suffices and this saves memory.

For sparse QR, far fewer software packages have been developed. Those that are available include MA49

[2] from the mid 1990s and, much more recently, SuiteSparseQR [15] and qr mumps [10]. Here we use

SuiteSparseQR version 4.4.4 (for which we have written a Fortran interface).

A time performance profile comparing SuiteSparseQR (denoted by SPQR) and HSL MA97 applied

to the normal equations and the augmented system (denoted by MA97-normal and MA97-augmented,

respectively) is given in Figure 3.1. In our experiments, one step of iterative refinement was used. We

see that using HSL MA97 for the augmented system leads to the smallest number of failures while using

it to solve the normal equations is the fastest approach for almost half of the problems. The failures are

for some of the largest problems and are because of insufficient memory (see Tables 3.25–3.27 in [28] for

details). In addition, for SPQR there are two problems (mri1 and mri2) for which no error is flagged but

the returned residuals are clearly far too large (1013 and 1024, respectively). Although a direct solver such

as HSL MA77 [53] that allows the main work arrays and the matrix factors to be held out of core can extend

the size of problem that can be solved, such solvers can be significantly slower. Thus there is a clear need

for iterative solvers that require less memory.

log(f)

0 0.5 1 1.5 2 2.5 3 3.5

fr
a

c
ti
o

n
 f

o
r

w
h

ic
h

 s
o

lv
e

r
w

it
h

in
 f

 o
f

b
e

s
t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Time performance profile - 83 CUTEst LP & UFL problems

MA97-normal (21 failures)

MA97-augmented (19 failures)

SPQR (24 failures)

Figure 3.1: Time performance profile for the direct solvers HSL MA97 (applied to the normal equations and

the augmented system) and SuiteSparseQR (SPQR) for test set T .

5

log(f)

0 0.5 1 1.5 2 2.5 3 3.5

fr
a

c
ti
o

n
 f

o
r

w
h

ic
h

 s
o

lv
e

r
w

it
h

in
 f

 o
f

b
e

s
t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Iteration performance profile - 921 CUTEst LP & UFL problems

LSQR (101 failures)

LSMR (51 failures)

log(f)

0 0.5 1 1.5 2 2.5 3 3.5

fr
a

c
ti
o

n
 f

o
r

w
h

ic
h

 s
o

lv
e

r
w

it
h

in
 f

 o
f

b
e

s
t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Time performance profile - 921 CUTEst LP & UFL problems

LSQR (101 failures)

LSMR (51 failures)

Figure 4.1: Iteration performance profile (left) and time performance profile for LSMR and LSQR (right)

for the complete CUTEst and UFL test set of 921 eligible problems with no preconditioning.

4 LSQR vs LSMR

CGLS (or CGNR) [32] is a long-established extension of the conjugate gradient method (CG) to least-

squares problems. It is mathematically equivalent to applying CG to the normal equations, without

actually forming them. The well-known and widely used LSQR algorithm of Paige and Saunders [49, 50]

is algebraically identical to CGLS but has more favourable numerical properties and in finite precision

LSQR is capable of achieving more accurate results than CGLS and so in some applications LSQR is

preferred. LSQR is based on the Golub-Kahan bidiagonalization of A and has the property of reducing

‖rk‖2 monotonically, where rk = b−Axk is the residual for the approximate solution xk.

The more recent LSMR algorithm of Fong and Saunders [22] is similar to LSQR in that it too is based on

Golub-Kahan bidiagonalization of A. However, in exact arithmetic it is equivalent to MINRES [48] applied

to the normal equations, so that the quantities ‖AT rk‖2 (as well as, perhaps more surprisingly, ‖rk‖2) are

monotonically decreasing. Fong and Saunders report that LSMR may be a preferable solver because of

this and because it may be able to terminate significantly earlier. Observe that if right-preconditioning

with preconditioner M is employed, then ‖(AM−1)T r‖2 is monotonic decreasing.

As already noted, the implementation of LSMR used in this paper is a slightly modified version of the

one available from http://web.stanford.edu/group/SOL/download.html. The modifications include

using allocatable arrays rather than automatic arrays (the latter can cause the code to crash with a

segmentation fault error if the problem is large whereas allocated arrays allow memory failures to be

captured and the code to be terminated with a suitable error flag set). More importantly, we incorporate

a reverse communication interface that allows greater flexibility in how the user performs matrix vector

products Ax and ATx and applies the (optional) preconditioner as well as enabling us to use our stopping

criteria C1 and C2 (independently of the preconditioner used). The same modifications are made to LSQR

for our tests.

In Figure 4.1, we present an iteration performance profile and a time performance for LSQR and LSMR

with no preconditioning on the entire CUTEst and UFL set of 921 eligible examples. We see that LSMR

has fewer failures compared to LSQR and requires a smaller number of iterations, which results in faster

execution time. This confirms the findings of Fong and Saunders; in the remainder of this study we will

limit our attention to LSMR.

Fong and Saunders propose incorporating local reorthogonalization in which each new basis vector

is reorthogonalized with respect to the previous localSize vectors, where localSize is a user specified

parameter. Setting localSize to 0 corresponds to no reorthogonalization while setting localSize to n

6

log(f)

0 0.5 1 1.5 2 2.5 3 3.5

fr
a

c
ti
o

n
 f

o
r

w
h

ic
h

 s
o

lv
e

r
w

it
h

in
 f

 o
f

b
e

s
t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Iteration performance profile - 921 CUTEst LP & UFL problems

LSMR(0) (51 failures)

LSMR(10) (56 failures)

LSMR(100) (52 failures)

LSMR(1000) (17 failures)

log(f)

0 0.5 1 1.5 2 2.5 3 3.5

fr
a

c
ti
o

n
 f

o
r

w
h

ic
h

 s
o

lv
e

r
w

it
h

in
 f

 o
f

b
e

s
t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Time performance profile - 921 CUTEst LP & UFL problems

LSMR(0) (51 failures)

LSMR(10) (56 failures)

LSMR(100) (52 failures)

LSMR(1000) (17 failures)

Figure 4.2: Iteration performance profile (left) and time performance profile for LSMR with a range

of values of localSize for the complete CUTEst and UFL test set of 921 eligible problems with no

preconditioning.

gives full reorthogonalization. Fong and Saunders report iteration counts for two linear programming

problems with localSize set to 0, 5, 10, 50 and n. These illustrate that, compared with no

reorthogonalization, setting localSize = 10 or 50 can lead to a worthwhile reduction in the number

of iterations for convergence compared to no reorthogonalization but, as expected, more iterations are

needed than for full reorthogonalization. Note that as n vectors of size localSize are needed, for large

problems full reorthogonalization is impractical both in terms of the computational time and memory

requirements.

To examine the effect of the reothogonalization parameter localSize on our much larger test set, an

iteration performance profile and a time performance profile for localSize set to 0, 10, 100 and 1000 are

given in Figure 4.2 (no preconditioning). We see that using a large value for localSize can significantly

reduce the number of iterations and improve the success rate; the disadvantage is that the cost of each

iteration (in terms of time and memory) increases with localSize.

5 Preconditioning strategies for normal equations

In this section, we first consider a number of ways to choose the preconditioner M for use with LSMR.

5.1 Diagonal preconditioning

The simplest form of preconditioning is diagonal preconditioning in which we we solve

min
y
‖b−ASy‖2, x = Sy,

where S is a diagonal matrix that scales the columns of A to give them unit 2-norm. This requires only

the diagonal entries of the normal matrix C to be computed or, equivalently, the squares of the 2-norms

of the columns of A. This can be done in parallel, making the computation of the preconditioner and its

application both straightforward and efficient (in terms of time and memory).

5.2 Incomplete Cholesky factorizations

Incomplete Cholesky (IC) factorizations have long been an important tool in the armoury of preconditioners

for the numerical solution of large sparse, symmetric positive definite linear systems of equations; for an

7

introduction and overview see, for example, [5, 56, 61] and the long lists of references therein. Since the

normal equations (1.2) are positive definite, an obvious choice for the preconditioner is an IC factorization

of the matrix C.

An IC factorization takes the form LLT in which some of the fill entries (entries in L that were zero

in the system matrix C) that would occur in a complete factorization are ignored. The preoconditioned

normal equations become

(AL−T)T (AL−L)y = L−1CL−T y = L−1AT b, y = LTx.

Performing preconditioning operations involves solving triangular systems with L and LT . The simplest

example of an incomplete factorization is IC(0) in which the lower triangular incomplete factor L only has

entries in the same positions as in the lower triangular part of the system matrix. This is memory efficient

but the resulting preconditioner is often not powerful enough to solve problems from practical applications

(and where it does give convergence, the number of iterations required can be prohibitive). Thus, over

the years, a wealth of different IC variants have been proposed, including structure-based methods, those

based on dropping entries below a prescribed threshold and those based on prescribing the maximum

number of entries allowed in L. Different variants are suitable for different problems but picking which to

use can often come down to experience. Most recently, Scott and Tůma [60, 61] have proposed a limited

memory approach that exploits ideas from the positive semidefinite Tismenetsky-Kaporin modification

scheme [40, 65]. This involves the use of intermediate memory that is employed during the construction of

L but is then discarded; the amount of memory used is controlled by the user. The basic scheme is based

on a matrix factorization of the form

C = (L+ L̂)(L+ L̂)T − E, (5.1)

where L is the lower triangular matrix with positive diagonal entries that is used for preconditioning, L̂ is

a strictly lower triangular matrix with small entries that is used to stabilize the factorization process but

is subsequently discarded, and E has the structure

E = L̂L̂T .

On the j-th step of the factorization, the first column of the Schur complement is decomposed into a sum

of two vectors

lj + l̂j ,

such that |lj |T |l̂j | = 0 (with the first entry in lj nonzero), where lj (respectively, l̂j) contains the entries

that are retained in (respectively, discarded from) the incomplete factorization. On the next step of a

complete decomposition, the Schur complement of order n− j would be updated by subtracting the outer

product of the pivot row and column. That is, by subtracting

(lj + l̂j)(lj + l̂j)
T .

However, the Tismenetsky incomplete factorization does not compute the full update as it does not subtract

Ej = l̂j l̂
T
j .

Thus, the positive semidefinite modification Ej is implicitly added to C. To limit the memory required,

drop tolerances are optionally used. In practice, the matrix C is optionally preordered and scaled and,

if necessary, shifted to avoid breakdown of the factorization (which occurs if a zero or negative pivot is

encountered). Thus the LLT incomplete factorization of the matrix

C = SQTCQS + αI

is computed, where Q is a permutation matrix chosen on the basis of sparsity, S is a diagonal scaling matrix

and α is a non-negative shift. It follows that M = LL
T

with L = QS−1L is the incomplete factorization

preconditioner.

8

Extensive numerical experiments reported in [60, 61] involving a large set of linear systems that come

from a wide range of real-world applications demonstrate that the approach is efficient (in terms of time

and memory) and, through the use of diagonal shifts [43], is robust, and thus it is this variant of IC that

we employ in our study.

When used to compute an incomplete factorization of the normal equations, there is no need to form

and store all of C explicitly; rather, the lower triangular part of its columns can be computed one at a

time, used to perform the corresponding step of the incomplete Cholesky algorithm and then discarded.

Of course, forming the normal matrix, even piecemeal, can entail a significant overhead (particularly if

m and n are large and if A has one or more dense rows) and potentially may lead to a severe loss of

information in very ill-conditioned cases.

5.3 MIQR

An alternative to an incomplete Cholesky factorization of C is an approximate orthogonal factorization of

A. If

A ≈ Q
[
R

0

]
,

where Q is orthogonal and R is upper triangular, then C = ATA ≈ RTR and, M = RTR can be used as

a preconditioner. Again, applying the preconditioner involves triangular solves. Observe that the factor

Q is not used. There have been a number of approaches based on incomplete orthogonal factorizations of

A [38, 51, 55, 66]. Most recently, there is the Multilevel Incomplete QR (MIQR) factorization of Li and

Saad [42].

When A is sparse, many of its columns are likely to be orthogonal because of their structure. These

structurally orthogonal columns form an independent set S. Once S is obtained, the remaining columns of

A are orthogonalized against the columns in S. Since the matrix of remaining columns will in general still

be sparse, it is natural to recursively repeat the process until the number of columns is small enough to

orthogonalize with standard methods, or a prescribed number of reductions (levels) has been reached, or

the matrix cannot be reduced further. This process results in a QR factorization of a column-permuted A

and forms the basis of the MIQR factorization. In practice, the QR factorization causes significant fill-in

and so MIQR improves sparsity by relaxing the orthogonality and applying dropping strategies.

The MIQR algorithm does not require the normal matrix C to be computed explicitly; only one row

of C is needed at any given time. Moreover, since C is symmetric, only its upper triangular part (i.e., the

inner products between the i-th column of A and columns i+ 1 to n) needs to be calculated.

5.4 RIF

The RIF (Robust Incomplete Factorization) algorithm of Benzi and Tůma [6, 7] computes an LDLT

factorization of the normal matrix C without forming any entries of C, working only with A. The method

is based on C-orthogonalization, i.e., orthogonalization with respect to the C-inner product defined by

〈x, y〉C := xTCy = (Ax)T (Ay) for all x, y ∈ IRn. (5.2)

Assuming A is of full column rank, C is symmetric positive definite and this then provides an inner

product on IRn. Given the n linear independent vectors e1, e2, ..., en (ei is the i-th unit basis vector), a

C-orthogonal set of vectors z1, z2, ..., zn is built using a Gram-Schmidt process with respect to (5.2). This

can be written in the form

ZTCZ = D = diag(d1, d2, ..., dn), (5.3)

where Z = [z1, z2, ..., zn] is unit upper triangular and the di are positive. It follows that ZT = L−1, where

L is the unit lower triangular factor of the root-free Cholesky factorization C = LDLT . It can be shown

[6] that the L factor can be obtained as a by-product of the C-orthogonalization process at no extra cost.

9

Two different types of preconditioner can be obtained by carrying out the C-orthogonalization process

incompletely. The first drops small entries from the computed vectors as the C-orthogonalization proceeds,

resulting in a sparse matrix Z̃ ≈ L−T ; that is, an incomplete inverse factorization of C of the form

C−1 ≈ Z̃D̃−1Z̃T ,

where D̃ is diagonal with positive entries, is computed. This is a factored sparse approximate inverse that

can be used as a preconditioner for the CG algorithm applied to the normal equations. The preconditioner

is guaranteed to be positive definite and can be applied in parallel since its application requires only matrix-

vector products. It is generally known as the stabilized approximate inverse (SAINV) preconditioner.

The second approach (the RIF preconditioner) is obtained by discarding the computed sparsified vector

z̃i as soon as it has been used to form the corresponding parts of the incomplete factor L̃ of C. This gives

an algorithm for computing an incomplete Cholesky factorization for the normal equations

C ≈ L̃D̃L̃T .

Again, the preconditioner M = L̃D̃L̃T is positive definite and (in exact arithmetic) breakdown during its

computation is not possible. An important feature of the RIF preconditioner is that it incurs only modest

intermediate storage costs, although implementing the algorithm for its construction so as to exploit the

sparsity of A is far from straightforward (see [7] for a brief discussion). Benzi and Tůma report that the

RIF preconditioner is generally more effective at reducing the number of CG iterations than the SAINV one

and is thus the one included in this study. Over the past few years, a number of papers on preconditioners

for least-squares problems have used RIF as a benchmark, but these papers limit their reported tests to a

small number of examples [3, 9, 42, 44].

6 BA-GMRES

The BA-GMRES method for solving least-squares problems combines using a stationary inner iteration

method with the Krylov subspace method GMRES [57] applied to the normal equations. In practice,

restarted GMRES is used. In contrast to the other methods discussed so far, rather than forming an explicit

preconditioner, a number of steps of a stationary iterative method are applied within the GMRES algorithm

whenever an application of the preconditioner is needed. Such techniques are often called inner-outer

iteration methods. While the basic idea is not new, it has recently been explored in the context of least-

squares problems by Hayami et al. [31, 44, 45]. In particular, for overdetermined least-squares problems,

they propose using Jacobi- (Cimmino [14]) and SOR-type (Kaczmarz [39]) iterative methods as inner-

iteration preconditioners for GMRES and advocate their so-called BA-GMRES approach for the efficient

solution of rank-deficient problems. Jacobi iterations can be advantageous for parallel implementations

but in this study, we limit our attention to serial implementations and use SOR iterations with automatic

selection of the relaxation parameter ω as described in [45].

BA-GMRES corresponds to GMRES applied to

min
x
‖Bb−BAx‖2, (6.1)

where the rectangular matrix B ∈ IRn×m is the (left) preconditioner. Morikuni and Hayami [44, 45] show

that if B satisfies R(A) = R(BT) and R(AT) = R(B), the solution of (6.1) is also a solution of the

least-squares problem (1.1). B is not formed or stored explicitly. Instead, at each GMRES iteration k,

when preconditioning is needed a fixed number of steps of a stationary iterative method are applied to a

system of the form

ATAz = ATAvk

to obtain z̃ for a given vk, which is used to compute the next GMRES basis vector vk+1. Thus at

each GMRES iteration, another system of normal equations is solved approximately using a stationary

10

iterative method and this can be done without forming any entries of ATA explicitly (see [56], Section

8.2 for details); all that is required are repeated matrix-vector products with A and AT . This allows

nonsymmetric preconditioning for least-squares problems. Another potential advantage of BA-GMRES is

that it avoids forming and storing an incomplete factorization; the memory used is determined solely by

the number of steps of GMRES that are applied before restarting.

Morikuni and Hayami observe that inner iteration preconditioners can also be applied to CGLS and

LSMR. This has the merit of using only short-term recurrences and so the memory requirements are less

than for BA-GMRES. The results reported in [44, 45] for a small set of test problems (including rank-

deficient examples) indicate faster times, fewer iterations and greater robustness using BA-GMRES; thus

BA-GMRES (for which software is available, see Section 8.5) is used in this study.

7 Preconditioning strategies for the augmented system

An alternative to preconditioning the normal equations is to precondition the augmented system (1.3).

In some applications, preconditioning the augmented system is advocated when the normal equations

are highly ill-conditioned (see, for instance, [47]). A number of possible approaches exist, including

employing an incomplete factorization designed for general indefinite symmetric systems or a signed

incomplete Cholesky factorization [62] designed specifically for systems of the form (1.3). Chow and

Saad [13] considered the class of incomplete LU preconditioners for solving indefinite problems and later

Li and Saad [41] integrated pivoting procedures with scaling and reordering. Building on this, Greif, He,

and Liu [29] recently developed a new incomplete factorization package SYM-ILDL for general sparse

symmetric indefinite matrices. The factorization is of the form

K ≈ LDLT , (7.1)

where L is unit lower triangular and D is block diagonal, with 1 × 1 and 2 × 2 blocks on the diagonal

(corresponding to 1 × 1 and 2 × 2 pivots). For SYM-ILDL, K may be any sparse indefinite matrix; no

advantage is made of the specific block structure of (1.3). Independently, Scott and Tůma [63] report on

the development of incomplete factorization algorithms for symmetric indefinite systems and propose a

number of new ideas with the goal of improving the stability, robustness and efficiency of the resulting

preconditioner. The SYM-ILDL software is available [29]. It is written in C++ and is designed either to be

called from within MATLAB or from the command line. The user may save the computed factor data to a

file but (when used from the command line) the package offers no procedure to take that data and use it as

a preconditioner. Without substantial further work to set up a more flexible and convenient user interface,

we were restricted to running individual problems one at a time. We performed limited experiments

using SYM-ILDL (see also [62, 63]). These demonstrated that there are least-squares problems for which

SYM-ILDL is able to provide an effective preconditioner but for other problems we were unsuccessful in

obtaining the required least-squares solution. The prototype code of Scott and Tůma likewise gave very

mixed results. We conclude that further work is needed for these codes to be useful for least-squares

problems; they are not explored further in this study.

For matrices K of the augmented form (1.3), Scott and Tůma [62] propose extending their limited

memory IC approach to a limited memory signed incomplete Cholesky factorization of the form (7.1)

where L is a lower triangular matrix with positive diagonal entries and D is a diagonal matrix with entries

±1. In practice, an LDLT factorization of

K = SQTKQS +

[
α1I

−α2I

]
is computed, where Q is a permutation matrix, S is a diagonal scaling matrix, and α1 and α2 are non-

negative shifts chosen to prevent breakdown. The preconditioner is M = LDL
T

, with L = QS−1L. In

this case, the permutation Q is chosen not only on the basis of sparsity but also so that a variable in the

11

(2, 2) block of K is not ordered ahead of any of its neighbours in the (1, 1) block; see [62] for details of this

so-called constrained ordering.

An important advantage of a signed IC factorization over a general indefinite incomplete factorization

is its simplicity in that it avoids the use of numerical pivoting. If we use the natural order (Q = I), the

factorization becomes

K ≈
[
I

L1 L2

] [
I

−I

] [
I LT

1

LT
2

]
and so

L1 ≈ AT and L1L
T
1 ≈ L2L

T
2 .

If we choose L1 = AT then this reduces to an IC factorization of the normal equations. However, by

choosing L1 6= AT or Q 6= I, this approach can exploit the structure of the augmented system while

avoiding the normal equations.

As the signed IC preconditioner is indefinite, a general non symmetric iterative method such as

GMRES [57] is needed; we use right preconditioned restarted GMRES. Since GMRES is applied to the

augmented system matrix K, the stopping criteria is applied to K. With the available implementations of

GMRES, it is not possible during the computation to check whether either of the stopping conditions C1

or C2 (which are based on A) is satisfied; they can, of course, be checked once GMRES has terminated.

Instead, we use the scaled backward error

‖Kyk − c‖2
‖c‖2

< δ3, (7.2)

where yk is the computed solution on the kth step. In our experiments we set δ3 = 10−8.

If we want to use a solver that is designed for symmetric indefinite systems, in place of GMRES we can

use MINRES [48]. However, MINRES requires a positive definite preconditioner and so we use M = LL
T

,

that is, we replace the entries −1 in D by +1 so that D becomes the identity. Again, the stopping

conditions C1 or C2 cannot be checked inside MINRES and we use instead (7.2).

8 Preconditioning software and parameter settings

8.1 Diagonal preconditioning

In Figure 8.1 we present iteration and time performance profiles for LSMR with diagonal preconditioning

using a range of values for the LSMR reorthogonalization parameter localSize. A large value reduces

the iteration count but increases the time (and memory) required (so that a number of problems exceed

the time limit if localSize is set to 1000, which accounts for the increase in the number of failures).

8.2 IC preconditioner for normal equations

A software package HSL MI35 that implements the limited memory IC algorithm discussed in Section 5.2

for the normal equations has been developed for the HSL mathematical software library [37]. This code is

a modified version of HSL MI28 [60]. Modifications were needed to allow the user to specify the maximum

number of entries allowed in each column of the incomplete factor L (in HSL MI28 the user specified the

amount of fill allowed but as columns of C may be dense, or close to dense, this change was needed to

keep L sparse). In addition, the user may either supply the matrix A and call a subroutine within the

package to form C explicitly or, to save memory, A may be passed directly to the factorization routine.

In this case, the lower triangular part of each column of the (permuted) normal matrix is computed as

needed during the factorization (although the sparsity pattern of C is computed if reordering is selected).

Note that, if A and not C is supplied, the range of scaling options is restricted since the equilibration

and maximum matching-based scalings that are offered through the use of the packages MC77 [54] and

MC64 [19, 20], respectively, require C explicitly. The default scaling is l2 scaling, in which column j of

12

log(f)

0 0.5 1 1.5 2 2.5 3 3.5

fr
a

c
ti
o

n
 f

o
r

w
h

ic
h

 s
o

lv
e

r
w

it
h

in
 f

 o
f

b
e

s
t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Iteration performance profile - 83 CUTEst LP & UFL problems

DIAG-LSMR(0) (13 failures)

DIAG-LSMR(10) (13 failures)

DIAG-LSMR(100) (10 failures)

DIAG-LSMR(1000) (17 failures)

log(f)

0 0.5 1 1.5 2 2.5 3 3.5

fr
a

c
ti
o

n
 f

o
r

w
h

ic
h

 s
o

lv
e

r
w

it
h

in
 f

 o
f

b
e

s
t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Time performance profile - 83 CUTEst LP & UFL problems

DIAG-LSMR(0) (13 failures)

DIAG-LSMR(10) (13 failures)

DIAG-LSMR(100) (10 failures)

DIAG-LSMR(1000) (17 failures)

Figure 8.1: Iteration performance profile (left) and time performance profile (right) for LSMR with diagonal

preconditioning using a range of values of localSize for test set T .

C is normalised by its 2-norm; this needs only one column of C at a time. We observe that HSL MI35 is

designed to solve the weighted least-squares problem but in our tests the weights are set to one.

The parameters lsize and rsize respectively control the maximum number of entries in each column

of L and each column of the matrix L̂ that is used in the computation of L (recall (5.1)). Iteration

and time performance profiles for LSMR preconditioned by HSL MI35 using lsize = rsize = 10 and

lsize = rsize = 20 are given in Figure 8.2. We see that the iteration count is reduced by increasing the

number of entries allowed and as the time is not significantly adversely effected, lsize = rsize = 20 is

used in all other experiments with HSL MI35.

log(f)

0 0.5 1 1.5 2 2.5 3 3.5

fr
a

c
ti
o

n
 f

o
r

w
h

ic
h

 s
o

lv
e

r
w

it
h

in
 f

 o
f

b
e

s
t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Iteration performance profile - 83 CUTEst LP & UFL problems

MI35(10)-LSMR (14 failures)

mi35(20)-LSMR (15 failures)

log(f)

0 0.5 1 1.5 2 2.5 3 3.5

fr
a

c
ti
o

n
 f

o
r

w
h

ic
h

 s
o

lv
e

r
w

it
h

in
 f

 o
f

b
e

s
t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Time performance profile - 83 CUTEst LP & UFL problems

MI35(10)-LSMR (14 failures)

mi35(20)-LSMR (15 failures)

Figure 8.2: Iteration performance profile (left) and time performance profile (right) for LSMR

preconditioned by HSL MI35 with lsize = rsize = 10 and lsize = rsize = 20 for test set T .

In Figure 8.3 we present iteration and time performance profiles for LSMR preconditioned by HSL MI35

using a range of values for the LSMR reorthogonalization parameter localSize. As expected, using a

large value reduces the iteration count but increases the time (and memory) required; localSize = 10 is

used in all other experiments with HSL MI35.

13

log(f)

0 0.5 1 1.5 2 2.5 3 3.5

fr
a

c
ti
o

n
 f

o
r

w
h

ic
h

 s
o

lv
e

r
w

it
h

in
 f

 o
f

b
e

s
t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Iteration performance profile - 83 CUTEst LP & UFL problems

MI35-LSMR(0) (15 failures)

MI35-LSMR(10) (15 failures)

MI35-LSMR(100) (15 failures)

MI35-LSMR(1000) (17 failures)

log(f)

0 0.5 1 1.5 2 2.5 3 3.5

fr
a

c
ti
o

n
 f

o
r

w
h

ic
h

 s
o

lv
e

r
w

it
h

in
 f

 o
f

b
e

s
t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Iteration performance profile - 83 CUTEst LP & UFL problems

MI35-LSMR(0) (15 failures)

MI35-LSMR(10) (15 failures)

MI35-LSMR(100) (15 failures)

MI35-LSMR(1000) (17 failures)

Figure 8.3: Iteration performance profile (left) and time performance profile (right) for LSMR

preconditioned by HSL MI35 using a range of values of localSize for test set T .

8.3 MIQR

The MIQR package available at http://www-users.cs.umn.edu/~saad/software/ is for solving least-

squares systems by a preconditioned CGNR algorithm and is written in C. As all our experiments are

performed in Fortran, we have chosen to use a Fortran version of MIQR that is available from the GALAHAD

optimization software library [25]. This is essentially a translation of Li and Saad [42]’s code, but with

extra checks and features to make the problem data input easier. Key parameters, such as the maximum

number of recursive levels of orthogonalization, the required angles between approximately orthogonal

columns, the drop tolerance, and the maximum number of fills permitted per column, are precisely as

given by Li and Saad.

log(f)

0 0.5 1 1.5 2 2.5 3 3.5

fr
a

c
ti
o

n
 f

o
r

w
h

ic
h

 s
o

lv
e

r
w

it
h

in
 f

 o
f

b
e

s
t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Iteration performance profile - 83 CUTEst LP & UFL problems

MIQR-LSMR(0) (28 failures)

MIQR-LSMR(10) (25 failures)

MIQR-LSMR(100) (26 failures)

MIQR-LSMR(1000) (25 failures)

log(f)

0 0.5 1 1.5 2 2.5 3 3.5

fr
a

c
ti
o

n
 f

o
r

w
h

ic
h

 s
o

lv
e

r
w

it
h

in
 f

 o
f

b
e

s
t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Time performance profile - 83 CUTEst LP & UFL problems

MIQR-LSMR(0) (28 failures)

MIQR-LSMR(10) (25 failures)

MIQR-LSMR(100) (26 failures)

MIQR-LSMR(1000) (25 failures)

Figure 8.4: Iteration performance profile (left) and time performance profile (right) for LSMR with MIQR

preconditioning using a range of values of localSize for test set T .

Figure 8.5 presents iteration and time performance profiles for MIQR-preconditioned LSMR using a

range of values of the reorthogonalization parameter localSize. The number of failures appears relatively

insensitive to the choice of localSize but the iteration count decreases as localSize increases while using

a value of 10 is the best in terms of time.

14

8.4 RIF

A right-looking implementation of RIF is available at http://www2.cs.cas.cz/~tuma/sparslab.html.

However, for our tests, Tůma provided a more recent left-looking version. This works only with A and AT .

As full documentation for the software is lacking, we relied on Tůma for advice on the parameter settings;

in particular, we used absolute dropping with a drop tolerance of 0.1. In Figure 8.5 we give iteration and

time performance profiles for RIF-preconditioned LSMR using a range of values of the reorthogonalization

parameter localSize.

log(f)

0 0.5 1 1.5 2 2.5 3 3.5

fr
a

c
ti
o

n
 f

o
r

w
h

ic
h

 s
o

lv
e

r
w

it
h

in
 f

 o
f

b
e

s
t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Iteration performance profile - 83 CUTEst LP & UFL problems

RIF-LSMR(0) (46 failures)

RIF-LSMR(10) (45 failures)

RIF-LSMR(100) (40 failures)

RIF-LSMR(1000) (38 failures)

log(f)

0 0.5 1 1.5 2 2.5 3 3.5

fr
a

c
ti
o

n
 f

o
r

w
h

ic
h

 s
o

lv
e

r
w

it
h

in
 f

 o
f

b
e

s
t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Time performance profile - 83 CUTEst LP & UFL problems

RIF-LSMR(0) (46 failures)

RIF-LSMR(10) (45 failures)

RIF-LSMR(100) (40 failures)

RIF-LSMR(1000) (38 failures)

Figure 8.5: Iteration performance profile (left) and time performance profile (right) for LSMR with RIF

preconditioning using a range of values of localSize for test set T .

8.5 BA-GMRES

There are codes for the BA-GMRES method preconditioned by NR-SOR inner iterations developed

by Morikuni available at http://researchmap.jp/KeiichiMorikuni/Implementations (March 2015).

However, these are not in the form that we can readily use for large-scale testing purposes. In particular,

they employ automatic arrays (and will thus fail for a very large problem for which there is insufficient

memory) and they contain “stop” statements (so again, they can fail without prior warning). As a result,

we implemented a modified version of BA-GMRES. This also allowed us to use the stopping criteria C1 and

C2 for consistency with the preconditioned LSMR tests (as in our tests with other methods, the time for

computing the residuals needed for checking C1 and C2 at each iteration are excluded from the reported

times).

As restarted GMRES is employed, the user must choose the number gmres its of iterations between

restarts. A compromise between a large value that reduces the overall number of iterations and a small

value that limits the storage should be used. We performed some preliminary experiments to try and

choose a suitable value to use for all our tests; our findings are in Figure 8.6. On the basis of these,

we set gmres its = 1000. Note that if the number (iter) of iterations required for convergence is less

than gmres its, so that we do not unfairly overestimate the memory required, the reported memory for

BA-GMRES is for gmres its = iter. Following Morikuni, our implementation of BA-GMRES allows the

user to choose between using NR-SOR and Cimmino inner iterations. For the former, the user may supply

the number of inner iterations and the relaxation parameter; otherwise, these are computed automatically

using the procedure proposed in [45]. We use NR-SOR inner iteration with automatic parameter selection

in our tests.

15

log(f)

0 0.5 1 1.5 2 2.5 3 3.5

fr
a

c
ti
o

n
 f

o
r

w
h

ic
h

 s
o

lv
e

r
w

it
h

in
 f

 o
f

b
e

s
t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Iteration performance profile - 83 CUTEst LP & UFL problems

BAGMRES(100) (32 failures)

BAGMRES(500) (26 failures)

BAGMRES(1000) (21 failures)

log(f)

0 0.5 1 1.5 2 2.5 3 3.5

fr
a

c
ti
o

n
 f

o
r

w
h

ic
h

 s
o

lv
e

r
w

it
h

in
 f

 o
f

b
e

s
t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Time performance profile - 83 CUTEst LP & UFL problems

BAGMRES(100) (32 failures)

BAGMRES(500) (26 failures)

BAGMRES(1000) (21 failures)

Figure 8.6: Iteration performance profile (left) and time performance profile for BA-GMRES with different

restart parameters for test set T .

8.6 Signed IC preconditioner: augmented system

A software package HSL MI30 that implements the limited memory signed IC algorithm discussed in

Section 7 for the augmented system is available within HSL; details are given in [62]. In our tests, we use

the default settings for HSL MI30 and the parameters lsize and size that control the number of entries

in L and the intermediate memory used to compute the factorization are both set to 20. For GMRES and

MINRES we use the HSL implementations MI24 (with the restart parameter set to 1000) and HSL MI32,

respectively.

9 Solver comparison results

9.1 Performance comparison for preconditioning LSMR

Figure 9.1 presents iteration and time performance profiles for LSMR run both without preconditioning

and with diagonal, MIQR, RIF and IC (HSL MI35) preconditioning. Here we chose localSize = 0 for no

log(f)

0 0.5 1 1.5 2 2.5 3 3.5

fr
a

c
ti
o

n
 f

o
r

w
h

ic
h

 s
o

lv
e

r
w

it
h

in
 f

 o
f

b
e

s
t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Iteration performance profile - 83 CUTEst LP & UFL problems

None (16 failures)

DIAG (13 failures)

MIQR (25 failures)

RIF (45 failures)

MI35 (15 failures)

log(f)

0 0.5 1 1.5 2 2.5 3 3.5

fr
a

c
ti
o

n
 f

o
r

w
h

ic
h

 s
o

lv
e

r
w

it
h

in
 f

 o
f

b
e

s
t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Time performance profile - 83 CUTEst LP & UFL problems

None (16 failures)

DIAG (13 failures)

MIQR (25 failures)

RIF (45 failures)

MI35 (15 failures)

Figure 9.1: Iteration performance profile (left) and time performance profile for different preconditioners

used with LSMR for test set T .

16

preconditioning and diagonal preconditioning and localSize = 10 for MIQR, RIF and IC preconditioning

since these appeared to give the best (time) performances in the individual preconditioner comparisons

reported in Sections 4 and 8. We see that, in terms of iteration counts, the incomplete factorization is

the best preconditioner but, in terms of time, the simplest option of diagonal preconditioning is slightly

better than IC preconditioning (and has the advantages of needing minimal memory and being trivially

parallelizable). The close time-ranking of the diagonal and IC preconditioners is confirmed in Figure 9.2.

We observe that Morikuni and Hayami [44] also found diagonal preconditioning to give the fastest solution

times in some of their tests.

log(f)

0 0.5 1 1.5 2 2.5 3 3.5

fr
a

c
ti
o

n
 f

o
r

w
h

ic
h

 s
o

lv
e

r
w

it
h

in
 f

 o
f

b
e

s
t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Time performance profile - 83 CUTEst LP & UFL problems

DIAG-LSMR(0) (13 failures)

MI35-LSMR(10 (15 failures)

Figure 9.2: Time performance profile for diagonal and IC preconditioners used with LSMR for test set T .

In Figure 9.3 we compare the remaining three preconditioners. We see that in terms of time MIQR

preconditioning is broadly similar to running without a preconditioner, and that the effects of a reduction

in iteration counts for the former is balanced by the cost of computing and applying the preconditioner.

This is reinforced in Figure 9.4 when RIF is removed from the picture.

log(f)

0 0.5 1 1.5 2 2.5 3 3.5

fr
a

c
ti
o

n
 f

o
r

w
h

ic
h

 s
o

lv
e

r
w

it
h

in
 f

 o
f

b
e

s
t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Iteration performance profile - 83 CUTEst LP & UFL problems

None-LSMR(0) (16 failures)

MIQR-LSMR(10) (25 failures)

RIF-LSMR(10) (45 failures)

log(f)

0 0.5 1 1.5 2 2.5 3 3.5

fr
a

c
ti
o

n
 f

o
r

w
h

ic
h

 s
o

lv
e

r
w

it
h

in
 f

 o
f

b
e

s
t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Time performance profile - 83 CUTEst LP & UFL problems

None-LSMR(0) (16 failures)

MIQR-LSMR(10) (25 failures)

RIF-LSMR(10) (45 failures)

Figure 9.3: Iteration and time performance profiles for LSMR with no preconditioning and MIQR and

RIF preconditioning for test set T .

The current implementation of RIF is somewhat slow. For problems for which the RIF preconditioner

performs reasonably well (including the IG5-1x problems), more than 95% of the total solution time can

be spent on computing the preconditioner, even though it can be significantly sparser than that computed

17

log(f)

0 0.5 1 1.5 2 2.5 3 3.5

fr
a

c
ti
o

n
 f

o
r

w
h

ic
h

 s
o

lv
e

r
w

it
h

in
 f

 o
f

b
e

s
t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Time performance profile - 83 CUTEst LP & UFL problems

None-LSMR(0) (16 failures)

MIQR-LSMR(10) (25 failures)

Figure 9.4: Time performance profile for LSMR with no preconditioning and MIQR preconditioning for

test set T .

using HSL MI35 or MIQR. The uncompetitive construction time appears to be largely attributable to the

searches performed to determine which C-inner products need to be computed; this is currently a subject

of separate investigation [64]. For 21 of the 83 test problems, computing the RIF preconditioner exceeded

our time limit of 600 seconds. Furthermore, for our test set T as a whole and the current settings, RIF is

not especially effective. For the 62 problems for which the RIF preconditioner was successfully computed,

22 went on to exceed the LSMR iteration limit and a further 2 exceeded the total time limit. Again, this

is consistent with [44]. We observe, however, that in many cases the RIF preconditioner is sparser than,

for example, the IC preconditioner. Using a smaller drop tolerance may improve the quality at the cost of

more fill but the time to compute the preconditioner can also increase significantly.

9.2 Performance comparison with BA-GMRES

Time performance profiles for BA-GMRES are given in Figure 9.5. We see that, on our test set, BA-

GMRES is slower than using LSMR with diagonal or IC preconditioning but is faster than LSMR with no

preconditioning and MIQR preconditioning. However, a closer look at the results (see the summary tables

given in the Appendix and [28]) shows that BA-GMRES is able to efficiently solve some examples that

preconditioned LSMR and the direct solvers struggle with. In particular, BA-GMRES performs strongly

on the GL7dxx problems and solves problem SPAL 004 in only one iteration. However, it is poor for the

pseex problems.

9.3 Performance comparison with signed incomplete factorization

In Figure 9.6, time performance profiles are given for solving the augmented system using the signed

incomplete Cholesky factorization preconditioner (HSL MI30) run with GMRES(1000) and MINRES; the

IC preconditioner (HSL MI35) for the normal equations run with LSMR is also included. We see that

HSL MI35 preconditioned LSMR is faster than solving the augmented system and has the least number of

failures. Note that the number of entries in the factors for the normal equations is approximately n×lsize
whereas for the augmented system the number is bounded above by m+nz(A) + (m+n)× lsize (where

nz(A) is the number of entries in A). Thus when working with the augmented system each application of

the preconditioner is considerably more expensive.

As observed in Section 7, for the signed incomplete factorization run with MINRES or GMRES, the

stopping criteria is the scaled backward error for the augmented system (1.3) and thus conditions C1

and/or C2 may not be satisfied. For a significant portion of our test set, if δ3 in (7.2) is set to be 10−8

18

log(f)

0 0.5 1 1.5 2 2.5 3 3.5

fr
a

c
ti
o

n
 f

o
r

w
h

ic
h

 s
o

lv
e

r
w

it
h

in
 f

 o
f

b
e

s
t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Time performance profile - 83 CUTEst LP & UFL problems

BAGMRES(1000) (21 failures)

DIAG-LSMR(0) (13 failures)

log(f)

0 0.5 1 1.5 2 2.5 3 3.5

fr
a

c
ti
o

n
 f

o
r

w
h

ic
h

 s
o

lv
e

r
w

it
h

in
 f

 o
f

b
e

s
t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Time performance profile - 83 CUTEst LP & UFL problems

BAGMRES(1000) (21 failures)

MI35-LSMR(10) (15 failures)

log(f)

0 0.5 1 1.5 2 2.5 3 3.5

fr
a

c
ti
o

n
 f

o
r

w
h

ic
h

 s
o

lv
e

r
w

it
h

in
 f

 o
f

b
e

s
t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Iteration performance profile - 83 CUTEst LP & UFL problems

BAGMRES(1000) (21 failures)

MIQR-LSMR(10) (25 failures)

log(f)

0 0.5 1 1.5 2 2.5 3 3.5

fr
a

c
ti
o

n
 f

o
r

w
h

ic
h

 s
o

lv
e

r
w

it
h

in
 f

 o
f

b
e

s
t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Iteration performance profile - 83 CUTEst LP & UFL problems

BAGMRES(1000) (21 failures)

None-LSMR(0) (16 failures)

Figure 9.5: Time performance profile for BA-GMRES(1000) and LSMR with diagonal, IC (HSL MI35),

MIQR and no preconditioning for test set T .

log(f)

0 0.5 1 1.5 2 2.5 3 3.5

fr
a

c
ti
o

n
 f

o
r

w
h

ic
h

 s
o

lv
e

r
w

it
h

in
 f

 o
f

b
e

s
t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Time performance profile - 83 CUTEst LP & UFL problems

MI35-LSMR(10 (15 failures)

MI30-GMRES (28 failures)

MI30-MINRES (21 failures)

Figure 9.6: Time performance profile for LSMR with IC (HSL MI35) preconditioning and GMRES(1000)

and MINRES with signed IC (HSL MI30) preconditioning for test set T .

19

then either C1 or C2 is satisfied (see Tables 3.25 and 3.26 in [28]). Indeed, in some cases where we report

a failure because the time limit or iteration count limit has been reached without satisfying (7.2), C1 or

C2 is actually satisfied and for other examples, a larger value of δ3 would still have resulted in C1 or C2

holding (and thus our reported iteration counts and total times can sometimes be larger than necessary).

However, for some problems, including the TFxx examples, a smaller δ3 is needed to satisfy C1 or C2.

For example, for MINRES with δ3 = 10−11, C1 is satisfied for problems TF14 and TF15 (the iteration

counts increase from 1987 and 1107 to 10,700 and 46,341, respectively, which are similar to those needed

by LSMR with HSL MI35). But for the other TFxx problems, the number of iterations needed to satisfy

C1 exceeds our limit of 100,000. Note that we were unable solve TF17, TF18 and TF19 to the required

accuracy (with our time and iteration count limits) using any of the direct solvers or preconditioners in

this study.

9.4 Performance comparison with a direct solver

In Figure 9.7, we present time performance profiles for the direct solver HSL MA97 applied to the normal

equations and the diagonal and IC (HSL MI35) preconditioned LSMR. We see that for the set T the parallel

direct solver is the fastest for more than 50% of the problems, but it is unable to solve 25% of the problems

for which there was insufficient memory. Moreover, the difference in the run times could potentially be

significantly reduced (especially for large problems) if we parallelize the matrix vector products required

by LSMR. Efficient parallel implementations depend both on the matrix structure and on the machine

architecture. This is a separate subject of research and is outside the scope of this study. The performance

of the iterative solvers with incomplete factorization preconditioners may also be enhanced by employing

parallel triangular solves, which has recently be considered with some potentially encouraging results by

Chow and Patel [12].

log(f)

0 0.5 1 1.5 2 2.5 3 3.5

fr
a

c
ti
o

n
 f

o
r

w
h

ic
h

 s
o

lv
e

r
w

it
h

in
 f

 o
f

b
e

s
t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Time performance profile - 83 CUTEst LP & UFL problems

MA97 (21 failures)

DIAG-LSMR(0) (15 failures)

log(f)

0 0.5 1 1.5 2 2.5 3 3.5

fr
a

c
ti
o

n
 f

o
r

w
h

ic
h

 s
o

lv
e

r
w

it
h

in
 f

 o
f

b
e

s
t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Time performance profile - 83 CUTEst LP & UFL problems

MA97 (21 failures)

MI35-LSMR(10) (15 failures)

Figure 9.7: Time performance profile for direct solver HSL MA97 and diagonal and IC (HSL MI35)

preconditioned LSMR for test set T .

9.5 Summary tables

In Tables A.2–A.5, we present summary data that allows a direct comparison of a particular statistic

across the range of methods considered. We remove SPQR and HSL MA97 (for the augmented system) as

these perform less well than HSL MA97 (for the normal equations). Similarly, MINRES preconditioned by

HSL MI30 is included (denoted by MI30-MIN) while GMRES preconditioned by HSL MI30 is omitted. Full

results for all methods (including those omitted here) may be found in [28]. For the iterative methods, we

have selected what appears to be the “best” global choice of localsize or gmres its as appropriate; these

20

are localsize=0 for the un-preconditioned and diagonal LSMR, localsize=10 for the MIQR, RIF, and

HSL MI35 versions, and gmres its=1000 for BA-GMRES (denoted in the tables by BA-G). We summarise

the storage required for the factors (and for GMRES), the number of iterations performed, the elapsed

time required to build the preconditioner and the total elapsed time to solve the problem. Note that, in

Table A.3, the iteration count for BA-GMRES is the number of GMRES iterations whereas for the other

methods it is the LSMR iteration count; the direct solvers are not included in this table since the iteration

count is always 1. A − indicates that the run was unsuccessful; again, for full details the reader is referred

to [28].

10 Concluding remarks

In this study, we have compared the performances of a number of preconditioning techniques for sparse

linear least-squares problems. Our main tool has been performance profiles, but the complete numerical

results are also available [28]. The findings of our study confirm that preconditioning least-squares problems

is hard and that at present there is no single approach that works well for all problems; we thus conclude

that there is scope for considerable further developments in this area. We have found that, in many cases,

diagonal preconditioning performs as well as or better than more sophisticated approaches and, as it is

very simple to implement and to apply (and can be used in parallel), we would suggest trying diagonal

preconditioning first. Investigating extending simple diagonal preconditioning to a block diagonal approach

(combined with a preordering step) would be interesting (note that block diagonal preconditioning is

currently offered by the Ceres non-linear least-squares solver [1]). In terms of iteration counts, using an

incomplete factorization of the normal equations performs well and, as we would expect since diagonal

preconditioning can be regarded as a special case in which only one entry per row/column is retained, it

generally requires far fewer iterations than diagonal preconditioning.

We observe that the direct solvers and the incomplete factorization codes HSL MI30 and HSL MI35

include options for scaling (and use scaling by default) whereas the software for MIQR, RIF and BA-

GMRES that is currently available does not offer scaling. It would be of interest in the future to examine

how much the performance of these approaches can be improved by the incorporation of scaling.

A further contribution of this study has been a detailed comparison of the LSQR and LSMR methods

and of the effect of local reorthogonalization within LSMR. Our findings have confirmed those of Fong and

Saunders [22] and have shown that the choice of the best local reorthogonalization parameter is problem

and preconditioner dependent and also depends on whether reducing the iteration count or the total time

is the primary objective.

Finally, we observe that a number of other approaches have been proposed in recent years, including

the limited memory preconditioner (LMP) of Bellavia, Gonzio and Morini [4] and the balanced incomplete

factorization (BIF) preconditioner of Bru, Maŕın Mas and Tůma [9]. LU preconditioning, which was

discussed by Saunders [58] in 1979 (see also Section 7.5.3 of the book by Björck [8]), has also received

renewed attention (see the 2015 paper by Arioli and Duff [3] and presentation by Saunders [59]). These

are not included in this study since implementations that allow timings that are suitable for making fair

comparisons with our software are not currently available and the algorithms are sufficiently complicated

for it to be infeasible for us to develop efficient implementations for use here. Note that in [3] and [4],

experimental results are reported using MATLAB codes. Unfortunately, the recent Fortran results reported

by Saunders [59] do not encourage us to expect that the LU approach will be efficient in terms of time. But

it would be interesting to see if it can be used to solve some of the examples that are currently intractable.

Acknowledgements

We are grateful to Michael Saunders for a number of discussions related to his LSQR and LSMR software

packages and to Miroslav Tůma for help with employing his RIF code.

21

References

[1] S. Agarwal, K. Mierle, and Others, Ceres solver. http://ceres-solver.org.

[2] P. Amestoy, I. S. Duff, and C. Puglisi, Multifrontal QR factorization in a multiprocessor environment,

Numerical Linear Algebra with Applications, 3 (1996), pp. 275–300.

[3] M. Arioli and I. S. Duff, Preconditioning linear least-squares problems by identifying a basis matrix, SIAM

J. on Scientific Computing, 37 (2015), pp. S544–S561.

[4] S. Bellavia, J. Gondzio, and B. Morini, A matrix-free preconditioner for sparse symmetric positive definite

systems and least-squares problems, SIAM J. on Scientific Computing, 35 (2013), pp. A192–A211.

[5] M. Benzi, Preconditioning techniques for large linear systems: a survey, J. of Computational Physics, 182

(2002), pp. 418–477.

[6] M. Benzi and M. Tůma, A robust incomplete factorization preconditioner for positive definite matrices,

Numerical Linear Algebra with Applications, 10 (2003), pp. 385–400.

[7] , A robust preconditioner with low memory requirements for large sparse least squares problems, SIAM

J. on Scientific Computing, 25 (2003), pp. 499–512.

[8] Å. Björck, Numerical methods for Least Squares Problems, SIAM, Philadelphia, 1996.

[9] R. Bru, J. Maŕın, J. Mas, and M. Tůma, Preconditioned iterative methods for solving linear least squares

problems, SIAM J. Sci. Comput., 36 (2014), pp. A2002–A2022.

[10] A. Buttari, Fine-grained multithreading for the multifrontal qr factorization of sparse matrices, SIAM J. on

Scientific Computing, 35 (2013), pp. C323–C345.

[11] Y. Chen, T. A. Davis, W. H. Hager, and S. Rajamanickam, Algorithm 887: CHOLMOD, supernodal

sparse cholesky factorization and update/downdate, ACM Transactions on Mathematical Software, 35 (2008),

pp. 22:1–22:14.

[12] E. Chow and A. Patel, Fine-grained parallel incomplete LU factorization, SIAM J. on Scientific Computing,

37 (2015), pp. C169–C193.

[13] E. Chow and Y. Saad, Experimental study of ILU preconditioners for indefinite matrices, J. of

Computational and Applied Mathematics, 86 (1997), pp. 387–414.

[14] G. Cimmino, Calcolo approssimato per le soluzioni dei sistemi di equazioni lineari, Ric. Sci. Progr. tecn.

econom. naz., 9 (1939), pp. 326–333.

[15] T. A. Davis, Algorithm 915: SuiteSparseQR: Multifrontal multithreaded rank-revealing sparse QR

factorization, ACM Transactions on Mathematical Software, 38 (2011), pp. 8:1–8:22.

[16] T. A. Davis and Y. Hu, The University of Florida sparse matrix collection, ACM Transactions on

Mathematical Software, 38 (2011).

[17] E. D. Dolan and J. J. Moré, Benchmarking optimization software with performance profiles, Mathematical

Programming, 91 (2002), pp. 201–213.

[18] I. S. Duff, MA57– a new code for the solution of sparse symmetric definite and indefinite systems, ACM

Transactions on Mathematical Software, 30 (2004), pp. 118–154.

[19] I. S. Duff and J. Koster, The design and use of algorithms for permuting large entries to the diagonal of

sparse matrices, SIAM J. on Matrix Analysis and Applications, 20 (1999), pp. 889–901.

[20] , On algorithms for permuting large entries to the diagonal of a sparse matrix, SIAM J. on Matrix

Analysis and Applications, 22 (2001), pp. 973–996.

[21] R. W. Farebrother, Fitting Linear Relationships: A History of the Calculus of Observations 1750–1900,

Springer, New York, 1999.

[22] D. C.-L. Fong and M. A. Saunders, LSMR: An iterative algorithm for sparse least-squares problems, SIAM

J. on Scientific Computing, 33 (2011), pp. 2950–2971.

[23] N. I. M. Gould, Y. Hu, and J. A. Scott, A numerical evaluation of sparse direct symmetric solvers for the

solution of large sparse, symmetric linear systems of equations., ACM Transactions on Mathematical Software,

33 (2007). Article 10, 32 pages.

22

[24] N. I. M. Gould, D. Orban, and P. L. Toint, CUTEst: a constrained and unconstrained testing environment

with safe threads for mathematical optimization, Computational Optimization and Applications, 60 (2015),

pp. 545–557.

[25] N. I. M. Gould, D. Orban, and Ph. L. Toint, GALAHAD—a library of thread-safe fortran 90 packages for

large-scale nonlinear optimization, ACM Transactions on Mathematical Software, 29 (2003), pp. 353–372.

[26] N. I. M. Gould and J. A. Scott, A numerical evaluation of HSL packages for the direct solution of

large sparse, symmetric linear systems of equations, ACM Transactions on Mathematical Software, 30 (2004),

pp. 300–325.

[27] N. I. M. Gould and J. A. Scott, A note on performance profiles for benchmarking software, Technical

Report RAL-P-2015-004, Rutherford Appleton Laboratory, 2015.

[28] , The state-of-the-art of preconditioners for sparse linear least squares problems: the complete results,

Technical Report RAL-TR-2015-009, Rutherford Appleton Laboratory, 2015.

[29] C. Greif, S. He, and P. Liu, SYM-ILDL: incomplete LDLT factorization of symmetric indefinite and skew

symmetric matrices, technical report, Department of Computer Science, The University of British Columbia,

2015. Software available from http://www.cs.ubc.ca/~inutard/html/.

[30] A. Gupta, WSMP Watson sparse matrix package (Part II: direct solution of general sparse systems, Technical

Report RC 21888 (98472), IBM T.J. Watson Research Center, 2000.

[31] K. Hayami, J.-F. Yin, and T. Ito, GMRES methods for least squares problems, SIAM J. on Matrix Analysis

and Applications, 31 (2010), pp. 2400–2430.

[32] M. R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear systems, J. of Research

of the National Bureau of Standards, 49 (1952), pp. 409–435.

[33] J. D. Hogg, E. Ovtchinnikov, and J. A. Scott, A sparse symmetric indefinite direct solver for GPU

architectures, Preprint RAL-P-2014-006, Rutherford Appleton Laboratory, 2014.

[34] J. D. Hogg, J. K. Reid, and J. A. Scott, Design of a multicore sparse Cholesky factorization using DAGs,

SIAM J. on Scientific Computing, 32 (2010), pp. 3627–3649.

[35] J. D. Hogg and J. A. Scott, HSL MA97: a bit-compatible multifrontal code for sparse symmetric systems,

Technical Report RAL-TR-2011-024, Rutherford Appleton Laboratory, 2011.

[36] , New parallel sparse direct solvers for multicore architectures, Algorithms, 6 (2013), pp. 702–725. Special

issue: Algorithms for Multi Core Parallel Computation.

[37] HSL. A collection of Fortran codes for large-scale scientific computation, 2013. http://www.hsl.rl.ac.uk.

[38] A. Jennings and M. A. Ajiz, Incomplete methods for solving ATAx = b, SIAM J. on Scientific and Statistical

Computing, 5 (1984), pp. 978–987.

[39] S. Kaczmarz, Ängenäherte Auflösung von Systemen linearer Gleichungen, Bull. Internat. Acad. Polon. Sci.

Cl. A., (1937), pp. 355–356.

[40] I. E. Kaporin, High quality preconditioning of a general symmetric positive definite matrix based on its

UTU + UTR + RTU decomposition, Numerical Linear Algebra with Applications, 5 (1998), pp. 483–509.

[41] N. Li and Y. Saad, Crout versions of ILU factorization with pivoting for sparse symmetric matrices,

Electronic Transactions on Numerical Analysis, 20 (2005), pp. 75–85.

[42] , MIQR: A multilevel incomplete QR preconditioner for large sparse least-squares problems, SIAM J. on

Matrix Analysis and Applications, 28 (2006).

[43] T. A. Manteuffel, An incomplete factorization technique for positive definite linear systems, Mathematics

of Computation, 34 (1980), pp. 473–497.

[44] K. Morikuni and K. Hayami, Inner-iteration Krylov subspace methods for least squares problems, SIAM J.

on Matrix Analysis and Applications, 34 (2013), pp. 1–22.

[45] , Convergence of inner-iteration GMRES methods for rank deficient least squares problems, SIAM J. on

Matrix Analysis and Applications, 36 (2015), pp. 225–250.

[46] MUMPS 5.0.0: a multifrontal massively parallel sparse direct solver, 2015. http://mumps-solver.org.

23

[47] A. R. L. Oliveira and D. C. Sorensen, A new class of preconditioners for large-scale linear systems from

interior point methods for linear programming, Linear Algebra and its Applications, 394 (2005), pp. 1–24.

[48] C. C. Paige and M. A. Saunders, Solution of sparse indefinite systems of linear equations, SIAM J. on

Numerical Analysis, 12 (1975), pp. 617–629.

[49] , Algorithm 583; LSQR: Sparse linear equations and least-squares problems, ACM Transactions on

Mathematical Software, 8 (1982), pp. 195–209.

[50] , LSQR: An algorithm for sparse linear equations and sparse least squares, ACM Transactions on

Mathematical Software, 8 (1982), pp. 43–71.

[51] A. T. Papadopoulus, I. S. Duff, and A. J. Wathen, A class of incomplete orthogonal factorization

methods. II: Implementation and results, BIT Numerical Mathematics, 45 (2005), pp. 159–179.

[52] PARDISO 5.0.0 solver project, 2014. http://www.pardiso-project.org.

[53] J. K. Reid and J. A. Scott, An out-of-core sparse Cholesky solver., ACM Transactions on Mathematical

Software, 36 (2009). Article 9, 33 pages.

[54] D. Ruiz, A scaling algorithm to equilibrate both rows and columns norms in matrices, Technical Report RAL-

TR-2001-034, Rutherford Appleton Laboratory, Chilton, Oxfordshire, England, 2001.

[55] Y. Saad, Preconditioning techniques for nonsymmetric and indefinite linear systems, J. of Computational and

Applied Mathematics, 24 (1988), pp. 89–105.

[56] , Iterative Methods for Sparse Linear Systems, Society for Industrial and Applied Mathematics,

Philadelphia, PA, second ed., 2003.

[57] Y. Saad and M. H. Schulz, GMRES: A generalized minimal residual algorithm for solving nonsymmetric

linear systems, SIAM Journal on Scientific and Statistical Computing, 7 (1986), pp. 856–869.

[58] M. A. Saunders, Sparse least squares problems by conjugate gradients: a comparison of preconditioning

methods, in Proceedings of Computer Science and Statistics: Twelfth Annual Conference on the Interface,

Waterloo, Canada, 1979.

[59] , LU preconditioning for full rank and singular sparse least squares, 2015. Presentation at SIAM

Conference on Applied Linear Algebra (LA15) available from https://www.pathlms.com/siam/courses/

1697/sections/2326.

[60] J. A. Scott and M. Tůma, HSL MI28: an efficient and robust limited-memory incomplete Cholesky

factorization code, ACM Transactions on Mathematical Software, 40 (2014), pp. Art. 24, 19.

[61] , On positive semidefinite modification schemes for incomplete Cholesky factorization, SIAM J. on

Scientific Computing, 36 (2014), pp. A609–A633.

[62] , On signed incomplete Cholesky factorization preconditioners for saddle-point systems, SIAM J. on

Scientific Computing, 36 (2014), pp. A2984–A3010.

[63] , Solving symmetric indefinite systems using memory efficient incomplete factorization preconditioners,

Technical Report RAL-P-2015-002, Rutherford Appleton Laboratory, 2015.

[64] , Preconditioning of linear least squares by RIF for implicitly held normal equations, Technical Report

RAL-TR-2016-P-00x, Rutherford Appleton Laboratory, 2016. In preparation.

[65] M. Tismenetsky, A new preconditioning technique for solving large sparse linear systems, Linear Algebra

and its Applications, 154–156 (1991), pp. 331–353.

[66] X. Wang, K. A. Gallivan, and R. Bramley, CIMGS: an incomplete orthogonal factorization

preconditioner, SIAM J. on Scientific Computing, 18 (1997), pp. 516–536.

24

Appendix: statistics for our test set

For each problem in the test subset T described in Section 2.1, m, n and nz(A) are the row and column

counts and the number of nonzeros in A. In addition, “nullity” is the estimated deficiency in the rank

as computed by HSL MA97, “density(A)” is the largest ratio of number of nonzeros in a row to n over all

rows, and “density(C)” is the ratio of the number of entries in C to n2. A − denotes insufficient memory

to compute the statistic.

Table A.1: Statistics for the test set T .

name m n nz(A) nullity density(A) density(C)

CUTEst examples

BAS1LP 9825 5411 587775 0 0.0675 0.0887

BAXTER 30733 27441 111576 2993 0.0017 0.0016

BCDOUT 7078 5412 67344 2 0.1554 0.0686

CO9 22924 10789 109651 0 0.0026 0.0021

CONT11 L 1961394 1468599 5382999 0 0.0000 0.0000

DBIR1 45775 18804 1077025 103 0.0119 0.0119

DBIR2 45877 18906 1158159 101 0.0123 0.0069

D2Q06C 5831 2171 33081 0 0.0157 0.0074

DELF000 5543 3128 13741 0 0.0029 0.0027

GE 16369 10099 44825 0 0.0036 0.0011

LARGE001 7176 4162 18887 0 0.0026 0.0025

LPL1 129959 39951 386218 44 0.0004 0.0003

MOD2 66409 34774 199810 0 0.0005 0.0005

MODEL10 16819 4400 150372 0 0.0039 0.0151

MPSBCD03 7078 5412 66210 2 0.1554 0.0682

NSCT2 37563 23003 697738 287 0.0273 0.0157

NSIR2 10057 4453 154939 0 0.0528 0.0239

PDE1 271792 270595 990587 - 0.6696 -

PDS-100 514577 156016 1096002 227 0.0000 0.0001

PDS-90 475448 142596 1014136 227 0.0000 0.0001

PILOT-JA 2267 940 14977 0 0.0585 0.0336

PILOTNOV 2446 975 13331 0 0.0410 0.0265

RAIL2586 923269 2586 8011362 0 0.0046 0.0705

RAIL4284 1096894 4284 11284032 0 0.0028 0.1187

SPAL 004 321696 10203 46168124 0 0.0165 0.4985

STAT96V2 957432 29089 2852184 0 0.0004 0.0004

STAT96V3 1113780 33841 3317736 0 0.0004 0.0004

STAT96V4 63076 3173 491336 0 0.0028 0.0054

STORMG21K 1377306 526185 3459881 0 0.0019 0.0003

WATSON 1 386992 201155 1055093 0 0.0000 0.0000

WATSON 2 677224 352013 1846391 0 0.0000 0.0000

WORLD 67147 34506 198883 0 0.0005 0.0005

UF Sparse Matrix Collection examples

12month1 872622 12471 22624727 - 0.2742 0.6869

162bit 3606 3476 37118 16 0.0040 0.0195

176bit 7441 7150 82270 40 0.0022 0.0103

192bit 13691 13093 154303 82 0.0012 0.0057

208bit 24430 23191 299756 199 0.0008 0.0036

beaflw 500 492 53403 4 0.8130 0.8945

25

Table A.1: Statistics for the test set T (continued).

name m n nz(A) nullity density(A) density(C)

c8 mat11 5761 4562 2462970 0 0.5298 0.8120

connectus 394707 458 1127525 0 0.1594 0.1579

ESOC 327062 37349 6019939 0 0.0005 0.0052

EternityII Etilde 204304 10054 1170516 0 0.0007 0.0170

f855 mat9 2511 2456 171214 0 0.3375 0.7436

GL7d16 955127 460260 14488881 - 0.0001 0.0009

GL7d17 1548649 955127 25978098 - 0.0001 0.0004

GL7d18 1955309 1548645 35590540 - 0.0000 0.0003

GL7d19 1955296 1911130 37322725 - 0.0000 0.0002

GL7d20 1911124 1437546 29893084 - 0.0000 0.0002

GL7d21 1437546 822922 18174775 - 0.0000 0.0003

GL7d22 822906 349443 8251000 - 0.0001 0.0006

GL7d23 349443 105054 2695430 - 0.0002 0.0017

graphics 29493 11822 117954 0 0.0003 0.0006

HFE18 96 in 2372 2371 933343 0 0.5065 0.9912

IG5-15 11369 6146 323509 0 0.0195 0.1521

IG5-16 18846 9519 588326 0 0.0126 0.1280

IG5-17 30162 14060 1035008 0 0.0085 0.1140

IG5-18 47894 20818 1790490 0 0.0058 0.0991

IMDB 896302 303617 3782463 - 0.0052 0.0015

kneser 10 4 1 349651 330751 992252 - 0.0000 0.0001

landmark 71952 2673 1146848 2 0.0060 0.0168

LargeRegFile 2111154 801374 4944201 0 0.0000 0.0000

Maragal 6 21251 10144 537694 516 0.5857 0.7491

Maragal 7 46845 26525 1200537 2046 0.3604 0.3099

Maragal 8 60845 33093 1308415 7107 0.0503 0.0356

mri1 114637 65536 589824 603 0.0037 0.0003

mri2 104597 63240 569160 - 0.0660 0.0078

NotreDame actors 383640 127823 1470404 - 0.0051 0.0025

psse0 26722 11028 102432 0 0.0004 0.0006

psse1 14318 11028 57376 0 0.0016 0.0007

psse2 28634 11028 115262 0 0.0025 0.0008

rel9 5921786 274667 23667183 - 0.0000 0.0005

relat9 9746232 274667 38955420 - 0.0000 0.0005

Rucci1 1977885 109900 7791168 0 0.0000 0.0008

sls 1748122 62729 6804304 0 0.0001 0.0012

TF14 3159 2644 29862 0 0.0049 0.0312

TF15 7741 6334 80057 0 0.0022 0.0163

TF16 19320 15437 216173 0 0.0010 0.0082

TF17 48629 38132 586218 - 0.0004 0.0040

TF18 123867 95368 1597545 - 0.0002 0.0019

TF19 317955 241029 4370721 - 0.0001 0.0009

tomographic1 59360 45908 647495 3436 0.0003 0.0009

Trec14 15904 3159 2872265 0 0.7914 0.9317

wheel 601 902103 723605 2170814 - 0.0008 0.0004

26

Table A.2: Storage required for factors (or for GMRES) for subset CUTEst problems by each method

name m n nz(A) no diagonal MIQR RIF BA-G MI35 MI30-MIN MA97

BAS1LP 9825 5411 587775 0 5411 154335 58422 6419411 113414 858406 3078236

BAXTER 30733 27441 111576 0 27441 166672 254733 27441 218513 709648 25904371

BCDOUT 7078 5412 67344 0 5412 227118 38953 5412 97350 214193 2167514

CO9 22924 10789 109651 0 10789 139168 52621 11802789 122520 346055 1188478

CONT11 L 1961394 1468599 5382999 0 1468599 6823917 4883216 149807602 10208898 22208667 147967730

DBIR1 45775 18804 1077025 0 2171 22404 13660 700243 30258 100726 260137

DBIR2 45877 18906 1158159 0 18804 306833 92947 7055662 264644 1977702 117251868

D2Q06C 5831 2171 33081 0 18906 311225 94898 17102778 172316 1876024 141400121

DELF000 5543 3128 13741 0 3128 9959 11667 4134128 11314 33260 136015

GE 16369 10099 44825 0 10099 98350 49164 8719998 134483 248210 730178

LARGE001 7176 4162 18887 0 4162 14243 16930 5169162 16000 46375 195019

LPL1 129959 39951 386218 0 39951 184639 143744 28745911 541699 1605246 12926410

MOD2 66409 34774 199810 0 34774 559518 229986 20505898 527770 1300573 4209242

MODEL10 16819 4400 150372 0 4400 34670 24083 1863308 78015 378047 733403

MPSBCD03 7078 5412 66210 0 5412 228815 38965 5412 98584 220678 2163800

NSCT2 37563 23003 697738 0 23003 561767 109287 4781258 165302 1407946 16602700

NSIR2 10057 4453 154939 0 4453 98551 27196 984313 54142 305406 704032

PDE1 271792 270595 990587 0 270595 - >993046 270595 - - -

PDS-100 514577 156016 1096002 0 156016 1027112 618440 12019236 2891511 7696832 189690066

PDS-90 475448 142596 1014136 0 142596 950792 570713 10557652 2626289 7233396 180340804

PILOT-JA 2267 940 14977 0 940 9650 5780 427458 10870 47073 105443

PILOTNOV 2446 975 13331 0 975 9320 5958 449095 11317 44818 103809

RAIL2586 923269 2586 8011362 0 2586 6235 24447 495112 51833 9613272 1531996

RAIL4284 1096894 4284 11284032 0 4284 6345 45055 958072 89219 15880038 6895656

SPAL 004 321696 10203 46168124 0 10203 18683 >7018 20410 213972 40754070 47074959

STAT96V2 957432 29089 2852184 0 29089 38807 81055 12573814 276290 4210897 1741109

STAT96V3 1113780 33841 3317736 0 33841 45145 94273 14216653 319109 4901099 2033605

STAT96V4 63076 3173 491336 0 3173 11493 10513 415798 47295 512268 155889

STORMG21K 1377306 526185 3459881 0 526185 6933837 >1957476 526185 7505682 34433755 >406183656

WATSON 1 386992 201155 1055093 0 201155 1005650 519977 11469139 2634818 6106788 8455310

WATSON 2 677224 352013 1846391 0 352013 2808070 1171936 17251085 4648375 10588235 14968100

WORLD 67147 34506 198883 0 34506 535778 224464 20065186 511951 1288095 4015154

27

Table A.2: Storage required for factors (or for GMRES) for subset UF problems by each method

name m n nz(A) no diagonal MIQR RIF BA-G MI35 MI30-MIN MA97

12month1 872622 12471 22624727 0 12471 73375 >65361 764511 260889 34096963 >13133836

162bit 3606 3476 37118 0 3476 193542 28550 1215038 70512 166083 2378948

176bit 7441 7150 82270 0 7150 388870 56269 5121390 145649 349258 8383997

192bit 13691 13093 154303 0 13093 685467 96275 14109093 267084 654954 46204979

208bit 24430 23191 299756 0 23191 1202798 168273 24217191 471420 1177025 132705125

beaflw 500 492 53403 0 492 28073 5307 475792 9814 71656 367705

c8 mat11 5761 4562 2462970 0 4562 78255 49640 4562 95477 2621770 9692833

connectus 394707 458 1127525 0 458 478 1744 1850 5185 1527818 32052

ESOC 327062 37349 6019939 0 37349 698366 >271701 37349 776570 12993333 47830600

EternityII Etilde 204304 10054 1170516 0 10054 24368 103380 4019398 205375 4202504 5383429

f855 mat9 2511 2456 171214 0 2456 136743 26961 2456 51366 264054 7250113

GL7d16 955127 460260 14488881 0 460260 9346036 >342783 4602708 9665201 36508148 >1327570176

GL7d17 1548649 955127 25978098 0 955127 31102238 >342999 8596231 20057165 - >211108386

GL7d18 1955309 1548645 35590540 0 1548645 >82048471 >375925 17035225 >32520973 - -

GL7d19 1955296 1911130 37322725 0 1911130 >178396100 >572915 19111408 40133312 - -

GL7d20 1911124 1437546 29893084 0 1437546 >118385247 >544782 8625316 30188087 - >2214333761

GL7d21 1437546 822922 18174775 0 822922 49569906 >537760 5760508 17281075 - >291709185

GL7d22 822906 349443 8251000 0 349443 12616485 >552082 2446155 7337962 30115416 318893119

GL7d23 349443 105054 2695430 0 105054 1721600 >569276 735432 2205827 10424076 >557267849

graphics 29493 11822 117954 0 11822 31960 30470 11822 24901 194127 450522

HFE18 96 in 2372 2371 933343 0 2371 10978 26016 3376371 49576 1028976 2810872

IG5-15 11369 6146 323509 0 6146 189538 62626 580318 128833 643103 13602718

IG5-16 18846 9519 588326 0 9519 279931 97466 1470142 199678 1115361 31140231

IG5-17 30162 14060 1035008 0 14060 409603 145262 1758938 295028 1843157 69825388

IG5-18 47894 20818 1790490 0 20818 587680 216979 2260114 436954 2992054 153672995

IMDB 896302 303617 3782463 0 303617 15909318 >521169 303617 5858164 13438747 >7625707183

kneser 10 4 1 349651 330751 992252 0 330751 6394519 - 330751 6759341 11405272 >176051300

landmark 71952 2673 1146848 0 2673 11307 17778 75654 26909 873043 368699

LargeRegFile 2111154 801374 4944201 0 801374 3615761 >462274 6411062 4106048 24923112 14314381

Maragal 6 21251 10144 537694 0 10144 246737 71907 3727498 212144 679769 22561128

Maragal 7 46845 26525 1200537 0 26525 662167 166881 1835053 553856 1641051 68305889

Maragal 8 60845 33093 1308415 0 33093 1702715 229119 33093 597971 1392093 163207703

mri1 114637 65536 589824 0 65536 519051 325965 62016508 636290 1776829 17833859

mri2 104597 63240 569160 0 63240 1486341 392461 47669568 781491 2575072 >8316379

NotreDame actors 383640 127823 1470404 0 127823 6768455 >708013 127823 2506265 6151175 >428559270

psse0 26722 11028 102432 0 11028 31603 23833 12042028 35197 180414 338043

psse1 14318 11028 57376 0 11028 40288 28925 12042028 35771 133438 345004

psse2 28634 11028 115262 0 11028 38437 34657 12042028 40814 216020 359698

rel9 5921786 274667 23667183 0 274667 498966 >320081 3570851 5764774 - >40800758

relat9 9746232 274667 38955420 0 274667 337475 >272798 3845546 5763434 - >53209865

Rucci1 1977885 109900 7791168 0 109900 638743 932200 109900 2306811 19056222 197328655

sls 1748122 62729 6804304 0 62729 71400 >108831 3013342 1226997 13636543 52048692

TF14 3159 2644 29862 0 2644 150764 28727 3649644 55249 148306 2427532

TF15 7741 6334 80057 0 6334 379663 69250 6334 132747 368065 14097226

TF16 19320 15437 216173 0 15437 933646 169320 15437 323886 928743 83788762

TF17 48629 38132 586218 0 38132 2304372 418887 38132 800458 2359904 >537526176

TF18 123867 95368 1597545 0 95368 5699962 >829968 95368 2002386 6080905 >1273959539

TF19 317955 241029 4370721 0 241029 14260905 >817427 241029 5061262 15718547 >2785976433

tomographic1 59360 45908 647495 0 45908 988212 280726 45908 906437 2247216 127261944

Trec14 15904 3159 2872265 0 3159 11942 34692 2661039 66099 3251107 14324608

wheel 601 902103 723605 2170814 0 723605 7796970 4253762 723605 14201674 25831230 >21906082

28

Table A.3: Iterations required for subset CUTEst problems by each method

name m n nz(A) no diagonal MIQR RIF BA-G MI35 MI30-MIN

BAS1LP 9825 5411 587775 14870 7610 48420 28 4406 7983 11477

BAXTER 30733 27441 111576 >100000 >100000 103 >100000 - >100000 >100000

BCDOUT 7078 5412 67344 >100000 >100000 >100000 >100000 - >100000 >100000

CO9 22924 10789 109651 24925 5063 3611 7006 2619 381 194

CONT11 L 1961394 1468599 5382999 206 206 >2 60 101 22 19

DBIR1 45775 18804 1077025 58936 1597 471 12283 284 209 18

DBIR2 45877 18906 1158159 1451 2229 30673 >100000 367 1863 62307

D2Q06C 5831 2171 33081 19090 2208 33838 >100000 864 833 >84581

DELF000 5543 3128 13741 >100000 26469 693 30637 3616 60 58

GE 16369 10099 44825 69445 6249 572 830 799 28 81

LARGE001 7176 4162 18887 52505 26782 53686 >100000 6589 75 90

LPL1 129959 39951 386218 30201 3175 563 >100000 706 420 66

MOD2 66409 34774 199810 10664 1370 1515 46350 579 151 88

MODEL10 16819 4400 150372 34369 2229 5870 >100000 388 743 202

MPSBCD03 7078 5412 66210 >100000 >100000 >100000 >100000 - >100000 >100000

NSCT2 37563 23003 697738 9991 1395 13525 >100000 205 615 >100000

NSIR2 10057 4453 154939 9611 1037 20205 9 210 386 72961

PDE1 271792 270595 990587 906 965 - - - - -

PDS-100 514577 156016 1096002 681 342 228 203 76 90 64

PDS-90 475448 142596 1014136 639 331 216 195 73 88 76

PILOT-JA 2267 940 14977 >100000 2344 61 28197 334 323 54

PILOTNOV 2446 975 13331 83448 1927 43 17920 340 214 20

RAIL2586 923269 2586 8011362 919 401 816 233 178 151 9

RAIL4284 1096894 4284 11284032 887 733 923 375 212 224 19

SPAL 004 321696 10203 46168124 >2572 >2507 >2740 - 1 >1047 535

STAT96V2 957432 29089 2852184 986 726 462 414 425 19 22

STAT96V3 1113780 33841 3317736 1055 765 485 435 414 20 27

STAT96V4 63076 3173 491336 4144 810 1767 449 125 17 24

STORMG21K 1377306 526185 3459881 1383 183 >6446 - - 2285 >4234

WATSON 1 386992 201155 1055093 2160 422 165 249 56 73 8

WATSON 2 677224 352013 1846391 1812 349 119 185 48 54 7

WORLD 67147 34506 198883 9811 1369 1084 24796 571 154 70

29

Table A.3: Iterations required for subset UF problems by each method

name m n nz(A) no diagonal MIQR RIF BA-G MI35 MI30-MIN

12month1 872622 12471 22624727 >6310 268 972 - 60 371 294

162bit 3606 3476 37118 29396 2540 728 1495 319 247 252

176bit 7441 7150 82270 >100000 6537 2710 3894 655 454 981

192bit 13691 13093 154303 >100000 12203 4790 7236 6005 1282 1521

208bit 24430 23191 299756 >100000 17073 9764 13993 6219 2198 3131

beaflw 500 492 53403 43875 40985 38436 >5 485 33967 >100000

c8 mat11 5761 4562 2462970 40787 38344 >100000 >100000 - 29944 >76276

connectus 394707 458 1127525 1748 7 114 7 3 6 3

ESOC 327062 37349 6019939 5604 15004 >20935 - - >21629 >14678

EternityII Etilde 204304 10054 1170516 1354 1122 2098 883 384 585 81

f855 mat9 2511 2456 171214 19017 20354 >100000 >100000 - 12372 >100000

GL7d16 955127 460260 14488881 61 48 264 - 9 32 35

GL7d17 1548649 955127 25978098 58 48 422 - 8 28 -

GL7d18 1955309 1548645 35590540 80 64 - - 10 - -

GL7d19 1955296 1911130 37322725 205 53 - - 9 46 -

GL7d20 1911124 1437546 29893084 136 31 - - 5 28 -

GL7d21 1437546 822922 18174775 143 26 196 - 6 25 -

GL7d22 822906 349443 8251000 238 24 124 - 6 22 30

GL7d23 349443 105054 2695430 340 24 91 - 6 21 22

graphics 29493 11822 117954 >100000 >100000 >100000 >100000 - 1891 224

HFE18 96 in 2372 2371 933343 30697 15102 30130 12433 1632 14659 16095

IG5-15 11369 6146 323509 4577 608 126 321 92 239 535

IG5-16 18846 9519 588326 7406 863 150 478 151 348 772

IG5-17 30162 14060 1035008 7264 828 169 410 123 326 706

IG5-18 47894 20818 1790490 7282 738 205 447 107 309 886

IMDB 896302 303617 3782463 >12955 >10670 >3303 - - >5974 >4263

kneser 10 4 1 349651 330751 992252 17209 10781 >8403 >1 - 3257 1867

landmark 71952 2673 1146848 19937 894 36 274 27 12 25

LargeRegFile 2111154 801374 4944201 795 54 167 - 7 12 21

Maragal 6 21251 10144 537694 5178 1942 8699 >100000 354 679 1291

Maragal 7 46845 26525 1200537 2769 1071 1444 5718 68 264 477

Maragal 8 60845 33093 1308415 >100000 >100000 >43720 >100000 - >71973 65802

mri1 114637 65536 589824 6108 6116 8810 1575 932 2217 65

mri2 104597 63240 569160 11852 11822 4315 >1 744 2935 10271

NotreDame actors 383640 127823 1470404 >52691 >49880 >9971 - - >18396 >12190

psse0 26722 11028 102432 82324 43122 1210 22445 28003 71 30

psse1 14318 11028 57376 64151 50610 4588 >100000 37887 575 136

psse2 28634 11028 115262 81831 58572 7677 >100000 43868 722 174

rel9 5921786 274667 23667183 110 81 107 - 12 37 -

relat9 9746232 274667 38955420 88 76 82 - 13 36 -

Rucci1 1977885 109900 7791168 17837 8330 >15623 1823 - >12455 553

sls 1748122 62729 6804304 638 189 620 - 47 68 13

TF14 3159 2644 29862 34727 25709 44760 12914 1758 11418 1087

TF15 7741 6334 80057 >100000 81922 >100000 43460 - 41034 1744

TF16 19320 15437 216173 >100000 >100000 >100000 >100000 - >100000 1107

TF17 48629 38132 586218 >100000 >100000 >43947 >100000 - >84020 1199

TF18 123867 95368 1597545 >100000 >93527 >16944 - - >28500 1463

TF19 317955 241029 4370721 >32164 >30368 >5798 - - >8670 1087

tomographic1 59360 45908 647495 65455 18905 >72373 12 - 1867 1840

Trec14 15904 3159 2872265 2007 1593 8533 >1 690 1603 16005

wheel 601 902103 723605 2170814 >19475 >18285 >5102 >7367 - >4024 >4585

30

Table A.4: Time required for factors for subset CUTEst problems by each method

name m n nz(A) no diagonal MIQR RIF BA-G MI35 MI30-MIN MA97

BAS1LP 9825 5411 587775 0.00 0.00 0.57 7.25 0.00 1.33 1.03 0.19

BAXTER 30733 27441 111576 0.00 0.00 0.30 1.32 0.00 0.29 0.80 0.10

BCDOUT 7078 5412 67344 0.00 0.00 0.40 1.51 0.00 0.46 0.27 0.04

CO9 22924 10789 109651 0.00 0.00 0.16 1.04 0.00 0.22 0.77 0.10

CONT11 L 1961394 1468599 5382999 0.00 0.01 16.14 45.56 0.00 9.38 18.36 5.26

DBIR1 45775 18804 1077025 0.00 0.00 0.04 0.07 0.00 0.04 0.14 0.02

DBIR2 45877 18906 1158159 0.00 0.00 1.32 40.98 0.00 2.24 4.57 0.39

D2Q06C 5831 2171 33081 0.00 0.00 0.83 47.59 0.00 2.14 4.18 0.41

DELF000 5543 3128 13741 0.00 0.00 0.01 0.01 0.00 0.01 0.01 0.02

GE 16369 10099 44825 0.00 0.00 0.07 0.17 0.00 0.08 0.37 0.05

LARGE001 7176 4162 18887 0.00 0.00 0.02 0.01 0.00 0.01 0.02 0.02

LPL1 129959 39951 386218 0.00 0.00 0.28 0.44 0.00 0.94 3.25 0.31

MOD2 66409 34774 199810 0.00 0.00 0.44 2.15 0.00 1.07 1.21 0.17

MODEL10 16819 4400 150372 0.00 0.00 0.20 0.39 0.00 0.09 0.48 0.08

MPSBCD03 7078 5412 66210 0.00 0.00 0.39 1.57 0.00 0.42 0.33 0.05

NSCT2 37563 23003 697738 0.00 0.00 1.46 37.53 0.00 2.51 3.88 0.27

NSIR2 10057 4453 154939 0.00 0.00 0.21 2.41 0.00 0.21 0.17 0.06

PDE1 271792 270595 990587 0.00 0.00 >600.00 >600.00 0.00 0.01 >600.00 >1.00

PDS-100 514577 156016 1096002 0.00 0.00 1.21 22.34 0.00 1.74 14.03 1.12

PDS-90 475448 142596 1014136 0.00 0.00 1.09 21.45 0.00 1.44 12.86 1.04

PILOT-JA 2267 940 14977 0.00 0.00 0.02 0.04 0.00 0.03 0.02 0.01

PILOTNOV 2446 975 13331 0.00 0.00 0.02 0.03 0.00 0.02 0.02 0.01

RAIL2586 923269 2586 8011362 0.00 0.01 2.37 110.43 0.00 2.43 4.31 3.32

RAIL4284 1096894 4284 11284032 0.00 0.01 4.82 338.76 0.00 4.65 13.08 4.52

SPAL 004 321696 10203 46168124 0.00 0.04 9.67 >600.00 0.00 74.72 42.00 17.98

STAT96V2 957432 29089 2852184 0.00 0.00 0.15 0.60 0.00 0.27 1.29 2.50

STAT96V3 1113780 33841 3317736 0.00 0.00 0.17 0.77 0.00 0.31 1.28 2.95

STAT96V4 63076 3173 491336 0.00 0.00 0.04 2.16 0.00 0.08 0.21 0.24

STORMG21K 1377306 526185 3459881 0.00 0.01 66.80 >600.00 0.00 30.83 56.90 >48.23

WATSON 1 386992 201155 1055093 0.00 0.00 1.69 0.49 0.00 1.50 0.99 1.01

WATSON 2 677224 352013 1846391 0.00 0.00 5.04 4.11 0.00 2.85 2.15 1.77

WORLD 67147 34506 198883 0.00 0.00 0.41 2.19 0.00 0.76 3.42 0.17

31

Table A.4: Time required for factors for subset UF problems by each method

name m n nz(A) no diagonal MIQR RIF BA-G MI35 MI30-MIN MA97

12month1 872622 12471 22624727 0.00 0.06 23.18 >600.00 0.00 171.69 373.85 -165.18

162bit 3606 3476 37118 0.00 0.00 0.47 1.76 0.00 0.15 0.15 0.18

176bit 7441 7150 82270 0.00 0.00 1.23 8.31 0.00 0.28 0.45 0.80

192bit 13691 13093 154303 0.00 0.00 2.55 30.08 0.00 0.47 0.69 9.90

208bit 24430 23191 299756 0.00 0.00 5.52 109.21 0.00 0.97 1.79 47.80

beaflw 500 492 53403 0.00 0.00 0.08 0.19 0.00 0.11 0.12 0.12

c8 mat11 5761 4562 2462970 0.00 0.00 7.82 63.80 0.00 31.86 7.41 24.13

connectus 394707 458 1127525 0.00 0.00 0.12 2.23 0.00 0.24 0.58 0.17

ESOC 327062 37349 6019939 0.00 0.01 6.75 >600.00 0.00 3.32 316.35 9.03

EternityII Etilde 204304 10054 1170516 0.00 0.00 0.67 37.16 0.00 1.14 2.17 0.44

f855 mat9 2511 2456 171214 0.00 0.00 0.62 2.89 0.00 0.89 0.51 1.87

GL7d16 955127 460260 14488881 0.00 0.01 397.42 >600.00 0.00 50.70 220.47 >60.27

GL7d17 1548649 955127 25978098 0.00 0.03 1148.65 >600.00 0.00 301.96 >600.00 >185.83

GL7d18 1955309 1548645 35590540 0.00 0.04 >600.00 >600.00 0.00 >600.00 >600.00 >417.03

GL7d19 1955296 1911130 37322725 0.00 0.04 >600.00 >600.00 0.00 438.21 >600.00 >71.78

GL7d20 1911124 1437546 29893084 0.00 0.03 >600.00 >600.00 0.00 219.99 >600.00 >317.00

GL7d21 1437546 822922 18174775 0.00 0.02 657.94 >600.00 0.00 73.73 >600.00 >110.01

GL7d22 822906 349443 8251000 0.00 0.01 165.69 >600.00 0.00 21.64 192.74 >38.17

GL7d23 349443 105054 2695430 0.00 0.00 24.26 >600.00 0.00 5.03 94.06 >11.29

graphics 29493 11822 117954 0.00 0.00 0.08 0.16 0.00 0.04 0.08 0.05

HFE18 96 in 2372 2371 933343 0.00 0.00 1.08 14.28 0.00 6.11 0.70 3.38

IG5-15 11369 6146 323509 0.00 0.00 0.96 9.73 0.00 0.71 1.81 2.15

IG5-16 18846 9519 588326 0.00 0.00 1.85 26.86 0.00 1.68 1.48 5.53

IG5-17 30162 14060 1035008 0.00 0.00 3.28 70.05 0.00 2.76 7.00 18.09

IG5-18 47894 20818 1790490 0.00 0.00 5.87 179.05 0.00 6.76 10.04 58.55

IMDB 896302 303617 3782463 0.00 0.01 51.71 >600.00 0.00 40.04 124.49 >25.71

kneser 10 4 1 349651 330751 992252 0.00 0.00 9.50 0.00 0.00 5.69 14.40 >97.12

landmark 71952 2673 1146848 0.00 0.00 0.27 1.67 0.00 0.29 0.48 0.18

LargeRegFile 2111154 801374 4944201 0.00 0.01 11.14 >600.00 0.00 2.21 78.63 1.05

Maragal 6 21251 10144 537694 0.00 0.00 2.28 40.18 0.00 13.56 2.10 24.36

Maragal 7 46845 26525 1200537 0.00 0.00 8.42 144.30 0.00 47.14 8.13 146.14

Maragal 8 60845 33093 1308415 0.00 0.00 16.12 210.23 0.00 5.27 2.96 88.43

mri1 114637 65536 589824 0.00 0.00 1.26 93.78 0.00 2.24 1.95 1.54

mri2 104597 63240 569160 0.00 0.00 4.09 67.78 0.00 4.95 6.26 >59.24

NotreDame actors 383640 127823 1470404 0.00 0.00 11.41 >600.00 0.00 9.20 28.88 >20.41

psse0 26722 11028 102432 0.00 0.00 0.07 0.04 0.00 0.02 0.07 0.03

psse1 14318 11028 57376 0.00 0.00 0.10 0.05 0.00 0.03 0.04 0.03

psse2 28634 11028 115262 0.00 0.00 0.08 0.13 0.00 0.04 0.06 0.03

rel9 5921786 274667 23667183 0.00 0.02 16.10 >600.00 0.00 44.03 >600.00 >29.86

relat9 9746232 274667 38955420 0.00 0.03 14.26 >600.00 0.00 53.35 >600.00 >34.84

Rucci1 1977885 109900 7791168 0.00 0.01 2.37 172.24 0.00 2.49 40.80 21.88

sls 1748122 62729 6804304 0.00 0.01 1.56 >600.00 0.00 6.44 15.05 12.23

TF14 3159 2644 29862 0.00 0.00 0.24 0.43 0.00 0.06 0.21 0.18

TF15 7741 6334 80057 0.00 0.00 0.75 2.61 0.00 0.21 0.43 1.43

TF16 19320 15437 216173 0.00 0.00 2.38 17.44 0.00 0.45 1.05 16.18

TF17 48629 38132 586218 0.00 0.00 7.59 119.28 0.00 1.22 3.77 >6.82

TF18 123867 95368 1597545 0.00 0.00 23.83 >600.00 0.00 3.58 12.20 >7.62

TF19 317955 241029 4370721 0.00 0.00 82.22 >600.00 0.00 12.75 37.71 >31.67

tomographic1 59360 45908 647495 0.00 0.00 2.86 3.00 0.00 1.48 1.49 33.93

Trec14 15904 3159 2872265 0.00 0.00 2.35 57.38 0.00 27.41 10.68 20.31

wheel 601 902103 723605 2170814 0.00 0.01 20.39 36.75 0.00 51.45 46.90 >42.90

32

Table A.5: Total time required for subset CUTEst problems by each method

name m n nz(A) no diagonal MIQR RIF BA-G MI35 MI30-MIN MA97

BAS1LP 9825 5411 587775 27.18 14.10 133.70 7.31 119.59 21.71 32.51 0.93

BAXTER 30733 27441 111576 >67.29 >86.64 0.52 >79.54 >600.00 >293.46 >305.83 3.61

BCDOUT 7078 5412 67344 >28.51 >32.47 >137.51 >50.06 >600.00 >92.58 >66.19 0.36

CO9 22924 10789 109651 12.93 2.98 5.20 7.03 37.17 0.79 1.06 0.10

CONT11 L 1961394 1468599 5382999 8.47 10.76 >16.44 52.40 32.92 13.68 22.88 8.61

DBIR1 45775 18804 1077025 8.87 0.27 0.18 2.97 0.42 0.11 0.15 0.02

DBIR2 45877 18906 1158159 5.44 8.79 185.29 >518.59 7.21 13.04 455.44 72.80

D2Q06C 5831 2171 33081 82.11 9.45 213.36 >288.71 24.89 6.80 >600.00 46.14

DELF000 5543 3128 13741 >7.77 2.65 0.15 4.99 12.78 0.03 0.02 0.02

GE 16369 10099 44825 20.64 2.29 0.64 0.71 7.22 0.12 0.46 0.06

LARGE001 7176 4162 18887 5.55 3.69 14.39 >22.47 33.58 0.04 0.05 0.02

LPL1 129959 39951 386218 65.54 7.88 2.62 >343.06 26.24 3.99 3.83 1.27

MOD2 66409 34774 199810 11.92 1.83 7.56 117.56 13.36 1.93 1.72 0.32

MODEL10 16819 4400 150372 18.64 1.28 5.02 >70.89 1.43 0.88 0.73 0.08

MPSBCD03 7078 5412 66210 >28.30 >32.57 >137.96 >49.69 >600.00 >92.08 >66.27 0.37

NSCT2 37563 23003 697738 25.19 3.80 81.95 >200.45 2.74 5.19 >526.77 4.57

NSIR2 10057 4453 154939 5.12 0.59 21.23 2.41 0.56 0.58 65.32 0.13

PDE1 271792 270595 990587 6.27 8.38 - - >600.00 - - -

PDS-100 514577 156016 1096002 6.08 5.24 5.18 25.07 3.18 5.19 17.16 60.36

PDS-90 475448 142596 1014136 5.18 4.60 4.57 23.91 2.78 3.93 16.12 56.21

PILOT-JA 2267 940 14977 >5.76 0.18 0.03 2.57 0.16 0.08 0.03 0.01

PILOTNOV 2446 975 13331 4.47 0.12 0.03 1.60 0.14 0.03 0.02 0.02

RAIL2586 923269 2586 8011362 40.50 17.64 39.62 121.17 41.97 10.55 4.98 2.19

RAIL4284 1096894 4284 11284032 70.04 55.71 77.84 368.38 77.62 25.03 14.91 4.00

SPAL 004 321696 10203 46168124 >600.00 >600.00 >600.00 - 3.87 >600.00 125.69 124.87

STAT96V2 957432 29089 2852184 11.18 8.21 5.56 5.79 13.11 0.54 2.19 0.40

STAT96V3 1113780 33841 3317736 13.93 10.46 6.84 7.25 15.55 0.64 2.54 0.41

STAT96V4 63076 3173 491336 6.63 1.35 3.15 2.94 1.41 0.11 0.28 0.07

STORMG21K 1377306 526185 3459881 30.85 5.14 >600.00 - >600.00 258.65 >600.00 -

WATSON 1 386992 201155 1055093 14.67 3.39 4.27 3.48 4.89 3.58 1.25 0.67

WATSON 2 677224 352013 1846391 22.73 5.25 9.26 8.48 5.18 5.73 2.60 1.26

WORLD 67147 34506 198883 10.53 1.82 5.24 64.30 12.43 1.58 3.83 0.32

33

Table A.5: Total time required for subset UF problems by each method

name m n nz(A) no diagonal MIQR RIF BA-G MI35 MI30-MIN MA97

12month1 872622 12471 22624727 >600.00 26.26 122.52 - 27.96 207.50 417.74 -

162bit 3606 3476 37118 3.76 0.39 1.21 2.17 0.81 0.31 0.27 0.19

176bit 7441 7150 82270 40.30 2.14 7.60 10.50 6.30 0.85 1.43 0.82

192bit 13691 13093 154303 173.37 7.66 23.69 37.80 132.01 3.34 4.15 10.00

208bit 24430 23191 299756 >600.00 21.08 84.25 139.45 213.97 10.38 18.28 48.07

beaflw 500 492 53403 4.07 4.04 8.67 >0.19 0.51 5.44 >17.42 0.12

c8 mat11 5761 4562 2462970 175.75 171.65 >527.77 >535.49 >600.00 183.17 >600.00 24.20

connectus 394707 458 1127525 7.56 0.03 0.62 2.27 0.13 0.28 0.65 0.22

ESOC 327062 37349 6019939 157.20 332.98 >600.00 - >600.00 >600.00 >600.00 9.38

EternityII Etilde 204304 10054 1170516 6.67 5.69 12.34 42.12 9.30 5.02 3.49 0.52

f855 mat9 2511 2456 171214 6.03 6.81 >95.00 >45.52 >600.00 9.55 >66.90 1.89

GL7d16 955127 460260 14488881 13.99 13.44 478.30 - 6.75 58.59 235.09 -

GL7d17 1548649 955127 25978098 23.38 24.26 >600.00 - 14.72 318.66 - -

GL7d18 1955309 1548645 35590540 57.09 39.84 - - 25.33 - - -

GL7d19 1955296 1911130 37322725 100.66 28.33 - - 34.12 486.49 - -

GL7d20 1911124 1437546 29893084 56.31 16.13 - - 20.63 242.04 - -

GL7d21 1437546 822922 18174775 33.19 7.33 >600.00 - 9.27 84.13 - -

GL7d22 822906 349443 8251000 20.68 2.35 190.26 - 3.33 25.17 202.06 -

GL7d23 349443 105054 2695430 6.90 0.53 27.75 - 0.92 5.91 95.99 -

graphics 29493 11822 117954 >600.00 >47.86 >82.32 >68.95 >600.00 1.68 0.35 0.06

HFE18 96 in 2372 2371 933343 48.69 24.58 55.29 36.58 61.33 35.13 47.90 3.41

IG5-15 11369 6146 323509 3.08 0.43 1.16 10.03 1.39 1.06 2.90 2.19

IG5-16 18846 9519 588326 9.53 1.22 2.29 27.69 2.75 2.58 4.48 5.60

IG5-17 30162 14060 1035008 18.04 2.39 4.12 71.35 4.09 4.24 11.96 18.24

IG5-18 47894 20818 1790490 40.50 4.55 7.75 182.09 10.44 9.48 21.55 58.91

IMDB 896302 303617 3782463 >600.00 >600.00 >600.00 - >600.00 >600.00 >600.00 -

kneser 10 4 1 349651 330751 992252 186.42 142.54 >600.00 >0.10 >600.00 203.24 120.88 -

landmark 71952 2673 1146848 43.35 1.96 0.36 2.73 1.94 0.32 0.60 0.21

LargeRegFile 2111154 801374 4944201 29.43 2.44 24.47 - 3.03 3.51 86.25 1.63

Maragal 6 21251 10144 537694 5.87 2.32 24.61 >199.43 4.19 15.27 5.44 24.41

Maragal 7 46845 26525 1200537 8.76 3.47 18.94 169.55 2.87 48.97 11.43 146.29

Maragal 8 60845 33093 1308415 >600.00 >422.80 >600.00 >600.00 >600.00 >600.00 504.85 88.78

mri1 114637 65536 589824 16.60 18.17 63.25 101.51 83.92 23.14 2.62 1.63

mri2 104597 63240 569160 24.04 30.06 51.52 >67.78 41.31 29.66 118.90 -

NotreDame actors 383640 127823 1470404 >600.00 >600.00 >600.00 - >600.00 >600.00 >600.00 -

psse0 26722 11028 102432 31.74 20.05 1.09 16.34 428.84 0.08 0.10 0.04

psse1 14318 11028 57376 18.95 18.91 3.77 >65.68 479.57 0.51 0.14 0.04

psse2 28634 11028 115262 34.75 29.48 7.10 >81.34 554.11 0.76 0.28 0.04

rel9 5921786 274667 23667183 34.16 26.57 47.50 - 24.30 56.86 - -

relat9 9746232 274667 38955420 48.46 44.81 55.63 - 39.89 73.79 - -

Rucci1 1977885 109900 7791168 596.42 321.85 >600.00 243.72 >600.00 >600.00 109.48 22.45

sls 1748122 62729 6804304 33.75 9.84 27.46 - 9.42 9.92 17.18 12.72

TF14 3159 2644 29862 3.42 3.03 35.01 3.12 6.81 5.55 0.61 0.19

TF15 7741 6334 80057 26.85 24.25 >198.99 24.76 >600.00 47.82 2.06 1.46

TF16 19320 15437 216173 209.74 >75.68 >545.35 >149.74 >600.00 392.60 4.33 16.34

TF17 48629 38132 586218 >600.00 >212.92 >600.00 >493.09 >600.00 >600.00 14.09 -

TF18 123867 95368 1597545 >600.00 >600.00 >600.00 - >600.00 >600.00 57.35 -

TF19 317955 241029 4370721 >600.00 >600.00 >600.00 - >600.00 >600.00 144.15 -

tomographic1 59360 45908 647495 145.39 48.55 >600.00 3.05 >600.00 17.23 17.52 34.19

Trec14 15904 3159 2872265 14.54 9.78 54.43 >57.39 53.76 39.68 170.66 20.37

wheel 601 902103 723605 2170814 >600.00 >600.00 >600.00 >600.00 >600.00 >600.00 >600.00 -

34

Table A.6: Residuals obtained for subset CUTEst problems by each method

name no diagonal MIQR RIF BA-G MI35 MI30-MIN MA97 MA97-aug SPQR

BAS1LP 5.54E+1 5.54E+1 5.54E+1 8.02E+1 5.54E+1 5.54E+1 5.54E+1 5.54E+1 5.54E+1 5.54E+1

BAXTER - - 8.61E+1 - - - 6.61E+1 5.92E+1 5.92E+1 7.39E+1

BCDOUT - - - - - - 3.54E+1 3.53E+1 3.53E+1 3.53E+1

CO9 8.91E+1 8.91E+1 8.91E+1 8.91E+1 8.91E+1 8.91E+1 8.92E+1 8.91E+1 8.91E+1 8.91E+1

CONT11 L 8.09E+2 8.09E+2 - 8.09E+2 8.09E+2 8.09E+2 8.09E+2 8.09E+2 8.09E+2 8.09E+2

DBIR1 3.49E+1 3.49E+1 3.49E+1 3.49E+1 3.49E+1 3.49E+1 3.49E+1 3.49E+1 3.49E+1 3.49E+1

DBIR2 1.67E+2 1.66E+2 1.66E+2 - 1.66E+2 1.67E+2 1.67E+2 1.66E+2 1.66E+2 1.66E+2

D2Q06C 1.67E+2 1.66E+2 1.66E+2 - 1.66E+2 1.67E+2 1.67E+2 1.66E+2 1.66E+2 1.66E+2

DELF000 - 5.38E+1 5.38E+1 5.38E+1 5.38E+1 5.38E+1 5.38E+1 5.38E+1 5.38E+1 5.38E+1

GE 7.25E+1 7.24E+1 7.24E+1 7.24E+1 7.24E+1 7.24E+1 7.24E+1 7.24E+1 7.24E+1 7.24E+1

LARGE001 6.06E+1 6.06E+1 6.06E+1 - 6.06E+1 6.06E+1 6.07E+1 6.06E+1 6.06E+1 6.06E+1

LPL1 7.08E+1 7.08E+1 7.08E+1 - 7.08E+1 7.08E+1 7.09E+1 7.08E+1 7.08E+1 7.08E+1

MOD2 1.38E+2 1.38E+2 1.38E+2 1.38E+2 1.38E+2 1.38E+2 1.39E+2 1.38E+2 1.38E+2 1.38E+2

MODEL10 5.35E+1 5.35E+1 5.35E+1 - 5.35E+1 5.35E+1 5.36E+1 5.35E+1 5.35E+1 5.35E+1

MPSBCD03 - - - - - - 3.54E+1 3.52E+1 3.52E+1 3.52E+1

NSCT2 1.83E+2 1.83E+2 1.83E+2 - 1.83E+2 1.83E+2 1.84E+2 1.83E+2 1.83E+2 1.83E+2

NSIR2 8.05E+1 8.04E+1 8.04E+1 9.93E+1 8.04E+1 8.05E+1 8.05E+1 8.04E+1 8.04E+1 8.04E+1

PDE1 3.03E+2 3.03E+2 - - - - - - 3.03E+2 -

PDS-100 2.84E+2 2.84E+2 2.84E+2 2.84E+2 2.84E+2 2.84E+2 2.85E+2 2.84E+2 2.84E+2 2.84E+2

PDS-90 2.68E+2 2.68E+2 2.68E+2 2.68E+2 2.68E+2 2.68E+2 2.68E+2 2.68E+2 2.68E+2 2.68E+2

PILOT-JA - 3.19E+1 3.19E+1 3.19E+1 3.19E+1 3.19E+1 3.20E+1 3.19E+1 3.19E+1 3.19E+1

PILOTNOV 3.50E+1 3.28E+1 3.28E+1 3.28E+1 3.28E+1 3.28E+1 3.29E+1 3.28E+1 3.28E+1 3.28E+1

RAIL2586 1.41E+2 1.41E+2 1.41E+2 1.41E+2 1.41E+2 1.41E+2 1.41E+2 1.41E+2 1.41E+2 1.41E+2

RAIL4284 1.69E+2 1.69E+2 1.69E+2 1.69E+2 1.69E+2 1.69E+2 1.69E+2 1.69E+2 1.69E+2 -

SPAL 004 - - - - 3.27E-11 - 1.47E+0 3.51E-14 - -

STAT96V2 9.72E+2 9.72E+2 9.72E+2 9.72E+2 9.72E+2 9.72E+2 9.73E+2 9.72E+2 9.72E+2 9.72E+2

STAT96V3 1.04E+3 1.04E+3 1.04E+3 1.04E+3 1.04E+3 1.04E+3 1.05E+3 1.04E+3 1.04E+3 1.04E+3

STAT96V4 1.20E+2 1.20E+2 1.20E+2 1.20E+2 1.20E+2 1.20E+2 1.21E+2 1.20E+2 1.20E+2 1.20E+2

STORMG21K 8.96E+2 8.96E+2 - - - 8.96E+2 8.96E+2 - 8.96E+2 -

WATSON 1 2.54E+2 2.54E+2 2.54E+2 2.54E+2 2.54E+2 2.54E+2 2.55E+2 2.54E+2 2.54E+2 2.54E+2

WATSON 2 3.35E+2 3.35E+2 3.35E+2 3.35E+2 3.35E+2 3.35E+2 3.36E+2 3.35E+2 3.35E+2 3.35E+2

WORLD 1.40E+2 1.40E+2 1.40E+2 1.40E+2 1.40E+2 1.40E+2 1.41E+2 1.40E+2 1.40E+2 1.40E+2

35

Table A.6: Residuals obtained for subset UF problems by each method

name no diagonal MIQR RIF BA-G MI35 MI30-MIN MA97 MA97-aug SPQR

12month1 - 9.27E+2 9.27E+2 - 9.27E+2 9.27E+2 9.27E+2 - - -

162bit 1.17E+1 1.17E+1 1.17E+1 1.17E+1 1.17E+1 1.17E+1 1.18E+1 1.17E+1 1.17E+1 1.17E+1

176bit 1.84E+1 1.84E+1 1.84E+1 1.84E+1 1.84E+1 1.84E+1 1.84E+1 1.84E+1 1.84E+1 1.84E+1

192bit 2.48E+1 2.48E+1 2.48E+1 2.48E+1 2.48E+1 2.48E+1 2.49E+1 2.48E+1 2.48E+1 2.48E+1

208bit - 3.85E+1 3.84E+1 3.85E+1 3.84E+1 3.84E+1 3.85E+1 3.84E+1 3.84E+1 3.84E+1

beaflw 5.05E+0 4.57E+0 4.60E+0 - 4.35E+0 4.69E+0 4.56E+0 4.16E+0 4.16E+0 4.16E+0

c8 mat11 2.21E+1 2.19E+1 - - - 2.19E+1 2.18E+1 2.12E+1 2.12E+1 2.12E+1

connectus 6.27E+2 6.27E+2 6.27E+2 6.27E+2 6.27E+2 6.27E+2 6.28E+2 6.27E+2 6.27E+2 6.27E+2

ESOC 4.04E+2 2.23E+1 - - - - 4.36E-3 5.23E-10 - 5.97E-9

EternityII Etilde 4.45E-6 4.51E-6 4.47E-6 4.43E-6 5.33E-6 4.42E-6 1.21E-4 3.56E-14 6.41E-14 6.31E-13

f855 mat9 1.79E+1 1.79E+1 - - - 1.79E+1 1.65E+1 2.14E+2 1.69E+1 4.37E+3

GL7d16 7.48E+2 7.48E+2 7.48E+2 - 7.48E+2 7.48E+2 7.49E+2 - - -

GL7d17 8.98E+2 8.98E+2 8.98E+2 - 8.98E+2 8.98E+2 - - - -

GL7d18 9.31E+2 9.31E+2 - - 9.31E+2 - - - - -

GL7d19 1.04E+3 1.04E+3 - - 1.04E+3 1.04E+3 - - - -

GL7d20 1.09E+3 1.09E+3 - - 1.09E+3 1.09E+3 - - - -

GL7d21 1.00E+3 1.00E+3 1.00E+3 - 1.00E+3 1.00E+3 - - - -

GL7d22 7.89E+2 7.89E+2 7.89E+2 - 7.89E+2 7.89E+2 7.89E+2 - - -

GL7d23 5.35E+2 5.35E+2 5.35E+2 - 5.35E+2 5.35E+2 5.36E+2 - - -

graphics - - - - - 3.03E-4 3.03E-4 3.03E-4 3.03E-4 3.03E-4

HFE18 96 in 4.91E-1 4.90E-1 4.90E-1 4.90E-1 4.90E-1 4.90E-1 4.91E-1 4.90E-1 4.90E-1 4.90E-1

IG5-15 5.48E+1 5.48E+1 5.48E+1 5.48E+1 5.48E+1 5.48E+1 5.49E+1 5.48E+1 5.48E+1 5.48E+1

IG5-16 7.15E+1 7.15E+1 7.15E+1 7.15E+1 7.15E+1 7.15E+1 7.15E+1 7.15E+1 7.15E+1 7.15E+1

IG5-17 9.10E+1 9.10E+1 9.10E+1 9.10E+1 9.10E+1 9.10E+1 9.10E+1 9.10E+1 9.10E+1 9.10E+1

IG5-18 1.15E+2 1.15E+2 1.15E+2 1.15E+2 1.15E+2 1.15E+2 1.15E+2 1.15E+2 1.15E+2 1.15E+2

IMDB - - - - - - 8.04E+2 - - -

kneser 10 4 1 1.62E+2 1.62E+2 - - - 1.62E+2 1.62E+2 - - 1.63E+2

landmark 1.31E-5 1.12E-5 1.12E-5 1.12E-5 1.15E-5 1.12E-5 8.36E-5 1.12E-5 1.12E-5 1.12E-5

LargeRegFile 4.44E+2 4.44E+2 4.44E+2 - 4.44E+2 4.44E+2 4.44E+2 4.44E+2 4.44E+2 4.44E+2

Maragal 6 1.06E+1 1.06E+1 1.06E+1 - 1.06E+1 1.06E+1 1.07E+1 1.06E+1 1.06E+1 1.07E+1

Maragal 7 1.36E+1 1.36E+1 1.36E+1 1.36E+1 1.36E+1 1.36E+1 1.37E+1 1.36E+1 1.36E+1 1.37E+1

Maragal 8 - - - - - - 2.39E+2 2.37E+2 2.37E+2 2.37E+2

mri1 2.67E+1 2.67E+1 2.67E+1 2.67E+1 2.67E+1 2.67E+1 2.67E+1 2.67E+1 2.67E+1 8.09E+13

mri2 1.41E+2 1.41E+2 1.41E+2 - 1.41E+2 1.41E+2 1.41E+2 - - 9.24E+24

NotreDame actors - - - - - - 5.19E+2 - - -

psse0 6.63E+1 6.63E+1 6.63E+1 6.63E+1 6.63E+1 6.63E+1 6.64E+1 6.63E+1 6.63E+1 6.63E+1

psse1 3.59E+1 3.59E+1 3.59E+1 - 3.59E+1 3.59E+1 3.59E+1 3.59E+1 3.59E+1 3.59E+1

psse2 7.85E+1 7.85E+1 7.85E+1 - 7.85E+1 7.85E+1 7.86E+1 7.85E+1 7.85E+1 7.85E+1

rel9 1.54E+3 1.54E+3 1.54E+3 - 1.54E+3 1.54E+3 - - - -

relat9 3.05E+3 3.05E+3 3.05E+3 - 3.05E+3 3.05E+3 - - - -

Rucci1 7.27E+2 7.27E+2 - 7.27E+2 - - 7.28E+2 7.27E+2 7.27E+2 7.27E+2

sls 1.30E-5 1.23E-5 1.27E-5 - 2.09E-4 1.05E-5 1.74E-5 9.31E-14 1.41E-13 -

TF14 5.57E-7 5.58E-7 5.50E-7 5.55E-7 5.37E-9 5.61E-7 6.24E-3 6.63E-15 6.20E-15 5.82E-14

TF15 8.78E-7 8.78E-7 - 8.74E-7 - 8.77E-7 1.13E-2 1.07E-14 9.84E-15 1.31E-13

TF16 1.38E-6 - - - - 1.38E-6 1.52E-2 1.75E-14 1.60E-14 3.09E-13

TF17 - - - - - - 2.17E-2 - - -

TF18 - - - - - - 3.21E-2 - - -

TF19 - - - - - - 4.26E-2 - - -

tomographic1 4.20E+1 4.19E+1 - 6.84E+1 - 4.19E+1 4.19E+1 4.18E+1 4.18E+1 4.18E+1

Trec14 1.12E+2 1.12E+2 1.12E+2 - 1.12E+2 1.12E+2 1.12E+2 1.12E+2 1.12E+2 1.12E+2

wheel 601 - - - - - - 4.23E+2 - 4.22E+2 -

36

	RAL-P-2015-010 - cover
	RAL-P-2015-010 - preprint

