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Abstract

Out-of-core sparse direct solvers reduce the amount of main memory needed to factorize and solve large

sparse linear systems of equations by holding the matrix data, the computed factors and some of the work

arrays in files on disk. The efficiency of the factorization and solution phases is dependent upon the number

of entries in the factors. For a given pivot sequence, the level of fill in the factors beyond that predicted

on the basis of the sparsity pattern alone depends on the number of pivots that are delayed (that is, the

number of pivots that are used later than expected because of numerical stability considerations). Our

aim is to limit the number of delayed pivots, while maintaining robustness and accuracy. In this paper,

we consider a new out-of-core multifrontal solver that is designed to solve efficiently the systems of linear

equations that arise from finite element applications. We consider how equilibration can be built into

the solver without requiring the system matrix to be held in main memory. We also examine the effects

of different pivoting strategies, including threshold partial pivoting, threshold rook pivoting and static

pivoting. Numerical experiments are reported for problems arising from a range of practical applications.
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1 Introduction

Most direct methods for solving large sparse linear systems of equations AX = B are variants of Gaussian

elimination, involving a factorization PAQ = LDU of the system matrix A, where L is unit lower

triangular, U is unit upper triangular, D is diagonal, and P and Q are permutation matrices. The

solution process is completed by performing forward and then back substitutions (that is, by first solving

a lower triangular system and then an upper triangular system). Direct methods are popular because,

when properly implemented, they are generally robust and so can be used as general-purpose black-box

solvers for a wide range of problems. Their main limitation is that the memory they require normally

increases rapidly with problem size. In recent years, this has led to an interest in the development of

out-of-core solvers, that is, solvers that hold the system matrix A and its factors (and possibly some of

the work arrays used by the solver) in files (see, for example, [16, 17, 18, 19]). This allows much larger

problems to be solved than would otherwise be possible. The main disadvantage is the overhead involved

with reading from and writing to files held on disk and it is essential that this be done efficiently; how we

achieve this within our recent out-of-core solvers is described in detail in [15].

As well as efficiently handling the input/output operations, it is important to limit the need for such

operations by minimising the number of entries in the factors. The purpose of this paper is to examine

the effects of scaling and of different pivoting strategies on the fill-in of the factors computed using an

unsymmetric out-of-core solver HSL MA78 [17] that we have developed for the mathematical software library

HSL [9].

HSL MA78 is a Fortran 95 package that is designed to solve efficiently the large sparse unsymmetric

systems that arise from finite-element problems. In common with other direct solvers, HSL MA78 has

a number of distinct phases. A pivot sequence must first be chosen, that is, the order in which the

eliminations are to be carried out. For the chosen pivot sequence, the analyse phase (MA78 analyse)

predicts the non-zero pattern of the factors using the sparsity pattern of A. MA78 analyse determines

lower bounds on the number of entries in the matrix factors, the memory required by the factorization, and

the number of operations needed to compute the factors. The factorize phase (MA78 factor) computes

the numerical factorization using the data structures set up by the analyse phase. The forward and back

substitutions are performed by the solve phase (MA78 solve), which may be called repeatedly for different

right-hand sides B. There is also an option to solve transpose systems AT X = B. In general, to maintain

numerical stability, it is necessary to modify the pivot sequence during the factorize phase, delaying small

pivots until alternatives are available or they are safer to use. These delayed pivots cause additional fill-in

of the factors beyond the lower bound computed by the analyse phase and lead to extra work in both the

factorize and solve phases. In the case of an out-of-core solver, the extra work is not just an increase in the

flop count, but also an increase in the number of input/output operations. We are therefore interested in

trying to limit the number of delayed pivots, while maintaining the robustness and accuracy of our solver.

The first technique we will use to try and limit delayed pivots is scaling. How to find a good scaling is

an open question, but a number of scalings have been proposed and are widely used. In particular, there

are a number of scaling routines available within the HSL library. Unfortunately, these require that the

matrix A is held in main memory. For very large problems, A may not be in main memory and so we want

to consider how we can scale A while it is held out-of-core. In particular, we will implement an out-of-core

equilibration algorithm. Equilibration [20] is a particular form of scaling, where the rows and columns

of a matrix are modified so that they have approximately the same norm. In addition to equilibration,

we will look at the effects of different pivoting strategies. Within HSL MA78 we have included options for

threshold partial pivoting, threshold rook pivoting, and static pivoting.

The remainder of this paper is organised as follows. In Section 2, we give a brief introduction to the

out-of-core multifrontal method. We then discuss, in Section 3, how we can incorporate an equilibration

algorithm within our multifrontal solver, avoiding the need to assemble the system matrix A. In Section 4,

we consider the dense linear algebra kernels that lie at the heart of HSL MA78 and explain the pivoting

options that are offered. Numerical results for a range of practical problems are presented in Section 5.
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2 Introduction to the out-of-core multifrontal method

Our unsymmetric out-of-core solver HSL MA78 is designed for solving problems coming from finite-element

analysis in which the n× n matrix A can be expressed in the form

A =
nelt
∑

k=1

A(k). (2.1)

Here nelt is the number of elements in the model and A(k) corresponds to the contribution from element

k and has nonzeros in only a small number of rows and columns. In practice, each A(k) is held as a small

square dense matrix, called an element matrix. A list of the global indices of the variables associated

with element k, which identifies where the entries in A(k) belong in A, must also be held. Each A(k) is

symmetrically structured (the list of indices is both a list of column indices and a list of row indices) but, in

the general case, is numerically unsymmetric. The advantage of holding the matrix A as a sum of element

matrices is that it is possible to avoid assembling (and thus the storage for) A. Instead, the assembly and

elimination operations are interleaved and the main work is performed using a dense frontal matrix that

is significantly smaller than A: this is key idea behind the frontal method [10] and, more generally, the

multifrontal method.

At each stage of the computation, the frontal matrix is a square matrix of order m that may be

expressed in the form

F =

(

F1 F2

F3 F4

)

, (2.2)

where m� n and the p rows and columns of F1 are fully summed, that is, all the entries in these rows and

columns of A have already been assembled, while the rows and columns of F4 are not yet fully summed.

Provided p pivots can be chosen stably from F1, the partial factorization of F takes the form

F =

(

P1 0

0 I

)(

L1 0

L2 I

)(

D1 0

0 FS

)(

U1 U2

0 I

)(

Q1 0

0 I

)

, (2.3)

where P1 and Q1 are permutation matrices, L1 and U1 are unit lower and unit upper triangular matrices,

and D1 is a diagonal matrix, all of order p. The Schur complement FS is given by

FS = F4 − L2D1U2.

At the next stage of the frontal method, the contributions from another element are assembled with the

Schur complement to form a new frontal matrix; the process continues until all element matrices have

been assembled and the final elimination operations are performed. The matrices Li, Ui and Di (i = 1, 2),

and the permutation matrices P1 and Q1, are part of the factorization and are not needed again until the

forward and back substitutions are performed. Thus, as they are generated, they can be transfered to

a file. The data in these files is read into main memory as it is required (one record at a time) during

the forward and back substitution phases. The element data may also be held in files. In Fortran, it is

convenient to use separate files for the real data and for the integer data.

In the frontal method, there is a single front (that is, there is a single set of variables that have not

yet been eliminated but are involved in one or more of the elements that have been assembled). Duff

and Reid [5] extended the frontal concept to use more than one front and, reflecting the use of several

fronts, their generalisation is called the multifrontal method. For each pivot in turn, the multifrontal

method first assembles all the elements that contain the pivot into the frontal matrix and performs a

partial factorization. The computed entries of the factors are stored and the Schur complement matrix

FS is treated as a new element, called a generated element (the term contribution block is also used in the

literature). The generated element is added to the set of unassembled elements and the next uneliminated

pivot then considered. The basic algorithm is summarised in Figure 2.1. In the unsymmetric case, the key

2



Basic Multifrontal Factorization

do for each pivot in the given pivot sequence

if the pivot has not yet been eliminated

assemble all unassembled elements and generated elements that contain

the pivot into a frontal matrix;

perform a partial factorization of the frontal matrix;

add the generated element to the set of elements

end if

end do

Figure 2.1: Basic multifrontal factorization

difference between the original elements and the generated elements is that, for the latter, it is necessary

to hold an integer list of both the row indices and the column indices of the variables in the front. This is

because the original symmetry is lost by choosing off-diagonal pivots during the partial factorizations of

the frontal matrices.

The assemblies can be recorded as a tree, called an assembly tree. Each leaf node represents an original

element and each non-leaf node represents a set of eliminations and the corresponding generated element.

The children of a non-leaf node represent the original elements and generated elements that contain the

pivot. If A is structurally irreducible there will be a single root node, that is, a node with no parent.

Otherwise, the matrix may be permuted to block triangular form and thereis one root for each block on

the diagonal.

The partial factorization of the frontal matrix at a node v in the tree can be performed once the partial

factorizations at all the nodes belonging to the subtree rooted at v are complete. If the nodes of the

tree are ordered using a depth-first search, the generated elements required at each stage are the most

recently generated ones of those so far unused. This makes it convenient to use a stack for temporary

storage during the factorization. This, of course, alters the pivot sequence, but the arithmetic is identical

apart from the round-off effects of reordering the assemblies and the effects that this can have on later

computations. The stack can be held out of core in files.

In general, to obtain a numerically stable factorization, it is necessary to incorporate numerical pivoting.

This may mean that q ≤ p pivots are chosen at non-root nodes and the matrices L1, U1 and D1 in (2.3)

are then of order q, while the permutation matrices P1 and Q1 remain of order p. In this case, p− q pivots

must be delayed (passed up the tree), until they are safer to use. The generated element will thus be larger

than anticipated on the basis of the sparsity pattern alone and the computed L and U factors will contain

more fill-in. Our interest lies in reducing the number of delayed pivots by scaling (Section 3) and by the

choice of pivoting algorithm (Section 4) while maintaining accuracy.

3 Scaling within a multifrontal algorithm

There has been much work on the effects of scaling and equilibration on the stability and accuracy of

LU factorizations of general matrices. For example, Skeel [21] concluded that no systematic scaling can

be derived for general matrices that is always successful; others have also suggested that the benefits of

scaling are limited so that it is often the practice to scale matrices on a case-by-case basis. To enable

users to experiment with different scalings, the HSL mathematical software library [9] offers a number of

packages that are designed to compute scalings of large sparse matrices. From our point of view, the main

limitation of these packages is that they all require the user to supply the matrix in assembled form, that

is, the non-zero entries of A must be entered on a single call using either coordinate format or compressed

column format; there are no facilities for working out-of-core or for matrices that are held in the form (2.1).

Thus, as we wish to avoid assembly of A, the existing packages are not suitable for use with our solver

HSL MA78. In this section, we describe how we can incorporate an equilibration option into HSL MA78,
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using only minimal additional memory.

The matrix

D−1
R AD−1

C ,

where DR and DC are diagonal matrices, is an equilibration of A if the norms of its rows and columns

have approximately the same magnitude. One possibility is to define the diagonal matrices to be

DR = diag

(

√

max
j
|Aij |

)

and DC = diag

(

√

max
i
|Aij

)

.

More generally, the process can be applied iteratively, as summarised in Figure 3.1.

Equilibration algorithm

A(1) = A, D
(1)
1 = I , and D

(1)
2 = I

for k = 2, 3, . . . , until termination do :

DR = diag

(

√

maxj |A(k)
ij |
)

, and DC = diag

(

√

maxi |A(k)
ij |
)

A(k) = D−1
R A(k−1)D−1

C

D
(k)
1 = D

(k−1)
1 DR and D

(k)
2 = D

(k−1)
2 DC . (3.1)

Figure 3.1: Equilibration algorithm

This algorithm computes the scaling diagonal matrices D
(k)
1 and D

(k)
2 such that the infinity norm of

each row and column of A(k) = (D
(k)
1 )−1A(D

(k)
2 )−1 tends to 1 as k → +∞. The iteration is terminated

when

η = max
l

(

1−max
j
|A(k)

lj |, 1−max
i
|A(k)

il |
)

≤ ε (3.2)

for a given value of the tolerance ε ≥ 0.

The properties of this algorithm (for the infinity norm and for other norms) are discussed by Ruiz [20].

The particular case when the infinity norm of each row and column of A is equal to one is clearly a fixed

point for the equilibration algorithm. Furthermore, if for each i, |Aii| ≥ max(maxl |Ail|, maxl |Ali|), then

the algorithm converges in one iteration and the resulting scaled matrix has ones on the diagonal.

The equilibration algorithm is implemented for dense matrices and for sparse (assembled) matrices

within the HSL package MC77. In MC77, the tolerance ε and the maximum number of iterations may be

controlled by the user (with default settings of zero and 10, respectively).

We now look at how we can implement equilibration within HSL MA78, avoiding the need to assemble

A explicitly. We hold DR and DC as rank-1 arrays of length n that we initialise to zero. Consider again

the m×m frontal matrix F = {fij} given by (2.2), in which the p rows of F1 and F2 and the p columns

of F1 and F3 are fully summed. Together with the reals in F , an integer list ind of the global row and

column indices of the variables in the front is held. Each row i of F is considered in turn. Let

DR(indi)← max

(

DR(indi), max
j≤k
|fij |

)

DC(indj)← max

(

DC(indj), max
i≤k
|fij |

)

where

k =

{

m if i ≤ p

p otherwise.
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We will refer to this searching and setting of the entries of the scaling matrices as updating DR and DC

Once the search of the fully summed part of each row and each column is complete, F1, F2 and F3 can

be removed from the frontal matrix and what remains (F4) can be stored in the same way as the generated

element (2.4) is stored during the multifrontal algorithm, that is, it can be placed on a stack. We will call

the (m − p) × (m − p) matrix that remains after the removal of the fully summed rows and columns an

F4-element.

Provided the elements (the original elements and the F4-elements) are assembled in the order

determined by the chosen pivot sequence, we can mimic what happens in the factorization phase of the

multifrontal algorithm except that, at each stage, we perform no permutations and no actual elimination

operations, instead we find the maximum entries in the fully summed part of each row and column. Note

that since no permutations are performed, the row and column indices of the variables in the front are the

same and so a single list is needed. The first iteration of a multifrontal equilibration algorithm is outlined

in Figure 3.2.

Basic multifrontal equilibration algorithm

flag all pivots as uneliminated and initialise DR and DC to zero

do for each pivot in the chosen pivot sequence

if the pivot is flagged as uneliminated

assemble all unassembled elements and F4-elements that contain

the pivot into the frontal matrix F

and let p be the number of fully summed rows and columns;

update DR and DC with the largest entries in the fully summed part of

each row and column of F ;

flag the variables corresponding to the first p rows and columns of F as eliminated

and add the F4-element to the set of elements

end if

end do

Figure 3.2: First iteration of an equilibration algorithm within a multifrontal algorithm

As in Figure 3.1, we can apply the algorithm iteratively and terminate when either we have satisfied

the requested tolerance (3.2) or the maximum number of iterations has been reached. On the second and

subsequent iterations, before they are searched for their largest entries, the entries in the fully summed

part of F are scaled with the scaling factors computed so far, and the accumulated scaling factors are

stored (see (3.1)). Note that although we have described the construction of the equilibration factors for

the infinity norm, it is straightforward to extend the algorithm to other norms.

For an assembled matrix, the time taken to run an equilibration package such as MC77 is, in general,

small compared with the subsequent time needed for the numerical factorization. The main cost associated

with implementing the equilibration algorithm within our multifrontal algorithm is that of accessing the

element data. By default, the original element matrices supplied by the user are held in files and the

F4-elements are written to a temporary stack that is also held in a file; all this data must be read for each

iteration. It is important, therefore, to limit the number of iterations and to perform only the minimum

needed to obtain a sufficiently good equilibration. There is a tradeoff between the number of iterations

and the quality of the equilibration, with the best choice being problem dependent. In our experiments

(Section 5), we include results that illustrate this.

3.1 Equilibration within HSL MA78

The use of equilibration is optional within HSL MA78. In Version 2.0.0, we have added an extra entry,

MA78 scale, that may be called by the user after the analyse phase and before the factorize phase. The

user can control the maximum number of iterations performed (the default is 1), the norm used (the

one-norm or the infinity norm are offered with the default being the infinity norm), and the tolerance
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parameter ε. Based on our numerical experiments, we set the default value of ε to 0.5 (see Section 5.2).

On exit from MA78 scale, the scaling factors are held in a real rank-1 array scale of length 2n. The first

n entries (scale(1:n)) contain the diagonal entries of the row-scaling matrix DR and scale(n+1:2n)

contains the diagonal entries of the column-scaling matrix DC . The array scale may be passed as an

optional argument to the factorization subroutine MA78 factor. Note that, since scale is an optional

argument, the user may choose to compute scaling factors using an alternative approach and then pass

his or her scaling directly to MA78 factor.

MA78 scale includes an option to compute the infinity norm of the (unscaled) matrix A. At each stage

of the first iteration of the equilibration algorithm, we accumulate the sum of the absolute values of the

fully summed part of each row of F in a real rank-1 work array of length n. Once the first iteration is

complete (that is, all pivots are flagged as eliminated), ‖A‖∞ is computed to be the maximum norm of

this work array.

4 Partial factorization of the frontal matrices

The efficiency of MA78 factor is dependent upon the partial factorization of the frontal matrices. Since

the frontal matrices are held as full matrices, dense linear algebra kernels may be used. We have developed

a separate package, HSL MA74, that is used by MA78 factor to perform the partial factorizations of the

frontal matrices and by MA78 solve to perform the partial forward and back substitutions. In this section,

we describe HSL MA74 and discuss the pivoting options that it offers and that are available to users of the

multifrontal solver HSL MA78.

4.1 Overview of HSL MA74

Given a dense unsymmetric m × m matrix F , HSL MA74 performs a partial factorization, limiting

eliminations to the leading p ≤ m rows and columns. Stability considerations may lead to q ≤ p

eliminations being performed (that is, fewer than p pivots are chosen). The factorization takes the form

(2.3) where the matrices L1, U1 and D1 are of order q and the permutation matrices P1 and Q1 are of

order p. Subroutines are provided for partial solutions, that is, solving systems of the form

(

L1 0

L2 I

)

X = B,

(

D1 0

0 I

)

X = B,

(

D1 0

0 I

)(

U1 U2

0 I

)

X = B, and

(

U1 U2

0 I

)

X = B,

and the corresponding equations for a single right-hand side b and solution x. Subroutines are also provided

for partial solutions to transposed systems.

The user inputs the matrix F in a rank-2 (two dimensional) array which, on exit, is overwritten by

the factorized matrix. Each diagonal entry holds either the inverse of a pivot or, if a zero pivot is chosen

(because the matrix singular), the corresponding diagonal entry is set to zero. A rank-1 integer array

pperm of length p is used to hold the row permutations P1 so that, on exit, pperm(i) holds the index of

the row of F that is permuted to row i, i = 1, ..., p. Similarly, a rank-1 integer array qperm is used to hold

the column permutations Q1.

HSL MA74 uses a block algorithm. If the factorization were to proceed by choosing a single pivot at a

time, the updates to the rest of F could only be performed using Level 2 BLAS. To take advantage of the

more efficient Level 3 BLAS, the partial factorization is programmed as a sequence of block steps, with

the block size nb under the user’s control. If q is the number of pivots chosen so far, the code searches

columns q + 1 to p of F in turn for a pivot. If the column to be searched has had k < q updates, it is

first updated with the q − k most recently chosen pivots. Since a single column is being updated, this is

performed using the Level 2 BLAS kernels trsv and gemv. Each time a pivot is chosen, q is incremented
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by one and the pivotal column is swapped with column q. The position m1 of the right-most column of

F that has been searched for a pivot is held and, whenever a pivot is chosen, columns q + 1 to m1 are

updated (using the Level 2 rank-1 update routine ger) so that all the columns that have been tested and

rejected are fully updated. This avoids the need to hold an array of updates. Once nb pivots have been

chosen or q = p, columns m1 + 1 to n are updated using the Level 3 BLAS kernels trsm and gemm. If

q < p, m1 is reset to q + 1 and the column search restarts from column q + 1. The remaining columns are

searched cyclically to avoid repeatedly searching a previously rejected column.

4.2 Pivoting options

For numerical stability, it is generally necessary to incorporate pivoting within Gaussian elimination. A

balance needs to be achieved between stability and efficiency: we want to solve the sparse system fast,

with as little fill in as possible in the factors, but we also want the computed solution to be of the required

accuracy. There are a number of pivoting strategies available, each of which places a different emphasis on

stability and efficiency. The basic options available are threshold partial pivoting, threshold rook pivoting

and threshold complete pivoting.

Consider first the case where the matrix to be factorized is dense and set V = DU . At the kth stage

of Gaussian elimination, partial pivoting selects as pivot the largest entry below the diagonal in the kth

column. A traditional quantity used to describe the backward stability of Gaussian elimination is the

growth factor ρ, which for partial pivoting can be defined by

ρ = max |Vij |/ max |Aij |.

It can be shown that ρ ≤ 2n−1 and, although ρ usually behaves like n or less, examples can be found for

which partial pivoting is unstable (see, for example, [8]). Complete pivoting searches for the largest entry

in the remaining matrix of order n− k. In this case, the growth factor satisfies ρ ≤ 2
√

nnln(n)/4 but this

cannot be attained for n ≥ 3 [22] and, in practice, complete pivoting is considered to be numerically stable.

The disadvantage of complete pivoting is the cost since it requires approximately n3/3 comparisons, beyond

the work required by Gaussian elimination with no pivoting, whereas partial pivoting requires only n2/2

comparisons. Gaussian elimination with rook pivoting [12] offers a strategy that is intermediate between

partial and complete pivoting in terms of both efficiency and stability. To locate the kth pivot, rook

pivoting performs a sequential search (column, row, column, etc) of the remaining matrix until an entry

is located whose absolute value is not exceeded by the absolute value of any other entry in the row or

column in which it lies. In general, rook pivoting is observed to be more accurate than partial pivoting [2].

Furthermore, it has been shown that the growth factor satisfies ρ ≤ 1.5n3ln(n)/4 [6] and Poole and Neal

[14] report in their numerical experiments that the expected cost of rook pivoting is about three times

that of partial pivoting.

Our interest is in Gaussian elimination for sparse matrices. In this case, pivoting strategies that require

the largest entry in a column and, possibly, a row are too restrictive. Instead, a threshold is introduced.

HSL MA74 offers a number of threshold pivoting options that are controlled using the parameters pivoting,

small, static, and u. We now discuss these options.

4.2.1 Threshold partial pivoting

The default strategy within HSL MA74 is threshold partial pivoting (pivoting = 1). In this case, an entry

fij of the reduced matrix after q pivots have been selected is normally only chosen as a pivot if i ≤ p and

j ≤ p and it satisfies

|fij | ≥ max(u ∗max
l>q
|flj |, small). (4.1)

Here u is the pivoting threshold parameter. Values of u close to zero will generally result in a faster

factorization with fewer entries in the factors (for u sufficiently small, no pivots will will be delayed and
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so the number of entries in the factors will be equal to the number predicted by the analyse phase) but

values close to 1 are more likely to result in a stable factorization; the default of 0.01 is a compromise

between stability and sparsity and is recommended in the user documentation for other direct solvers. In

HSL MA74, values of u that are less than 0.0 are treated as 0.0 and values greater than 1.0 are treated as

1.0. small controls the size of the smallest pivot that is acceptable. The default value is tiny(small),

where tiny() is the Fortran numeric inquiry function that returns the smallest positive number that is

stored in full precision. When searching column j of the reduced matrix for a suitable pivot, the row index

r corresponding to the largest entry in rows q + 1 to m is sought using the BLAS kernel i amax. If r ≤ p,

the pivot has been found, q is incremented by 1 and rows q and r are swapped. If r > p, the largest entry

in rows q to p is found (again using i amax) and, if this satisfies (4.1), it is chosen as the next pivot. Note

that, if u = 0.0, the pivot is still chosen to be the largest entry in rows q to p (even though any entry in

the column larger than small satisfies (4.1)).

4.2.2 Diagonal pivoting

In some applications, it may be known that the pivots can be chosen stably from the diagonal (for example,

if A is close to a symmetric positive-definite matrix). For threshold diagonal pivoting (pivoting = 2)

with threshold u > 0.0, pivots are initially chosen from the diagonal and must satisfy the threshold criteria

(4.1) with j = i. If p = n and only q < n pivots can be chosen from the diagonal that satisfy (4.1), the

code switches to choosing off-diagonal pivots (so that the final n− q pivots may be off-diagonal entries).

The number of pivots chosen from the diagonal is returned to the user. If the threshold parameter u is

equal to zero, no search is made for the largest entry in the column of the candidate pivot. In this case,

there is no pivoting and (4.1) simplifies to checking the candidate pivot is at least small.

4.2.3 Threshold rook pivoting

Threshold rook pivoting may be selected in HSL MA74 by setting pivoting = 3. A candidate fij may be

chosen as a pivot if i ≤ p and j ≤ p and it satisfies (4.1) and, additionally, with the same u,

|fij | ≥ u ∗max
l>q
|fil|. (4.2)

In other words, for rook pivoting the pivot candidate must satisfy the threshold test in both its column

and its row. Suppose q pivots have been chosen. Having found a candidate with row index i in the column

that is currently being searched, row i is swapped with row q + 1. It must then be updated so that all

q pivots have been applied to it, before it can be searched for its largest entry and then tested. Thus,

rook pivoting involves more Level 2 BLAS updates (and hence fewer Level 3 BLAS operations) and the

additional overheads of row swaps and row searches. Because of this extra cost, it is not the default

pivoting strategy within HSL MA74.

If column j is searched but rejected because it fails the test (4.1), provided j < p, we next update and

search column j +1, and continue to search the columns cyclically. However, if the largest entry in column

j is in row i ≤ p and (4.1) is satisfied, then we update and search row i. Suppose the largest entry in row

i lies in column l and that fij does not satisfy (4.2). If l > p we update and search column j + 1 but if

l ≤ p (that is, column l is fully summed), we swap columns j + 1 and l so that we next update and search

column l, and continue in a like manner until a pivot is found. Our experience has been that, compared

with searching in a strictly cyclic fashion, this reduces the total number of rows and columns searched

during the factorization. Note that a count of the number of rows and columns searched is returned to

the user.

Gill, Murray and Saunders [7] report that, provided u is chosen to be sufficiently close to 1, the rank-

revealing properties of rook pivoting are essentially as good as for threshold complete pivoting (see also

[13]) and they include rook pivoting as an option within the sparse direct solver LUSOL. Since threshold

rook pivoting with a sufficiently large u appears to offer the same advantages as threshold complete pivoting

but at less expense, we have chosen not to offer an option for threshold complete pivoting within HSL MA74.
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4.2.4 Static pivoting

In some applications, using a value of u equal to 0.1 or 0.01 can lead to a large number of delayed

(rejected) pivots. In this case, the size of the frontal matrices as the factorization moves up the tree

can grow significantly beyond that which was anticipated by the analyse phase. This results in a more

expensive factorization, both in terms of the number of flops required to perform the factorization and the

number of entries in the matrix factors; this, in turn, leads to a more expensive solve phase. Furthermore,

more storage will be required for the frontal matrix (which is held in main memory) and more data has

to be written to and read from a stack during the factorization. In recent years, this has led to a number

of direct solvers offering options for static pivoting (see, for example, [4], [11]). Here, the essential idea is

to allow pivots that do not satisfy condition (4.1), thus ensuring the pivot selection closely follows that

provided by the user to the analyse phase. The danger is that there will be a potential loss of accuracy

in the factorization and it may be necessary to perform refinement steps after the solve phase to try to

recover the required accuracy, that is, to use the computed factorization as a preconditioner for an iterative

method. This is still a subject of research (see, for example, [1]).

Different variants of static pivoting have been proposed: the strategy we have adopted aims to use

the best available pivot and to modify pivots only when they become very small. Within HSL MA74 (and

HSL MA78), static pivoting is controlled by the parameter static. If static is positive and fewer than p

pivots can be selected that satisfy (4.1), the pivot that came closest to satisfying this condition is chosen,

that is, the pivot for which the ratio

max
q<i≤p

|fij | / max
q<l≤m

|flj |, q ≤ j ≤ p, (4.3)

is the largest. If its absolute value is greater than static, the information parameter usmall (which is

initialised to the user-supplied threshold u) is set to the minimum of usmall and (4.3). The computation

continues using the reduced threshold u ← usmall. If the absolute value of (4.3) is less than static, the

pivot is given the value that has the same sign but absolute value static and u is unchanged. On exit,

usmall holds the threshold parameter that was used or is set to zero if any pivots have been replaced by

static, num thresh holds the number of pivots that did not satisfy the threshold criteria based on the

user-supplied value of u, and num perturbed holds the number of pivots that were replaced by static.

Note that u may be reduced a number of times during a single call to HSL MA74 and, within HSL MA78, once

u has been reduced during a call to HSL MA74, the factorization continues using this smaller threshold.

5 Numerical experiments

In this section, we report on the effects of the choice of pivot strategy and scaling when using are

multifrontal solver HSL MA78 to solve a number of problems from practical applications. The test problems

are listed in Table 5.1 in order of the predicted number of entries in the factors (that is, the number of

entries if no pivots are delayed) when the analysis phase of the HSL solver MA57 [3] is used to compute the

pivot order. The predicted maximum frontsize is also given (that is, the maximum size of the frontal matrix

if no pivots are delayed). With the exception of the last problem (which came from a user of hsl ma78), the

problems are all taken from the website http://www.parallab.uib.no/projects/parasol/data. The

right-hand side for each problem is selected so that the required solution is the vector of ones. We note

that, when storing the partial factorization (2.3), the lower triangular part of L1 and the upper triangular

part of U1, and the rectangular matrices L2 and U2, are stored as dense matrices (explicit zeros within

the front are ignored). Thus the number of entries nz(L) in the L factor is equal to the number nz(U) in

the U factor.

The numerical results were obtained using double precision (64-bit) reals on a 3.6 GHz

Intel Xeon dual processor Dell Precision 670 with 4 Gbytes of RAM. The Nag Fortran f95

compiler with the optimization flag -O was used together with the ATLAS BLAS and LAPACK

(math-atlas.sourceforge.net). The reported times are elapsed (wall clock) times in seconds and, unless
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Table 5.1: The test problems. n and nelt denote the number of variables and elements, respectively, nz(L)

is the predicted number entries in L, in millions and max front is the predicted maximum frontsize.

Identifier n nelt ‖A‖∞ nz(L) max front Description/discipline

1. ship 001 34920 3431 2.18∗1012 15.6 1596 Ship structure - predesign

2. thread 29736 2176 1.80∗1019 24.7 3099 Threaded connector

3. x104 108384 26019 4.32∗105 27.1 2076 Beam joint

4. mt1 97578 5328 1.83∗1012 32.7 1941 Tubular joint

5. shipsec8 114919 32580 3.19∗1012 36.3 2624 Section of a ship

6. shipsec1 140874 41037 3.15∗1013 38.7 2142 Section of a ship

7. shipsec5 179860 52272 4.89∗1012 54.2 3243 Section of a ship

8. ship 003 121728 45464 3.48∗1018 60.3 3204 Ship structure - production

9. raju 001 151656 46980 4.34∗108 139.7 5232 Laminar flow inside pump casing

stated otherwise, are the total solution times (that is, the time for the analyse, factorize and solve phases

with a single right-hand side and, where used, for scaling). We compute the scaled residual

‖Ax− b‖∞
‖A‖∞‖x‖∞ + ‖b‖∞

(5.1)

In our experiments, we also monitor maxi |1−xi|. Note that, if equilibration is used, the original unscaled

matrix A is used when computing the scaled residual.

5.1 Comparison of partial and rook pivoting

We first compare the performance of partial threshold pivoting and rook threshold pivoting (without

scaling). Using the default threshold parameter u = 0.01, in Table 5.2 we report the total solution time,

the number of flops required to compute the factors, the number nz(L) of entries in the L factor, the number

delay of delayed eliminations, and the number of rows and columns searched during the factorization. If

pi and qi are, respectively, the numbers of candidate and actual pivots chosen at node i then

delay =
∑

i

(pi − qi).

Note that a pivot may be delayed (and hence counted) more than once. The number of columns searched

is at least n and, for rook pivoting, the minimum number of rows searched is n. For partial pivoting, no

rows are searched and so no row search count is included in this case.

A standard technique to recover from inaccuracies in the factorization is to use the computed matrix

factorization as a preconditioner for an iterative method, such as iterative refinement. In Table 5.3, the

residuals are given, both after MA78 solve and after a single step of iterative refinement.

If there are only a small number of delayed eliminations, we see that rook pivoting adds an overhead;

this is because both rows and columns must be searched. But this overhead is small compared with the

total solution time (see problems 1 and 2). Furthermore, the more stringent test used by rook pivoting

can result in less growth and smaller residuals (see columns 2 and 3 of Table 5.3). Smaller growth can

also mean that, although rook pivoting initially rejects more pivots than partial pivoting, eventually rook

pivoting rejects fewer pivots, leading to the total number of delayed eliminations being less for rook

pivoting. This in turn gives sparser factors that are computed using fewer flops. Because looking for each

pivot is more expensive than for partial pivoting, the time can still increase (as illustrated by problem 8)

but in some cases, the total time using rook pivoting is significantly less than for partial pivoting (notably

for problems 4, 6 and 7). This observation is somewhat unexpected. Problem 9 illustrates what we would

10



Table 5.2: Comparison between rook and partial threshold pivoting with u = 0.01. For the first four pairs

of results, one is in bold if it is significantly better than the other.

Problem Time flops∗109 nz(L)∗106
delay∗103 Searched∗103

Rows/Cols Cols

rook partial rook partial rook partial rook partial rook partial

1. ship 001 15.0 13.4 22 22 15.6 15.6 0 0 35/35 35

2. thread 37.8 35.4 72 72 24.7 24.7 0 0 30/30 30

3. x104 34.0 37.8 36 59 30.3 34.5 20 33 137/200 202

4. m t1 55.7 94.9 69 159 40.2 56.2 34 67 117/231 358

5. shipsec8 91.6 92.8 130 175 49.0 55.6 61 78 139/324 329

6. shipsec1 110 174 150 305 58.6 78.2 97 135 175/467 554

7. shipsec5 175 275 246 492 80.4 105 121 169 225/589 687

8. ship 003 146 118 206 228 70.8 74.0 50 610 138/285 281

9. raju 001 335 226 646 579 168 147 110 79 414/512 345

Table 5.3: Comparison between the scaled residuals for factorization with rook and partial threshold

pivoting before and after one step of iterative refinement (u = 0.01). For each pair of results, one is in

bold if it is significantly better than the other.

Problem Before After

rook partial rook partial

1. ship 001 5.7 ∗ 10−16 3.1 ∗ 10−16 5.6 ∗ 10−17 9.5 ∗ 10−17

2. thread 3.1 ∗ 10−16 4.0 ∗ 10−16 7.4 ∗ 10−17 6.8 ∗ 10−17

3. x104 6.2 ∗ 10
−16 9.9 ∗ 10−14 5.4 ∗ 10−17 7.1 ∗ 10−17

4. m t1 4.7 ∗ 10
−16 8.5 ∗ 10−14 3.7 ∗ 10−16 2.7 ∗ 10−16

5. shipsec8 5.3 ∗ 10
−16 2.4 ∗ 10−14 7.9 ∗ 10−17 9.1 ∗ 10−17

6. shipsec1 4.0 ∗ 10
−16 7.6 ∗ 10−14 9.0 ∗ 10−17 1.4 ∗ 10−16

7. shipsec5 1.8 ∗ 10
−15 6.8 ∗ 10−13 1.5 ∗ 10−16 1.9 ∗ 10−16

8. ship 003 7.9 ∗ 10
−16 1.5 ∗ 10−13 8.7 ∗ 10−17 7.9 ∗ 10−17

9. raju 001 1.5 ∗ 10−15 5.8 ∗ 10−15 3.3 ∗ 10−16 4.1 ∗ 10−16
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perhaps anticipate happening: rook pivoting is more cautious and here it leads to more delayed pivots,

more searching, an increase in the fill-in and in the flop count and hence a greater computational time.

We note that, in our tests, after one step of iterative refinement, there was no appreciable difference in

the quality of the residuals for partial and rook pivoting.

We have also run the same tests with a larger threshold parameter of 0.1. Our results are in Table 5.4.

For some of our test problems, the difference between the performance of rook and partial pivoting is more

extreme. For example, for problems 4 and 7, it is much better to use rook pivoting while for problem 9,

rook pivoting leads to so many delayed pivots that the code is unable to allocate a sufficently large frontal

matrix on our 32-bit test machine. We do not give full details of the residuals but, again, rook pivoting

results in smaller residuals and, as expected, the scaled residuals using u = 0.1 are generally smaller before

iterative refinement than when using u = 0.01 (but following one step of refinement they are comparable).

Table 5.4: Comparison between rook and partial threshold pivoting with u = 0.1. NS indicates not solved.

For the first four pairs of results, one is in bold if it is significantly better than the other.

Problem Time flops∗109 nz(L)∗106 delay∗103 Searched∗103

Rows/Cols Cols

rook partial rook partial rook partial rook partial rook partial

1. ship 001 14.9 12.9 22 22 15.7 15.7 0 0 36/37 36

2. thread 35.9 30.7 73 73 24.7 24.7 0 0 30/30 30

3. x104 46.3 90.8 65 191 38.5 56.1 55 87 135/319 451

4. m t1 74.6 273 113 539 50.9 96.6 68 137 114/348 695

5. shipsec8 161 251 267 507 71.0 92.9 134 165 136/550 615

6. shipsec1 264 776 413 1410 97.5 163 203 259 174/809 1056

7. shipsec5 502 1629 768 3187 143 261 295 395 218/1161 1569

8. ship 003 227 303 395 623 96.6 116 140 170 137/551 604

9. raju 001 NS 300 NS 718 NS 176 NS 96 NS 428

5.2 Effects of equilibration

We now present results for HSL MA78 run with both rook and partial pivoting following a single iteration

of the equilibration algorithm (using the infinity norm). The reported times in Table 5.5 include the time

taken by one iteration of the equilibration algorithm; the threshold parameter used by HSL MA78 was 0.01.

Comparing these results with those in Table 5.2 we see that, with the exception of problems 1, 2 and 9,

equilibration significantly enhances the performance of the solver. In particular, there are now (almost)

no delayed pivots for the ship problems and this results in substantial reductions in the total time (the

savings in the factorization times more than offset the costs of the equilibration). The scaled residuals for

rook pivoting are O(10−16); they are typically an order of magnitude larger for partial pivoting.

Problems 1 and 2, which did not suffer from delayed pivots when not scaled, do not benefit from one

iteration of the equilibration algorithm. In fact, for problem thread, the performance of HSL MA78 is

significantly worse. Similar results were observed when using the one-norm. This illustrates that scaling

will not benefit all problems and the user is advised of the need to experiment with using it.

After one iteration of equilibration, only problems 2, 4 and 9 have a significant number of delayed

pivots. These problems may benefit from using more that one iteration. We have experimented with up

to 10 iterations, setting ε in the stopping criteria (3.2) to 0.0 so that termination occurs when either the

maximum number of iterations is reached or maxj |A(k)
lj | = maxi |A(k)

il | = 1. For problem 2 (thread),

termination happened after 4 iterations and did not reduce the number of delayed pivots or entries in

the factor. In Table 5.6, we report detailed results for problems 4 and 9 (0 iterations corresponds to no

scaling). On the first iteration, η (given by (3.2)) is approximately equal to (nz(A) ∗ ‖A‖∞)/n; on the

second iteration it is close to 1, and then decreases steadily, with an asymptotic linear rate of 1/2 (see [20]).
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Table 5.5: Comparison between rook and partial threshold pivoting with equilibration and u = 0.01. For

the first four pairs of results, one is in bold if it is significantly better than the other.

Problem Time flops∗109 nz(L)∗106
delay∗103 Searched∗103

Rows/Cols Cols

rook partial rook partial rook partial rook partial rook partial

1. ship 001 16.7 16.3 22 22 15.6 15.6 0 0 35/35 35

2. thread 55.0 64.6 93 154 27.4 32.9 4 8 33/46 60

3. x104 24.9 23.0 29 29 27.2 27.2 1 1 111/114 111

4. m t1 45.0 63.0 60 104 37.6 46.7 24 45 109/182 273

5. shipsec8 51.6 45.3 74 74 36.3 36.3 0 0 117/117 115

6. shipsec1 49.3 44.4 68 68 38.7 38.7 0 0 144/144 141

7. shipsec5 78.0 69.8 114 114 54.2 54.2 0 0 183/183 180

8. ship 003 98.4 89.1 156 156 60.3 60.3 0 0 123/123 122

9. raju 001 344 255 635 567 163 149 81 54 208/420 297

For problem mt 1, it is beneficial to use 2 iterations; with 3 or 4 iterations, the factors are sparser but the

increased cost of the scaling leads to an increase in the total time. For problem raju 001, the number of

iterations has little effect on the performance of HSL MA78 but each extra iteration adds a significant cost.

Table 5.6: The effect of the number of iterations used by the equilibration algorithm on the performance

of HSL MA78 for problems m t1 and raju 001 with partial pivoting and u = 0.01. η is defined in (3.2).

Problem Number η Time flops∗109 nz(L)∗106 delay Searched∗103

Iterations Scaling Total Cols

m t1 0 − 0.00 94.9 158 56.2 67467 358

1 2.32∗1011 5.73 63.0 104 46.7 45127 273

2 0.99 10.1 56.8 86 43.3 37384 227

3 0.92 13.7 57.8 81 42.3 35124 218

4 0.63 17.4 60.8 78 41.6 34279 212

5 0.40 20.8 65.8 82 42.3 34945 220

10 0.14 37.8 80.8 78 41.7 33748 212

raju 001 0 − 0.00 227 579 147.3 78669 345

1 1.22∗107 30.8 255 568 149.5 53235 297

2 1.00 59.1 284 564 147.0 34279 250

3 0.98 81.6 302 564 147.0 34945 247

4 0.85 99.5 320 564 147.0 30073 248

5 0.61 122 342 564 147.0 30341 247

10 0.03 219 439 564 147.0 30206 247

5.3 Static pivoting results

Finally, we present results for static pivoting. We consider only those problems for which our earlier

experiments reported a significant number of delayed pivots (if there are no delayed pivots, static pivoting

will not have an effect). We start the factorization with the default threshold u = 0.01 and set the control

parameter static = 10−12 (see Section 4.2.4). With this choice of static, in our tests it was not necessary

to replace any small pivots. In Table 5.7, we report the elapsed times, flop count, the value of the resulting

threshold (usmall), and the residuals before and after one step of iterative refinement. The number of

entries in the factor is equal to the predicted number of entries (see Table 5.1). Comparing the results with

those in Table 5.2, we see that static pivoting can lead to significant savings and, for our test problems, a

13



single step of iterative refinement is generally able to recover accuracy.

Table 5.7: The elapsed times, flops, the value of the threshold used (usmall), and the residuals before and

after iterative refinement with static pivoting (u = 0.01).

Problem Time flops∗109
usmall Residual

Before After

3. x104 18.4 28 3.84 ∗ 10−5 2.2 ∗ 10−13 5.2 ∗ 10−17

4. m t1 25.3 47 5.46 ∗ 10−4 4.6 ∗ 10−15 3.1 ∗ 10−16

No 5. shipsec8 39.1 74 1.95 ∗ 10−4 7.0 ∗ 10−15 1.2 ∗ 10−16

Scaling 6. shipsec1 35.5 68 2.17 ∗ 10−4 1.8 ∗ 10−14 9.1 ∗ 10−17

7. shipsec5 60.1 114 1.30 ∗ 10−4 8.4 ∗ 10−14 1.6 ∗ 10−16

8. ship 003 73.4 156 8.23 ∗ 10−5 2.8 ∗ 10−14 9.4 ∗ 10−17

9. raju 001 211 542 7.54 ∗ 10−5 2.9 ∗ 10−15 2.8 ∗ 10−16

2. thread 36.7 72 1.94 ∗ 10−3 4.1 ∗ 10−16 8.0 ∗ 10−17

With 3. x104 22.6 28 8.73 ∗ 10−4 6.2 ∗ 10−16 8.0 ∗ 10−17

scaling 4. m t1 30.0 47 9.66 ∗ 10−4 2.3 ∗ 10−15 2.4 ∗ 10−16

9. raju 001 241 542 9.93 ∗ 10−5 2.6 ∗ 10−15 3.3 ∗ 10−17

We also performed experiments with static = 10−8. In this case, for problems x104 and raju 001

with scaling, a few pivots (7 and 13, respectively) were replaced by static. This resulted in a loss of

accuracy. For x104, performing further iterations of iterative refinement improved the accuracy of the

solution but for raju, the computed solution had infinity norm 2.5 ∗ 104 (recall the exact solution is the

vector of ones), and iterative refinement was unable to improve this. This illustrates the importance of

using static pivoting with care.

6 Code availability

HSL MA78 is available as part of the 2007 release of the mathematical software library HSL. All use of

HSL requires a licence. Individual HSL packages (together with their dependencies and accompanying

documentation) are available without charge to individual academic users for their personal (non-

commercial) research and for teaching; licences for other uses involve a fee. Details of the packages

and how to obtain a licence plus conditions of use are available at www.cse.clrc.ac.uk/nag/hsl/.
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