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Motivated by its role as a central pillar of current theories of dynamics of spin ice in and out
of equilibrium, we study the single-ion dynamics of the magnetic rare earth ions in their local
environments, subject to the effective fields set up by the magnetic moments they interact with.
This effective field has a transverse component with respect to the local easy-axis of the crystal
electric field, which can induce quantum tunnelling. We go beyond the projective spin-1/2 picture
and use instead the full crystal-field Hamiltonian. We find that the Kramers vs non-Kramers nature,
as well as the symmetries of the crystal-field Hamiltonian, result in different perturbative behaviour
at small fields (. 1 T), with transverse field effects being more pronounced in Ho2Ti2O7 than in
Dy2Ti2O7. Remarkably, the energy splitting range we find is consistent with time scales extracted
from experiments. We also present a study of the static magnetic response which highlights the
anisotropy of the system in the form of an off-diagonal g tensor and we investigate the effects of
thermal fluctuations in the temperature regime of relevance to experiments. We show that there is
a narrow yet accessible window of experimental parameters where the anisotropic response can be
observed.

I. INTRODUCTION

The properties and behaviour of spin ice materials,
Ho2Ti2O7 (HTO) and Dy2Ti2O7 (DTO) among oth-
ers, are deeply rooted in the characteristic single-ion
anisotropy of rare earth (RE) magnetism. The two low-
est energy states (degenerate at single-ion level) are sep-
arated by a large energy gap (& 200 K) from the other
excited states, thus projecting the system onto an effec-
tive spin-1/2 space at low temperatures. The lowest en-
ergy doublet has moreover a strong easy-axis anisotropy,
which is responsible for its classical Ising-like behaviour1
(for a recent detailed discussion, see also Ref. 2). These
properties justify modelling the magnetic moments as
classical Ising spins with a local easy axis. The rich ther-
modynamic behaviour of spin ice systems can be largely
accounted for by the physics of the ground state dou-
blet combined with the pyrochlore lattice structure and
exchange and dipolar interactions: frustration leads to
an extensively degenerate ground state1, topological or-
der, and an emergent gauge symmetry hosting magnetic
monopole excitations3,4.

This thermodynamic model of spin ice was later pro-
moted to a dynamical one by introducing an experi-
mentally inspired5–8 single spin-flip time scale9 (see also
Ref. 10). This choice was motivated by the experimen-
tal observation of a well-defined microscopic time scale in
the magnetic response of these materials, which appears
to be largely temperature independent in the regime of
interest. Such dynamical modelling of spin ice proved
reasonably successful at capturing the experimental re-
sponse and relaxation properties, and triggered a new
research direction into the behaviour of these systems
out of equilibrium – an interesting and highly tuneable

setting that combines topological properties, kinematic
constraints, emergent point-like quasiparticles and long-
range Coulombic interactions11,12.

A temperature-independent microscopic spin-flip time
scale is typically associated with quantum tunnelling un-
der an energy barrier that the ion has to traverse in order
to reverse its magnetic polarisation. Understanding this
behaviour clearly requires that we go beyond the single-
ion ground-state doublet (spin-1/2) approximation, and
we investigate the role of possible quantum perturbations
that may be responsible for the tunnelling dynamics. To
date, such understanding appears to be lacking in the
literature.

The work presented here is a step at gaining insight
into the quantum single-ion dynamics in spin ice HTO
and DTO. Specifically, we focus on spin-spin interactions
as a source of quantum fluctuations. The exchange and
dipolar fields acting on a given ion due to others in the
system have both a longitudinal and a transverse com-
ponent with respect to the local easy axis. The latter
acts as a transverse field in the effective Ising model.
We study in detail the effects of such transverse field on
the single-ion behaviour, obtaining the resulting energy
splitting (namely, inverse characteristic time scales) and
anisotropic response, both at zero as well as finite tem-
perature.

There exists a concrete motivation for studying the
specific case of an exclusively transverse magnetic field,
a setting which at first sight seems to require fine-tuning
the longitudinal component to vanish. This may not ap-
pear straightforward in spin ice, a dense assembly of large
rare earth moments interacting via a long-range and ge-
ometrically complex dipolar interactions, Eq. (1).

However, spin ice is no stranger to such fine-tuning.

ar
X

iv
:1

50
6.

02
67

2v
1 

 [
co

nd
-m

at
.s

tr
-e

l]
  8

 J
un

 2
01

5



2

It is now well understood how the geometry of the py-
rochlore lattice conspires with that of the dipolar inter-
action to ensure that the longitudinal total field on each
spin is, to a good approximation, equal for all spins in all
ground states13, which are exponentially numerous14 and
in general not related by any symmetry transformation.

Similarly, a pointlike defect in a spin ice ground state,
known as magnetic monopole3 has an energy independent
of its location, as long as it is spatially well separated
from other monopoles. As the spatial displacement of
a monopole proceeds via the flip of a single spin, this
spin must be subject to a vanishing longitudinal field –
otherwise the excitation energy in the system, encoded
in that of the monopole, would change as the monopole
moves.

Therefore, our study can be thought of as providing a
picture of the quantum mechanics underpinning the mo-
tion of an isolated monopole defect in a ground state of
spin ice. The properties of such mobile monopoles are
currently subject to both experimental15–17 and theoret-
ical work18.

For the purpose of the present paper, we approxi-
mate the exchange interactions by their classical form.
Namely, we consider the interaction Hamiltonian

H = − J
∑
〈ij〉

~Si · ~Sj

+Dr3
nn

∑
(ij)

[
~Si · ~Sj
|rij |3

− 3(~Si · rij)(~Sj · rij)
|rij |5

]
,

(1)

where i, j label the sites of the pyrochlore lattice; ~Si =
σi zi, with σi = ±1 and zi are the (4 inequivalent) unit
vectors pointing from one tetrahedral sublattice to the
other; J and D are the exchange and dipolar coupling
constants, respectively; rnn is the nearest neighbour dis-
tance on the pyrochlore lattice; and rij is the distance
between the two sites i and j. Within the approxima-
tion of this Hamiltonian, the action of all other ions on
a given one is an effective magnetic field,

H =
∑
i

~Beff(i) · ~Si

~Beff(i) = − J
∑
j, 〈ij〉

~Sj

+Dr3
nn

∑
j

[
~Sj
|rij |3

− 3(~Sj · rij) rij
|rij |5

]
,

whose strength and direction were studied in Ref. 19.
Here we thus limit ourselves to considering the action of
an applied field on the full single-ion Hamiltonian, be-
yond the customary projection to its lowest lying states.

We find that the Kramers vs non-Kramers nature of
HTO vs DTO results in a different perturbative be-
haviour at small fields, whereby in HTO the ground
state doublet splits at second order in the applied field

strength, whereas DTO only splits at third order, as illus-
trated in Fig. 5. One therefore expects transverse fields in
HTO to be more effective at inducing quantum tunnelling
dynamics than in DTO (at small fields, . 0.5 T). Using
degenerate perturbation theory, we provide an analytical
understanding of this difference in behaviour in terms of
symmetries of the CF Hamiltonian. Remarkably, the en-
ergy splitting range we find is consistent with quantum
tunnelling time scales observed in experiments7.

We also present a detailed study of the static mag-
netic response to a transverse field, which highlights
the anisotropy of the system. We find interesting reso-
nances as a function of the in-plane direction of the field,
where off-diagonal components of the g-tensor become
non-vanishing (namely, a purely transverse field in the
xy-plane induces a longitudinal response along the local
z axis).

We investigate the effects of thermal fluctuations in
the temperature regime of relevance to experiments. We
find that in thermal equilibrium much of the anisotropic
response averages out up to rather large fields (∼ a few
Tesla) for temperatures as low as a hundred milliKelvin.
Nonetheless, signatures of the anisotropic response in
spin ice could be experimentally observed at low tem-
peratures in fields ∼ 10 T. Our results further support
the robustness of the classical easy-axis Ising approxima-
tion for the single-ion behaviour in spin ice, while at the
same time helping to quantify its limit of validity.

We stress that all of the above features can only be
grasped via a full description of the single-ion Hamilto-
nian capturing the complexity of its interaction with the
other spins / environment. They cannot be understood
(but at most added at an effective level) if we limit our
modelling projectively to the lowest CF levels.

The paper is organised as follows. Sec II introduces
the full single-ion crystal-field (CF) Hamiltonian for rare
earth ions Ho3+ and Dy3+ in spin ice. Sec. III investi-
gates the effects of a magnetic field at zero temperature,
with specific focus on fields transverse to the local easy
axis. We use exact diagonalisation (Sec. III A) as well as
degenerate perturbation theory in the limit of small fields
(Sec. III B). Thanks to the large CF energy scales typical
of these systems, perturbation theory is indeed valid well
into the range of field strengths of experimental interest.
Finally, Sec. IV discusses thermal effects in the relevant
temperature range and studies the behaviour of the re-
sulting single-ion magnetic susceptibility, and in Sec. V
we summarise and discuss our results.

II. CRYSTAL-FIELD OF SPIN ICE RE3+ IONS

The general formula for spin ice pyrochlore oxides
is A3+

2 B4+
2 O2−

7 , where the A and B species are rare
earth (RE) and transition metal (TM) cations, respec-
tively20–22. The structure is given by the space group
Fd3̄m featuring two sub-lattices that interpenetrate each
other and consist of networks of corner-sharing tetrahe-



3

dra. In HTO and DTO the A magnetic sites host, re-
spectively, the Ho3+ and Dy3+ ions, while the B sites are
occupied by non-magnetic Ti4+ ions.

The local point group symmetry for the RE3+ ions
in magnetic pyrochlore oxides is a trigonal D3d (see
App. A). This is schematically shown in Fig. 1 and it
accounts for the arrangement of the eight oxygen ions
(yellow spheres) surrounding the rare earth ion (green
sphere). The oxygen sites are distinguished in two main
subclasses according to their position with respect to the
central RE-site: the O1 sites and the O2 sites. The strong
axial alignment of the O1 ions (above and below the cen-
tral RE3+ ion) drives the classical Ising-like anisotropy
typical of spin ice materials. The O2 ions, displaced in
equilateral triangles lying in parallel planes transverse to
the easy axis of the O1 ions, are responsible for the an-
tiprismatic character of the D3d symmetry.

(a) Perspective view

(b) Side view (c) Top view

Figure 1. The crystal-field environment of a RE3+ ion in
a magnetic pyrochlore oxide. Ho3+ is used for concreteness.
Panels (a), (b) and (c) show respectively a tilted, side and top
view of the same structure. For clarity, panel (a) addition-
ally displays the six surrounfing Ho3+ ions and their second
axial oxygens. The Ti4+ ions are arranged in an hexagon
coplanar with the RE3+ ion in the centre. The edges of the
triangles connect the coplanar O2 oxygens: three above and
three below the plane of the RE3+ and Ti4+ ions. The two
green planes shown are parallel to each other and contain the
respective triangles of O2 ions. The antiprismatic arrange-
ment of the six O2 gives the D3d point-group symmetry. The
two remaining O1 ions, aligned along the 〈111〉 axis with the
central RE3+, drive the local Ising anisotropy.

The crystal-field Hamiltonian of a rare earth ion in a

D3d symmetry can be conveniently expressed as23,24

ĤCF =B̃2
0 Ô

2
0 + B̃4

0 Ô
4
0 + B̃4

3 Ô
4
3

+B̃6
0 Ô

6
0 + B̃6

3 Ô
6
3 + B̃6

6 Ô
6
6,

(2)

where the Stevens operators Ôkq together with the re-
spective parameters B̃kq determine the CF spectrum and
eigenfunctions of each compound. Following the general
convention23, the Ôqk are such that the k = 0 opera-
tors are q-polynomials of only diagonal operators Ĵ2, Ĵz,
while those with k > 0 include also k-powers of the lad-
der operators Ĵ+, Ĵ−. A list of the matrix elements of the
Stevens operators in the |J,MJ〉 basis, where J,MJ are
the quantum numbers for the total angular momentum
and its projection along the local 〈111〉 axis respectively,
is given in Ref. 25, and can be straightforwardly obtained
from their operator expressions in App. B. The crystal-
field parameters for HTO and DTO are listed in Table I.

HTO (meV) DTO (meV)

B̃2
0 −7.6× 10−2 −1.6× 10−1

B̃4
0 −1.1× 10−3 −2.3× 10−3

B̃4
3 8.2× 10−3 1.6× 10−2

B̃6
0 −7.0× 10−6 6.5× 10−6

B̃6
3 −1.0× 10−4 9.9× 10−5

B̃6
6 −1.3× 10−4 1.0× 10−4

Table I. The crystal-field parameters (in meV) for the Hamil-
tonian in Eq. (2) obtained from Refs. 26 and 27 (see also
App. C).

The CF Hamiltonian can be diagonalised to obtain the
CF states. The spectrum is, in general, made of multi-
plets and singlets since the Stark splitting, induced by
the crystalline electric fields, removes only partially the
2J + 1 degeneracy of the ground state multiplet. The
spectrum of HTO (Fig. 2a) features five singlets and six
doublets, while the spectrum of DTO (Fig. 2b) is only
made of doublets. This discrepancy is due to Kramers
theorem forbidding singlets in spectra of atoms with an
odd number of electrons (Ho3+ has n = 10 electrons in
the 4-f shell, while Dy3+ has n = 9). The order of mag-
nitude for the energies, however, is roughly the same, and
the ground state is a doublet in both. The energy gap
between the ground state doublet energy and the first
excited level is in excess of 200 K.

Two possible basis eigenfunctions for the ground state
doublets are displayed in Fig. 3, showing that they can
be well approximated by the fully polarised states |ψ0〉 ≈
|MJ = J〉 , |ψ1〉 ≈ |MJ = −J〉. This illustrates the strong
anisotropy along the local quantisation axis in both sys-
tems.
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Figure 2. crystal-field spectra for HTO (a) and DTO (b),
respectively. The spectrum of HTO features both doublets
(solid lines) and singlets (dashed dotted lines). In meV, bot-
tom to top, the series of doublets is: 0, 21.96, 25.99, 59.59,
71.51, 76.80 while the one of singlets is: 20.42, 27.71, 69.36,
69.94, 80.52. In contrast, since Dy3+ is a Kramers ion, DTO
features only doublets. These are eight in total: 0, 25.23, 38.0,
38.21, 51.75, 77.49, 87.65, 89.16. Note the thicker line just be-
low 40 meV is not a quadruplet, but rather it corresponds to
the two doublets 38.0, 38.21.

III. EFFECT OF A MAGNETIC FIELD

The degeneracy of the crystal-field spectra is removed
in the presence of a magnetic field B:

Ĥ = ĤCF − gJµB Ĵ ·B. (3)

In this equation, µB = e~/2me is the Bohr magneton
(e and me are, respectively, the charge and the mass of
the electron) and gJ is the Landé factor for the RE3+ ion
with total angular momentum Ĵ (gJ = 5/4 and gJ = 4/3,
respectively, for Ho3+ and Dy3+).

In the following, we use the local coordinate system

x0 =
1√
6

(1, 1,−2), y0 =
1√
2

(−1, 1, 0), z0 =
1√
3

(1, 1, 1),

(4)
with respect to the global axes X,Y,Z of the cubic py-
rochlore unit cell (see Fig. 4), with the z0 axis conve-
niently pointing along the high-symmetry direction of the
crystal-field Hamiltonian26,27.

A. Exact diagonalisation

A longitudinal field along the local easy axis leads to
conventional Zeeman splitting linear in field strength and
selects of one of the two polarised states in Fig. 3. At sim-
ilar field strengths, this is the field direction that results
in the largest energy splitting due to the anisotropy.
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Figure 3. A possible choice of basis wave functions, |ψ0〉
(solid lines) and |ψ1〉 (dotted grey lines), for the ground state
doublet of Ho3+ (a) and Dy3+ (b). The wave functions have
been obtained by diagonalising the crystal-field Hamiltonian
in Eq. (2) with the crystal-field parameters given in Table I.
Insets: the same shown over a narrower vertical range.

Figure 4. The local coordinate frame x0,y0, z0 (red arrows)
used to describe the transverse magnetic field B (green arrow)
and its direction angle φ in Eq. (5). The atoms are shown in
the same top-view as in Fig. 1c.
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If the longitudinal component vanishes and a purely
transverse field component is present, then the chosen
polarised basis states split into symmetric “bonding” and
antisymmetric “anti-bonding” combinations. A polariza-
tion in the plane perpendicular to the easy axis is however
opposed by the anisotropy and this competition results
in unusual effects that will be discussed in the following.

The coupling of the total angular momentum to the
transverse magnetic field can be written in terms of lad-
der operators as

Ĵ ·B⊥ =
1

2
|B⊥|

(
e−iφĴ+ + eiφĴ−

)
. (5)

In the local coordinate system, φ is the angle of the field
with respect to x0 in the plane transverse to the easy axis
z0 (see Fig. 4).
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Figure 5. Splitting of the ground state doublet under the in-
fluence of a purely transverse magnetic field. The red curves
correspond to the non-Kramers behaviour of HTO, while the
blue curves correspond to the Kramers behaviour of DTO.
Note the y axis is dimensionless to allow a consistent com-
parison of the two systems. The different curves correspond
to fixed angles of the transverse field: φ = 0 ◦ (solid curve),
φ = 10 ◦, (short-dashed), φ = 20 ◦ (dotted) and φ = 30 ◦

(dotted-dashed); angles of φ+n 120◦, with n integer, give ex-
actly the same curves because of the CF trigonal symmetry
of the O2 ions. The two long-dashed straight lines show the
limiting behaviours at very high fields – Larmor precession,
Eq. (6) – and at low fields for HTO – degenerate perturbation
theory, Eqs. (7a) and (8).

The dependence of the splitting of the ground state
doublet ∆E01 vs the magnitude of the transverse field
is shown in Fig. 5 for both HTO and DTO. For very
large fields the anisotropic effect of the CF environment
becomes negligible and the magnetic moments undergo
simple Larmor precession with frequency ωL given by

∆E01 = ~ωL = gJµB |B| . (6)

Due to the strong crystal-fields in HTO and DTO,
such regime is clearly experimentally unattainable (B >

103 T). This illustrates the strength of the energy scales
set by the crystal-field and provides a reference for mag-
netic field values that can be considered a small pertur-
bation.

At lower fields, when the two competing terms in
Eq. (3) have comparable energies, the response of the
system becomes anisotropic. This anisotropy is much
stronger for Ho3+ than for Dy3+ and, for φ = 30◦+n 60◦

with n integer, it leads to resonances (due to level cross-
ing between E0 and E1) shown in Fig. 5 (red dotted-
dashed line) and in Fig. 6a.
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Figure 6. Ground state splitting for both HTO (a) and DTO
(b), as a function of the angle φ at four particular values
of the transverse field (from bottom to top in each figure):
B = 0.03 T, B = 0.55 T, B = 11.31 T, and B = 228.33 T.
For HTO, the two strongest field values resonate and make
the splitting close at φ = 30◦ + n 60◦ (n integer).

Finally, at fields of the order of 1 T or less, the ion
enters a perturbative regime where ∆E01 is given by the
following power-laws:

∆E01 = α
(2)
HTO |B|

2 for HTO, (7a)

∆E01 = α
(3)
DTO(φ) |B|3 for DTO. (7b)

Ho3+ is not a Kramers ion and features some singlets
in its unperturbed energy spectrum. These are responsi-
ble for the quadratic behaviour (low field asymptotics in
Fig. 5), whose coefficient

α
(2)
HTO = 2.68× 10−6meV

T2 (8)

can be obtained analytically from perturbation theory
(see Sec. III B). Dy3+ instead is a Kramers ion and all
unperturbed energy levels are doublets. As we explain in
the next section, this causes the quadratic correction to
vanish identically, leading to a cubic dependence on the
applied field. Fitting the corresponding asymptotic low-
field behaviour in Fig. 5, we obtain the angle-dependent
coefficient

α
(3)
DTO(φ) = 6.8× 10−7

(
1 +A cos (6φ)

)meV
T3 (9)
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with A = 0.114.

B. Perturbation theory

We can gain insight into the low field behaviour by
using (degenerate) perturbation theory on

Ĥ = Ĥ0 − λV̂ , (10)

where Ĥ0 ≡ ĤCF is the CF Hamiltonian in Eq. (2) and
the perturbation V̂ ≡ ECF Ĵ · B/|B| corresponds to the
Zeeman energy in Eq. (5), tuned by the dimensionless
parameter λ = gJµB |B| /ECF, where ECF is an arbitrary
reference energy scale, e.g., related to the CF bandwidth.
It is useful to introduce |ψ(0)

n 〉 as the (unperturbed) CF
eigenstates with energy E(0)

n (n = 0, ..., 2J).
The splitting of the RE3+ ground state doublet is given

by

∆E01 = λ

√
(V0,0 − V1,1)2 + 4 |V0,1|2

+ λ2

√√√√(∑
k>1

|V0,k|2 − |V1,k|2

∆E
(0)
0k

)2

+ 4

∣∣∣∣∣∑
k>1

V0,kVk,1

∆E
(0)
0k

∣∣∣∣∣
2

(11)

up to second order in λ. In this expression Vn,m ≡
〈ψ(0)
n | V̂ |ψ(0)

m 〉 and ∆E
(0)
0k = E

(0)
k − E

(0)
0 .

Firstly, we notice that both HTO and DTO have V0,0 =
V1,1 = V0,1 = 0 (see App. E), and therefore the first order
contribution vanishes identically.

In order to evaluate the second order contribution, we
need to consider matrix elements of the transverse field
perturbation V̂ between the ground state doublet and the
excited states. The symmetries of these matrix elements
reflect the symmetries of the crystal-field environment.

In App. E we discuss the different contributions in de-
tail. We find two different behaviours for the excited
states that form doublets. Some of them (type A) have
identically vanishing matrix elements with the ground
state doublet, V0,n = V1,n = 0 for n belonging to type
A, and they trivially do not contribute to the splitting
at second order. The other doublets (type B) have non-
vanishing matrix elements which satisfy the following re-
lations:

|V0,m|2 = |V1,m+1|2 (12)

|V1,m|2 = |V0,m+1|2 (13)
V0,mVm,1 + V0,m+1Vm+1,1 = 0, (14)

where |ψ(0)
m 〉 and |ψ(0)

m+1〉 are the two eigenstates belong-
ing to an excited doublet of type B (see Eq. (E6) and
Eq. (E10) in App. E). These relations imply that also
doublets of type B do not contribute to the splitting
at second order. (Details of the A- and B-type doublet
wavefunctions and their matrix elements with the trans-
verse field operator are given in Tables IV-V in App. E.)

These results hold for both DTO and HTO. The former
only has doublets (of either type A or B) in the spectrum
due to Kramers degeneracy and no splitting occurs at
second order. Indeed, the second order term in Eq. (11)
generally reduces to the sum of the contributions from
the singlets alone (see Eq. (E7) in App. E). Fig. 5 clearly
shows that a non-vanishing third order contribution does
exist, which we extract by fitting, Eq. (9).

HTO, on the contrary, has some singlets amongst its
excited states, which give a non-vanishing second-order
contribution to the splitting. This can be readily com-
puted, Eq. (8), and is in excellent agreement with the
slope found from the numerical simulations (see the cor-
responding long-dashed straight line in Fig. 5). We notice
that the third order contribution has an angular depen-
dence on φ which is absent at second order.

It is interesting to notice in Fig. 5 that the cubic power-
law found for DTO persists up to ∼ 100 T. In contrast,
the quadratic power law in HTO begins to break at fields
of the order of 0.1 T, depending on the in-plane angle φ,
holding up to almost 10 T for φ = 30 ◦; for all other
angles, the cubic term becomes clearly dominant in the
range from 1 T to 10 T, with an angular dependence
similar to the one for DTO.

C. Doublet splitting and time scales

Let us compare the observed ground state doublet
splitting in Fig. 5 with experimental magnetic relaxation
time scales in spin ice7. The latter are typically of the
order of 1 ms (at least in DTO), which corresponds to an
approximate energy splitting of 10−7 − 10−8 K.

In order to estimate the former, one needs typical
values for the exchange and dipolar transverse field
strength. Ref. 19 suggests the range 0.1 − 1 T. Using
Eqs. (7a), (7b), (8) and (9), we find that this corresponds
to splittings in the range of 10−8 K to 10−5 K.

This rough theoretical estimate is consistent with
the experimental value. Whilst further investigation is
clearly needed, the result is nonetheless suggestive that
internal fields generated by exchange and dipolar inter-
actions can in principle be responsible for (single-ion)
quantum spin-flip dynamics in spin ice.

D. Anisotropic response to a transverse field

The strong single-ion anisotropy plays a crucial role
also in the magnetostatic behaviour of the RE3+ ions at
zero temperature. This is illustrated in Fig. 7, panels a-f,
as a function of the angle φ and of the field strength |B|,
where 〈Ĵα〉 = 〈ψ|Ĵα|ψ〉, and α = x, y, z label the three
components for the local coordinate system in Fig. 4.

Both HTO and DTO acquire negligibly small values of
〈Ĵx〉 and 〈Ĵy〉 for fields up to 10 T (see also Sec. IVA),.
Moreover, we observe a sizeable (zero temperature) re-
sponse in 〈Ĵz〉 to a purely transverse field, signalling non
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(c) 〈Ĵy〉 - T = 0 K - HTO

 0

 90

 180

 270

 360 10
-2 10

-1 10
0 10

1 10
2 10

3 10
4

-15/2

-7/2
0

7/2

15/2

< Jy >

φ (deg)

B (Tesla)

(d) 〈Ĵy〉 - T = 0 K - DTO
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(g) 〈Ĵz〉 - T = 500 mK - HTO
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Figure 7. Panels (a-f): Expectation values for the three components of the total angular momentum Ĵ in the ground state
of the Hamiltonian in Eq. (3) with purely transverse magnetic field: 〈Ĵα〉 = 〈ψ|Ĵα|ψ〉, α = x, y, z, as function of the angle φ
and the strength |B| of the field in logarithmic scale. For both HTO (left) and DTO (right), the x, y components are negligible
for fields up to 10 T. In contrast, the mz components feature a sizeable periodic dependence on the angle φ below 10 T. This
is a manifestation of the strong axial anisotropy characterising the ground state of the spin ice RE3+ ions. Note the different
response in the two systems: DTO features a smooth angular dependence which becomes asymptotically constant in the low
field limit (from 10 T down to the lowest fields), whereas the oscillatory behaviour in HTO is more abrupt and its amplitude
descreases from the saturated value reached at approximately 10 T, down to zero at low fields. Panels (g-h): Finite temperature
behaviour of the expectation value 〈Ĵz〉 = Tr(Ĵαρ̂)/Tr(ρ̂) at T = 0.5 K for HTO (left) and DTO (right). The Boltzmann weights
from the density operator average the two (lowest-energy) states with opposite polarisation along z0.
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vanishing off-diagonal components of the g-tensor. Of
course, for high enough fields (|B| � 10 T), all expecta-
tion values tend to the angular dependence of the Larmor
regime, as expected when the Zeeman energy dominates
over the CF Hamiltonian.

The main difference between HTO and DTO is in
the behaviour of 〈Ĵz〉 below 10 T. In HTO, for fields
1T . |B| . 10T, 〈Ĵz〉 oscillates rather abruptly with
respect to the angle φ between the saturated values −8
and 8; for fields below 1 T the amplitude of oscillation de-
creases and it becomes vanishingly small at low fields. On
the contrary, in DTO the angular dependence is smoother
and approaches constant (maximum) amplitude for fields
below 10 Tesla; the amplitude however never reaches sat-
uration. The period of oscillations is the same in both
HTO and DTO (120 ◦), but we observe a phase difference
of 60 ◦.

We notice that the behaviour of 〈Ĵz〉 in Fig. 7 is con-
sistent with the arrangement of the oxygens surrounding
the rare earth ions. Depending on the φ angle in the
x0,y0 plane (Fig. 4), the magnetic field can take three
inequivalent high symmetry directions: either towards an
oxygen that lies above the plane (0 ◦+n 120 ◦), or towards
an oxygen that lies below the plane (60 ◦+n 120 ◦), or else
precisely in between two oxygens (30 ◦+n 60 ◦), where in
all cases n is an integer. The first two directions corre-
spond to the maxima and minima of mz = gJµB 〈Ĵz〉,
respectively. The latter direction corresponds to nodes
where mz vanishes. Curiously, as we noted before, the
sign of mz in the first two cases switches between DTO
and HTO. We notice that this switching is highly depen-
dent on the precise values of the CF parameters used.

IV. FINITE TEMPERATURES

The splitting between ground and first excited state
can be very small at low fields (see Fig. 5), far smaller
than any temperature of experimental interest. Since
the two states originate (adiabatically) from the split-
ting of the ground state CF doublet, they will, in general,
preserve the (symmetric) property of being polarised in
opposite directions (that is, the equivalent behaviour of
Fig. 7, panels e-f, for the first excited state – not shown –
is simply opposite in sign with respect to that for the
ground state). In the absence of a longitudinal field,
thermal averages between the two will therefore cancel
out the single-ion moment.

A. Magnetic moment

At finite temperature T , 〈Ĵα〉 = Tr(Ĵαρ̂)/Tr(ρ̂), where
ρ̂ = e−Ĥ/kBT is the density operator in the microcanoni-
cal ensemble, Ĥ is the Hamiltonian in Eq. (3), and kB is
the Boltzmann constant.

Since 〈Ĵx〉 and 〈Ĵy〉 take on negligible values at applied
fields below the (trivial) Larmor threshold (see Fig. 7,

panels a-d), we focus our discussion on 〈Ĵz〉. Its be-
haviour as a function of φ and |B| is shown in Fig. 7,
panels g-h, for T = 0.5 K.

We find that the anisotropic response survives at inter-
mediate fields, in between a high and a low field thresh-
old. The high field threshold is the (temperature in-
dependent) onset of Larmor precession. The low field
threshold instead is set by the ground state doublet split-
ting (Fig. 5). The low field threshold is temperature
dependent, namely ∼ T 1/2 for HTO and ∼ T 1/3 (i.e.,
more easily observed) for DTO, according to the results
in Sec. III.

B. Magnetic susceptibility

The susceptibility of the α-component of the magnetic
moment with respect to the β-component of the applied
field B is given by

χαβ = µ0µBgJ
∂ 〈Ĵα〉
∂Bβ

. (15)

At high temperatures, we expect the system to behave
as an ordinary paramagnet, whose zero-field magnetic
susceptibility (per spin) is given by the Curie law

χC
αβ = µ0

µ2

3kBT
δαβ ≡ χC, (16)

where µ2 = g2
Jµ

2
BJ(J + 1). Therefore, it is convenient to

define the dimensionless quantity

χαβ
χC

=
3kBT

gJµBJ(J + 1)

∂ 〈Ĵα〉
∂Bβ

, (17)

whose behaviour is shown for β = α in Fig. 8. All curves
exhibit Curie behaviour at (unphysically) high temper-
atures. (Only χxx and χzz are shown, as χyy behaves
analogously to χxx.)

The behaviour of χzz at low temperatures is per-
haps most remarkable. It exhibits a Curie-like interme-
diate temperature regime where χplateau

zz ≈ 2.5χC, for
both HTO and DTO. At high temperatures, this regime
crosses over to the expected Curie law at an (approx-
imately) field-independent threshold T ∼ 102 K, set by
the CF energy gap between the ground state doublet and
higher excited states. Below this threshold, the system is
effectively projected onto its ground state doublet. The
magnetic response is thus enhanced since these two states
carry the largest magnetic moments of all CF levels.

In presence of a finite applied magnetic field, as is the
case in Fig. 8, one trivially expects a lower threshold to
the effective spin-1/2 Curie behaviour when the temper-
ature becomes smaller than the (linear) Zeeman split-
ting between the two levels. The system then crosses
over to a regime where the susceptibility is temperature-
independent, but finite, corresponding to a small residual
polarizability in the ground state.
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Figure 8. Logarithmic plots of χαα/χC, with α = x, z, as a function of temperature T and in presence of a static applied
field. When the temperature is lowered the xx-component deviates from the Curie law by decreasing approximately linearly
while, the zz-component exhibits an intermediate (higher) plateau (χplateau

zz /χC ≈ 2.5). (Note that χαα/χC ∝ T corresponds,
following Eq. (17), to χαα being T-independent. The dashed line in each panel illustrates a linear behaviour as a guide to the
eye.) Each component is shown for three values of applied fields: 0.001 T, 0.01 T, and 0.1 T. For χxx, the three curves overlap
almost perfectly, signalling that the susceptibility is field-independent below 0.1 T. For χzz, the three curves overlap only for
sufficiently large (field-dependent) threshold temperatures; in the main text we discuss how this behaviour is directly related to
the different ground state splittings opened in the crystal-field spectrum by the applied fields. The insets show 〈Ĵx〉 vs field Bx
at different temperatures, demonstrating a linear regime up to at least 1 T. The temperature-independent susceptibility below
10 K is reflected in the perfect overlap of the magnetisation curves 〈Ĵx〉 vs Bx at these temperatures (χxx ∼ C µ0 µ

2/3 kB, with
C = 0.015K−1 for HTO and C = 0.02K−1 DTO).

Interestingly, χxx displays a similar behaviour, in spite
of the fact that the splitting between the two lowest-
lying states in a transverse field is now much smaller than
temperature. In this case the temperature-independent
regime extends all the way to T ∼ 10 K.

V. SUMMARY AND DISCUSSION

We have presented a detailed study of the single-ion
behaviour in spin ice HTO and DTO in presence of an
applied magnetic field, based on the full description of
the single-ion crystal-field Hamiltonian. We have con-
sidered both zero and finite temperature, and focused in
particular on the case of a field transverse to the local
easy axis. We find that the Kramers vs non-Kramers na-
ture of HTO vs DTO results in a different perturbative
behaviour at small fields.

We also present a detailed study of the static mag-
netic response to a transverse field, which highlights the
anisotropy of the system. We find that as a function of
the in-plane direction of the field, off-diagonal compo-
nents of the g-tensor become non-vanishing (namely, a
purely transverse field in the xy-plane induces a longitu-
dinal response along the local z axis).

Within the classical exchange and dipolar Hamiltonian
approximation, the action of all other ions on a given one
is an effective magnetic field, whose strength and direc-

tion were studied in Ref. 19. The transverse component
of this effective field can be thought of as a potential
source of quantum dynamics in spin systems, and the cor-
responding ground state splitting studied in the present
paper corresponds in this view to an inverse character-
istic time scale. It is then remarkable to notice that –
in spite of these simplifying assumptions – the resulting
time scales for HTO and DTO are consistent with the
ones observed in experiments7.

There are a number of natural directions for future
work. One is towards a yet more microscopic picture, go-
ing beyond the effective field approximation we have em-
ployed here, by determining the actual exchange Hamil-
tonian for example via a superexchange calculation. An-
other lies in considering the interplay of the spin degrees
of freedom in the same spirit as we have considered the
coupling to an external field. For the case of magnetoe-
lastic couplings, a simple calculation in this spirit was
reported in Ref. 28.

Indeed, the issue of coupling to non-magnetic degrees
of freedom is of relevance given the remarkably long
millisecond-timescale of the spin flip and the small split-
ting of the ground doublet. These are below 10−5K in
temperature units, well below the scale at which experi-
ments are conducted. Understanding the spin tunnelling
process in the presence of a coupling to the ‘hot’ environ-
ment is therefore an interesting exercise, close in spirit
to the study of molecular magnets, which may be of rel-
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evance to some of the unexplained features of the slow
low-temperature dynamics of spin ice.

Many of our results can be tested experimentally, per-
haps best in heavily Y-diluted systems in an externally
applied magnetic field, to reduce the added complexity of
spin-spin interactions. Fig. 7 shows, that the anisotropic
response of a RE ion in spin ice could be observed at
temperatures ∼ 100 mK under externally-applied fields
∼ 10 T. At lower fields, the induced magnetic moment is
much lower, but, as the insets of Fig. 8 show, it could still
be detectable, for example by muon spin rotation. Such
experiments could provide a quantitative validation of
the present description, which is a crucial step towards
gaining further insight into the quantum dynamics of spin
ice materials.
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Appendix A: Oxygen environment

The crystal-field interactions, i.e., the Stark effect due
to the negative charges of the oxygen ions, deeply affect
the single-ion quantum states. The physics dictated by
the crystalline fields of the oxygens is so fundamental
that, in the context of magnetic pyrochlore oxides, often
it is preferable to use the expression A2B2O6O′, instead
of A2B2O7, simply to emphasise the role played by the
oxygens according to their crystallographic and ligand
character. Referring to a given RE3+ (A) site, e.g., a
Ho3+ ion, the oxygens are arranged around it in an anti-
prismatic fashion which is often referred to as a distorted
cube (see Fig. 1 in the main text).

The level of distortion is, however, huge compared to
an ideal cube, as the two O1 oxygens form a linear O-A-O
stick oriented normal to the average plane of the remain-
ing six O2 oxygens arranged in triangles above and below
the central A ion. The A-O1 and A-O2 bond distances

are different: the former, ∼ 2.2 Å, is amongst the shortest
bonds ever found in nature; the latter can vary depending
on the compound, although in general it is between 2.4
and 2.5 Å20,21. This implies that each RE3+ ion is char-
acterised by a very pronounced axial symmetry along the
local 〈111〉 axis which joins the two centres (O1 sites) of
the tetrahedra, through the magnetic ion sitting at the
shared vertex (see Fig. 1a). The axial symmetry is af-
fected by the anti-prismatic arrangement of the O2 ions
with respect to the central RE3+ ion. These, as shown in
Fig. 1 in the main text, are grouped in triangles lying on
planes, above and below the RE3+ ion, which are parallel
to each other.

Appendix B: Stevens operators

The Stevens operators Ôkq in Eq. (2), expressed in
terms of the angular momentum operators, can be writ-
ten as:

Ô2
0 = 3Ĵ2

z − Ĵ2

Ô4
0 = 35Ĵ4

z + 25Ĵ2
z − 30Ĵ2Ĵ2

z − 6Ĵ2 + 3Ĵ4

Ô4
3 =

1

4

{
(Ĵ3

+ + Ĵ3
−), Ĵz

}
Ô6

0 = 231Ĵ6
z +

(
735− 315Ĵ2

)
Ĵ4
z

+
(

294− 525Ĵ2 + 105Ĵ4
)
Ĵ2
z

− 60Ĵ2 + 40Ĵ4 − 5Ĵ6

Ô6
3 =

1

4

{(
Ĵ3

+ + Ĵ3
−

)
,
(

11Ĵ3
z + 59Ĵz − 3Ĵ2Ĵz

)}
;

Ô6
6 =

1

2

(
Ĵ6

+ + Ĵ6
−

)
,

(B1)

where Ĵ± = Ĵx± iĴy and the anticommutator
{
Â, B̂

}
=

ÂB̂ + B̂Â.
Since each Ôkq is a function of Ĵ =

(
Ĵx, Ĵy, Ĵz

)
, the

total angular momentum operator of the magnetic ion,
the single-ion CF states can be conveniently expressed in
terms of |J,MJ〉, where J,MJ are the quantum numbers
for, respectively, the total angular momentum and its
projection along the local 〈111〉 axis. A list of the matrix
elements of the Stevens operators in the |J,MJ〉 basis is
given in Ref. 25.

Appendix C: Derivation of the Stevens crystal-field
parameters

The interaction between a magnetic RE3+ ion and its
surrounding crystalline environment is usually described
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starting from the simple Hamiltonian

ĤCF = −
∑
i

|ei|VCF (r̂i) , (C1)

where VCF represents the crystal-field potential from to
the surrounding ions acting on the electrons in the un-
filled shells of the central RE. Each i-th electron feels
a potential VCF (ri) ≡ VCF (ri, θi, φi) at position ri. To
study the crystal-field interaction it is convenient to make
use of spherical coordinates centred on the RE site be-
cause of the spherical symmetries of the electrons of an
atomic system25. It is customary to write the Hamilto-
nian in terms of tensor operators. The tensor operator
for the i-th electron is

Ĉkq (i) =

√
4π

2k + 1
Ŷ qk (θi, φi) , (C2)

and obeys the same transformation rules as the spherical
harmonics. In terms of these, the CF Hamiltonian for a
magnetic ion in a crystalline D3d point-group symmetry
reads23

ĤCF =B2
0Ĉ

2
0 +B4

0Ĉ
4
0 +B4

3(Ĉ4
3 − Ĉ4

−3)

+B6
0Ĉ

6
0 +B6

3(Ĉ6
3 − Ĉ6

−3) +B6
6(Ĉ6

6 + Ĉ6
−6) ,

(C3)

Here the sum over the 4-f electrons (
∑n
i=1) is omitted

together with the index i for simplicity.
The Bkq parameters encapsulate the effect of the sur-

rounding charges. Eq. (C3) is thus an alternative no-
tation to the one based on Stevens operators, Eq. (2).
The latter is convenient for RE3+ ions, where |J,MJ〉 is
a good basis for the quantum states of the correlated 4-f
electrons, because they are explicit functions of the an-
gular momentum operators Ĵ2, Ĵz, Ĵ+, Ĵ−

23. The B̃kq are
related to the Bkq by means of the following expressions:

B̃k0 =

√
4π

2k + 1
θkD

k
0B

k
0

B̃kq =(−1)q
√

8π

2k + 1
θkD

k
qB

k
q , for q > 0 .

(C4)

The Dk
q are the factors outside the square brackets [. . . ]

in the list of tesseral harmonics in Cartesian coordinates
in Table IV of Ref. [25]. The θk (with k = 2, 4, 6; θ2 =
αJ , θ4 = βJ , θ6 = γJ) calculated by Stevens for different
RE ions29 are given in Table VI of the same Ref. [25].
In Table II we reproduce the values for αJ , βJ , γJ for the
two magnetic ions Ho3+ and Dy3+ in spin ice materials.

Experimental techniques based on inelastic neutron
scattering are the most suitable to measure accurately
the crystal-field energies in real compounds. From these
measurements a reliable estimate of the CF parameters
can be inferred beyond the level of accuracy allowed by
the point-charge approximation23,24,30.

The crystal-field energies and parameters common in
the literature of spin ice materials are based mainly on

Ho3+ Dy3+

αJ
−1
450

−2
315

βJ
−1

30030

−8
135135

γJ
−5

3864861

4

3864861

Table II. The θk values (respectively αJ , βJ , γJ for k = 2, 4, 6)
for Holmium and Dysprosium trivalent ions25.

the experiment presented by Rosenkranz et al. in Ref. 26.
There, the neutron scattering measurement of all the CF
energy levels allowed a complete parametrisation of the
Hamiltonian in Eq. (C3). The full list of the Bqk parame-
ters for HTO found in that reference is reproduced in the
first column of Table III. Similarly for DTO, the second
column of Table III gives the Bqk suggested in Ref. 27
as an interpolation of the values known for Ho2Ti2O7

and Tb2Ti2O7. However, to the best of our knowledge
no neutron scattering experiments have been carried out
successfully to determine the CF parameters of DTO.
The corresponding B̃qk parameters, listed in Table I for
the Hamiltonian Eq. (2) in the main text, follow from
Eq. (C4) and Table III.

HTO (meV) DTO (meV)

B2
0 68.2 51.1

B4
0 274.8 306.2

B4
3 83.7 90.5

B6
0 86.8 100.4

B6
3 -62.5 -74.4

B6
6 101.6 102.9

Table III. Crystal-field parameters Bqk for the tensor opera-
tors formalism. The parameters for HTO have been measured
by means of inelastic neutron scattering in Ref. 26. The ones
for DTO were derived as an interpolation of the parameters
known for Ho2Ti2O7 and Tb2Ti2O7 in Ref. 27.

Appendix D: Degenerate Perturbation Theory

The results in Sec. IIIA, namely Eqs. (7a-11), follow
from conventional degenerate perturbation theory (see
e.g., Ref. 31). In this Appendix we outline the main
steps of the derivation for convenience. This will help
understand the role that the symmetries of the unper-
turbed CF Hamiltonian play in determining the pertur-
bative behaviour, as discussed in the main text and in
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detail in App. E. (The interested reader can find all the
details of the calculations in Ref. 32.)

We use the notation

Ĥ = Ĥ0 + λV̂ , (D1)

where λ is a small (real) parameter tuning the strength
of the perturbation V̂ , and where the eigenstates and
eigenvalues of Ĥ0 are

Ĥ0 |ψ(0)
n 〉 = E(0)

n |ψ(0)
n 〉 . (D2)

Here Ĥ0 ≡ ĤCF, in Eq.(2) of the main text, and V̂ is
the applied magnetic field, see Eq. (5) and Eq. (10). We
focus on the case of interest where the first two energy
levels are exactly degenerate (E(0)

1 = E
(0)
0 ). Of course, in

this case the choice of basis for the ground state doublet,
|ψ(0)

0 〉 and |ψ
(0)
1 〉, is not unique.

Expanding both eigenstates and eigenvalues of the per-
turbed Hamiltonian in powers of the parameter λ, one
obtains the contributions to the GS doublet splitting or-
der by order. The form of the contribution at a given
order depends of course on whether the two levels did or
did not split at lower order.

For notational convenience, it is useful to define the
matrix elements Vn,m = 〈ψ(0)

n | V̂ |ψ(0)
m 〉.

1. First order

The first order contribution is bookwork,√
(V0,0 − V1,1)2 + 4|V0,1|2. (D3)

However, (main text and App. E) both DTO and HTO
have V0,1 = V0,0 = V1,1 = 0 so that the degeneracy is not
resolved at first order in λ.

2. Second order

We focus on the case of interest where V0,0 = V1,1 =
V1,0 = V0,1 = 0. After a few lines of algebra one obtains
that the second order (GS doublet) contribution to the
splitting takes the form√√√√(∑

k>1

|V0,k|2 − |V1,k|2

∆E
(0)
k

)2

+ 4

∣∣∣∣∣∑
k>1

V0,kVk,1

∆E
(0)
k

∣∣∣∣∣
2

, (D4)

where ∆E
(0)
k is the energy difference between the GS dou-

blet and the kth excited state of the unperturbed Hamil-
tonian Ĥ0. The summation over k > 1 spans all unper-
turbed states other than the GS doublet.

As discussed in the main text and in App. E, we find
that all excited states that form doublets in the unper-
turbed spectrum amount to a vanishing contribution to
the second order GS doublet splitting in Eq. (D4). This

is not the case for singlets, which are present in the spec-
trum of non-Kramers HTO, where splitting occurs at sec-
ond order and Eq. (D4) is in good agreement with the nu-
merical solution at sufficiently small values of the pertur-
bation parameter λ (see main text). On the other hand,
Kramers theorem forbids the appearance of singlets in
DTO resulting in a vanishing second order splitting.

Appendix E: Matrix elements of the perturbation

In this Appendix we give details of the calculation of
the matrix elements Ṽn,m = 〈ψ(0)

n | ˆ̃V |ψ(0)
m 〉, where |ψ(0)

m 〉
are the eigenstates of the unperturbed CF Hamiltonian,
and the dimensionless operator

ˆ̃
V = e−iφĴ+ + e+iφĴ− (E1)

represents the applied magnetic field (perturbation)
purely transverse to the local quantisation axis of the
RE-ion (see Eq. (5) in the main text). Namely, the oper-
ator V̂ ≡ ECF Ĵ ·B/|B| in Sec. III A relates to Eq. (E1)

via ˆ̃
V = 2V̂ /ECF. The perturbative regime corresponds

to field values within the initial power-law behaviour of
the splitting observed in Fig. 5.

The quantum states for HTO and DTO are represented
in Table IV and Table V, respectively. Each state |ψ〉 is
given by a superposition |ψ〉 =

∑
MJ

CMJ
|MJ〉. Reading

from the left, the first two columns account for |ψ(0)
A 〉 and

|ψ(0)
A+1〉. These are called A-doublets of the CF spectra

to underline their different structure compared to |ψ(0)
B 〉

and |ψ(0)
B+1〉, the B-doublets listed in the fifth and sixth

columns. The ground states, |ψ(0)
0 〉 , |ψ

(0)
1 〉, belong to the

A-type doublets (explicit values of the coefficients are
given in the captions of each table).

In the third and fourth columns, the states ˆ̃
V |ψ(0)

A 〉
and ˆ̃

V |ψ(0)
A+1〉, obtained by applying the perturbation ˆ̃

V
to the A-doublets, are given to facilitate the calculation
of Ṽ0,m and Ṽ1,m, i.e., the coupling between the ground
state doublet and the other CF states. The perturbed
states in the third and fourth column are expressed in
terms of coefficients j±M defined as:

ˆ̃
V |MJ〉 = j+

MJ
|MJ + 1〉+ j−MJ

|MJ − 1〉 ,

j±MJ
= e∓iφ

√
J(J + 1)−MJ(MJ ± 1).

(E2)

The j±MJ
only depend on the angle φ of the field in

Eq. (E1) and on the quantum numbers J,MJ . Further-
more, from the general properties of the ladder operators,
we have

j±MJ
= j±−(MJ±1) , (E3)

which leads to characteristic symmetries of the Ṽn,m el-
ements that are key to determine the behaviour of the
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HTO |ψ(0)
A 〉 |ψ(0)

A+1〉
ˆ̃
V |ψ(0)

A 〉
ˆ̃
V |ψ(0)

A+1〉 |ψ(0)
B 〉 |ψ(0)

B+1〉 |ψ(0)
s 〉 |ψ(0)

s′ 〉

|8〉 a8 0 0 −j+7 a−7 b8 b−8 0 0

|7〉 0 −a−7 j−8 a8 0 b7 b−7 0 0

|6〉 0 0 j+5 a5 −j−7 a−7 0 0 s6 s′6

|5〉 a5 0 0 j+4 a−4 b5 −b−5 0 0

|4〉 0 a−4 j−5 a5 0 b4 −b−4 0 0

|3〉 0 0 j+2 a2 j−4 a−4 0 0 s3 s′3

|2〉 a2 0 0 −j+1 a−1 b2 b−2 0 0

|1〉 0 −a−1 j−2 a2 0 b1 b−1 0 0

|0〉 0 0 j+−1 a−1 −j−1 a−1 0 0 s0 0

|−1〉 a−1 0 0 j+−2 a2 b−1 −b1 0 0

|−2〉 0 a2 j−−1 a−1 0 b−2 −b2 0 0

|−3〉 0 0 j+−4 a−4 j−−2 a2 0 0 −s3 s′3

|−4〉 a−4 0 0 −j+−5 a5 b−4 b4 0 0

|−5〉 0 −a5 j−−4 a−4 0 b−5 b5 0 0

|−6〉 0 0 j+−7 a−7 −j−−5 a5 0 0 s6 −s′6

|−7〉 a−7 0 0 j+−8 a8 b−7 −b7 0 0

|−8〉 0 a8 j−−7 a−7 0 b−8 −b8 0 0

Table IV. The coefficients for the decomposition of the single-ion states of HTO with respect to the angular momentum eigen-
states |MJ〉. A generic state |ψ〉 at the top of a column of coefficients CMJ is given by a superposition |ψ〉 =

∑
MJ

CMJ |MJ〉.
It is useful to distinguish between A-type and B-type doublet states, as well as singlets s and s′. The ground state doublet
|ψ(0)

0 〉 , |ψ
(0)
1 〉 is of the A-type; the coefficients are {a8 = 0.982, a5 = 0.156, a2 = 0.065, a−1 = 0.071, a−4 = 0.049, a−7 = 0.006}

and account for the strong Ising anisotropy characteristic of the spin ice single-ion physics. The second and third column from
the left are the first order terms obtained by applying ˆ̃

V to an A-type doublet.

leading orders of the perturbative splitting of the ground
state doublet. Since HTO is a non-Kramers system, Ta-
ble IV also shows two kinds of singlets in the last two
columns on the right.

1. HTO

The crystal-field spectrum of HTO is made of 5 singlets
and 6 doublets (see Fig. 2a). As summarised in Table IV,
there are two types of doublets, A and B, and two types
of singlets, s and s′.

a. A-doublets

The ground state doublet in HTO, |ψ(0)
0 〉 and |ψ

(0)
1 〉, is

made up of A-type states, as defined in Table IV.
It is then immediate to prove that Ṽ0,0 = 0 and

Ṽ1,1 = 0 since in general 〈ψ(0)
A |

ˆ̃
V |ψ(0)

A 〉 = 0 and
〈ψ(0)
A+1|

ˆ̃
V |ψ(0)

A+1〉 = 0. Namely, the first and the third
column (and the second and fourth) of Table IV have
trivially vanishing overlap.

On the contrary the first and fourth (second and third)
columns have a priori non-vanising overlap. In order to
see that again Ṽ1,0 = Ṽ0,1 = 0 one ought to consider the
explicit form of the matrix elements

〈ψ(0)
A+1|

ˆ̃
V |ψ(0)

A 〉 = a−7a8

(
j−−7 − j

−
8

)
+ a−4a5

(
j−−4 − j

−
5

)
+ a−1a2

(
j−−1 − j

−
2

)
, (E4)

which vanishes because all elements within round brack- ets cancel out, according to Eq. (E3).
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DTO |ψ(0)
A 〉 |ψ(0)

A+1〉
ˆ̃
V |ψ(0)

A 〉
ˆ̃
V |ψ(0)

A+1〉 |ψ(0)
B 〉 |ψ(0)

B+1〉

|15/2〉 a15/2 a−15/2 0 0 0 0

|13/2〉 0 0 j−15/2 a15/2 j−15/2 a−15/2 b13/2 b−13/2

|11/2〉 0 0 j+9/2 a9/2 −j+9/2 a−9/2 b11/2 −b−11/2

|9/2〉 a9/2 −a−9/2 0 0 0 0

|7/2〉 0 0 j−9/2 a9/2 −j−9/2 a−9/2 b7/2 −b−7/2

|5/2〉 0 0 j+3/2 a3/2 j+3/2 a−3/2 b5/2 b−5/2

|3/2〉 a3/2 a−3/2 0 0 0 0

|1/2〉 0 0 j−3/2 a3/2 j−3/2 a−3/2 b1/2 b−1/2

|−1/2〉 0 0 j+−3/2 a−3/2 j+−3/2 − a3/2 b−1/2 −b1/2

|−3/2〉 a−3/2 −a3/2 0 0 0 0

|−5/2〉 0 0 j−−3/2 a−3/2 −j−−3/2 a3/2 b−5/2 −b5/2

|−7/2〉 0 0 j+−9/2 a−9/2 j+−9/2 a9/2 b−7/2 b7/2

|−9/2〉 a−9/2 a9/2 0 0 0 0

|−11/2〉 0 0 j−−9/2 a−9/2 j−−9/2 a9/2 b−11/2 b11/2

|−13/2〉 0 0 j+−15/2 a−15/2 −j+−15/2 a15/2 b−13/2 −b13/2

|−15/2〉 a−15/2 −a15/2 0 0 0 0

Table V. The coefficients for the decomposition of the single-ion states of DTO with respect to the angular momentum
eigenstates |MJ〉. The CF states for DTO are all doublets. These are either of type A: |ψ(0)

A 〉 and |ψ
(0)
A+1〉 in the first and

second column, respectively; or of type B: |ψ(0)
B 〉 and |ψ

(0)
B+1〉 in the fifth and sixth column, respectively. The ground state

doublet |ψ(0)
0 〉 , |ψ

(0)
1 〉 belongs to the A-type states; the coefficients are {a15/2 = 0.983, a9/2 = −0.171, a3/2 = 0.044, a−3/2 =

0.044, a−9/2 = 0.008, a−15/2 = 0}. The second and third column are the first order terms obtained by applying ˆ̃
V to a pair of

A-doublet states.

This shows not only that Ṽ0,0 = Ṽ1,1 = Ṽ1,0 = Ṽ0,1 =
0, accounting for the vanishing first order splitting in
Eq. (11) in the main text, but also that all matrix el-
ements coupling the ground state with any other A-
doublet of the CF spectrum have to be null. Summaris-
ing, Table IV and Eq. (E4) prove the general property

〈ψ(0)
A′ | ˆ̃V |ψ(0)

A 〉 = 〈ψ(0)
A′+1|

ˆ̃
V |ψ(0)

A+1〉 = 〈ψ(0)
A′+1|

ˆ̃
V |ψ(0)

A 〉 =
0 for any two doublets A and A′ in the CF spectrum of
HTO.

b. B-doublets

The other type of doublets in the CF spectrum of HTO
are the B-doublets. The matrix elements 〈ψ(0)

B |
ˆ̃
V |ψ(0)

m 〉

and 〈ψ(0)
B+1|

ˆ̃
V |ψ(0)

m 〉 are non zero for both states of the
ground state doublet (m = 0, 1). This is because in gen-
eral the overlap between the perturbed A-states, in col-
umn three and four, with the B-states, in columns five
and six, is non-zero. Here, for brevity, only the results
for |ψ(0)

A 〉 are shown explicitly:
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〈ψ(0)
B |

ˆ̃
V |ψ(0)

A 〉 =
∑

M=2,5,8

j−M

(
aMbM−1 + a−(M−1)b−M

)

〈ψ(0)
B+1|

ˆ̃
V |ψ(0)

A 〉 =
∑

M=2,5,8

(−1)M j−M

(
aMb−(M−1) − a−(M−1)bM

)
.

(E5)

Analougously one can show that also 〈ψ(0)
B |

ˆ̃
V |ψ(0)

A+1〉 and

〈ψ(0)
B+1|

ˆ̃
V |ψ(0)

A+1〉 are non zero.
Using their conjugation properties, one finds that

〈ψ(0)
B |

ˆ̃
V |ψ(0)

A+1〉 = 〈ψ(0)
A |

ˆ̃
V |ψ(0)

B+1〉

〈ψ(0)
B+1|

ˆ̃
V |ψ(0)

A+1〉 = −〈ψ(0)
A |

ˆ̃
V |ψ(0)

B 〉 .
(E6)

whose implications, in the context of the ground state
splitting, are discussed in Sec. III B of the main text.
Namely, the contribution to second order splitting due
to B-doublets vanishes identically.

Whereas for notational convenience we have worked
with a given choice of eigenstates for both the GS doublet
and excited state doublets, the main results are indepen-
dent of it. For instance, one can verify with a few lines

of algebra that the relations in Eq. (E6) are invariant
under generic basis transformations within each doublet
involved.

c. Singlets

Another interesting feature of the CF eigenstates for
HTO is the structure of the singlets |ψ(0)

s 〉 and |ψ(0)
s′ 〉.

These are shown respectively in the fifth and sixth col-
umn (from the left) of Table IV. To avoid confusion, it
is important to underline that, in general, si 6= s′j for all
i, j. The perturbative coupling of the singlets with the
ground state doublet is non vanishing for both kind of
singlets. Here, for brevity, we show explicitly only the
matrix elements for |ψ(0)

A 〉:

〈ψ(0)
s |

ˆ̃
V |ψ(0)

A 〉 = s3

(
a2j

+
2 − a−4j

+
−4

)
+ s6

(
a5j

+
5 + a−7j

+
−7

)
+ s0a−1j

+
−1 ,

〈ψ(0)
s′ |

ˆ̃
V |ψ(0)

A 〉 = s′3

(
a2j

+
2 + a−4j

+
−4

)
+ s′6

(
a5j

+
5 − a−7j

+
−7

)
.

(E7)

Analogously, it is straightforward to show that
〈ψ(0)
s | ˆ̃V |ψ(0)

A+1〉 6= 0 and 〈ψ(0)
s′ |

ˆ̃
V |ψ(0)

A+1〉 6= 0.
The matrix elements coupling the ground state dou-

blet to the singlets provide the only non-vanishing
second-order contribution to the ground state splitting in
Eq. (11), marking the difference in the power law depen-
dence found for HTO and DTO, as discussed in Sec. III B.

2. DTO

All the energy levels in the crystal-field spectrum of
DTO are doublets (see Fig. 2b). In Table V these are
distinguished into A and B doublets, in analogy with
HTO.

a. A-doublets

The two basis states, |ψ(0)
0 〉 and |ψ

(0)
1 〉, of the ground

doublet of the DTO crystal-field spectrum are of type A,

as defined in Table V. It is then straightforward to verify
that Ṽ0,0 = Ṽ1,1 = Ṽ0,1 = Ṽ0,1 = 0 since in general

〈ψ(0)
A′ | ˆ̃V |ψ(0)

A 〉 = 〈ψ(0)
A′+1|

ˆ̃
V |ψ(0)

A+1〉 = 〈ψ(0)
A′+1|

ˆ̃
V |ψ(0)

A 〉 = 0,

(E8)

by comparing the first pair and the second pair of
columns in Table V. The null matrix elements in Eq. (E8)
are responsible for the vanishing of the first order contri-
bution to the ground state splitting in Eq. (11).

b. B-doublets

As for HTO, also for DTO the matrix elements cou-
pling the A and B doublets are non-vanishing:
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〈ψ(0)
B |

ˆ̃
V |ψ(0)

A 〉 =

15/2∑
M=−9/2

(
j−M aMbM−1 + j+

−M a−Mb−(M−1)

)

〈ψ(0)
B+1|

ˆ̃
V |ψ(0)

A 〉 =

15/2∑
M=−9/2

(−1)M+ 1
2

(
j−M aMb−(M−1) + j+

−M a−MbM−1

)
,

(E9)

where the sum over the M quantum numbers runs,
from −9/2 to 15/2, in intervals of 3 (M =
−9/2, −3/2, 3/2, 9/2, 15/2).

Their conjugation properties give:

〈ψ(0)
B |

ˆ̃
V |ψ(0)

A+1〉 = −〈ψ(0)
A |

ˆ̃
V |ψ(0)

B+1〉

〈ψ(0)
B+1|

ˆ̃
V |ψ(0)

A+1〉 = 〈ψ(0)
A |

ˆ̃
V |ψ(0)

B 〉 ,
(E10)

whose signs are opposite to the case of HTO in Eq. (E6).
Similarly to the case of HTO however, Eqs. (E10) give
a vanishing second order contribution to the splitting of
the ground state doublet. Since there are no singlets in

DTO, no splitting at all takes place to second order.
Because all the matrix elements in Eq. (E8) are null,

the matrix elements in Eq. (E10) are the only ones ulti-
mately responsible for the DTO energy splitting, which
takes place to third order in (transverse field) perturba-
tion theory, as illustrated in Sec. III.

We stress once again that, whereas for notational con-
venience we have worked with a given choice of eigen-
states for both the GS doublet and excited state doublets,
the main results are independent of it. For instance, one
can readily verify that the relations in Eq. (E10) are in-
variant under generic basis transformations within each
doublet involved.
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