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Abstract

We develop a scheme for obtaining the impedance of
a gradually tapered, axisymmetric geometry containing a
bunch of arbitrary profile travelling at the speed of light
parallel to the axis of the taper. Coordinate-free expres-
sions for Maxwell’s equations are 2+2-split in a coordinate
system adapted to the particle beam and the taper and, us-
ing an asymptotic expansion for a gradual taper, a coupled
hierarchy of Poisson equations is obtained. Applications of
the scheme are presented.

INTRODUCTION

The design of accelerator components such as collima-
tors relies on understanding the consquences of passing an
ultrarelativistic charged beam through a waveguide with a
gradual taper. This is currently studied using a combination
of experiment and computer simulation. However, various
analytical methods have also been developed to estimate
impedances (see, for example, [1]). Most recently, Stu-
pakov [2] developed a process for evaluating the impedance
up to the second order of iteration for low frequency beams
travelling atv = c in perfectly conducting waveguides of
arbitrary cross-section. We shall use a similar method,
restricted to axially symmetric confining geometries [3].
However, our approach, using auxiliary potentials, enables
us to relax Stupakov’s low-frequency condition and pro-
duce a hierarchy of equations that can be solved to arbitrary
order.

MAXWELL EQUATIONS AND
BOUNDARY CONDITIONS

The spacetime metricg is given in cylindrical polar co-
ordinates by1

g = −dt ⊗ dt + dz ⊗ dz + dr ⊗ dr + r2dθ ⊗ dθ (1)

and the transverse, cross-sectional domainD at fixedt and
z has the induced metric

g⊥ = dr ⊗ dr + r2dθ ⊗ dθ (2)

In spacetime, the Hodge map and exterior derivative are
denoted⋆ and d, and in the transverse domain, they are
denoted by#⊥ andd⊥. The transverse co-derivativeδ⊥ is
defined as

δ⊥ = #−1
⊥ d⊥#⊥η (3)

1We work in the MKS system, with units in which the speed of light
c = 1.

whereηω = (−1)pω for anyp-form ω and#⊥1 = rdr ∧

dθ.
The source, moving in the positivez-direction at the speed
of light, has charge densityρ and 4-velocity field

V = ∂t + ∂z (4)

The vacuum Maxwell equations for the spacetime 2-form
F are given by

dF = 0, d ⋆ F = −
ρ

ε0
⋆ Ṽ (5)

whereṼ = g(V,−) andε0 is the permittivity of free space.
In terms of new co-ordinates

u := z − t, ζ := z (6)

the metric and volume 4-form⋆1 = dt∧dz∧#⊥1 become

g = dζ ⊗ du + du ⊗ dζ − du ⊗ du + g⊥ (7)

⋆1 = dζ ∧ du ∧ #⊥1 (8)

and the velocity 1-form̃V and its Hodge dual are

Ṽ = du, ⋆Ṽ = du ∧ #⊥1 (9)

Taking the exterior derivative of the second Maxwell equa-
tion implies that the charge density is independent ofζ and
can thus be writtenρ(r, θ, u). One may uniquely express
F in terms of 0-formsΦ(r, θ, ζ, u) andΨ(r, θ, ζ, u), and
1-forms α⊥(r, θ, ζ, u) and β⊥(r, θ, ζ, u) which are inde-
pendent ofdζ anddu:

F = Φdζ ∧ du + du ∧ α⊥ + dζ ∧ β⊥ + Ψ#⊥1 (10)

Furthermore, one may write [4]

α⊥ = d⊥A + #⊥d⊥a, β⊥ = d⊥B + #⊥d⊥b (11)

for 0-forms A(r, θ, ζ, u), a(r, θ, ζ, u), B(r, θ, ζ, u) and
b(r, θ, ζ, u) providedA andB vanish on the boundary∂D.
This condition is compatible with the perfectly conducting
boundary conditions that will be imposed onF below.
Without loss of generality, it proves expedient to re-write
the form ofF in terms of six new fieldsW , X , HB, Hb,
HΦ andHϕ that will facilitate our subsequent analysis;

A = ∂uW + ∂ζW −H
B, B = H

B
− ∂ζW

Φ = ∂uH
Φ + ∂uH

B + ∂ζH
B
− 2∂2

uζW − ∂2
ζζW

a = ∂uX, b = ∂ζX −H
ϕ

Ψ = ∂ζH
ϕ + ∂uH

ϕ + H
b
− 2∂2

uζX − ∂2
ζζX (12)



Thus, the Maxwell equations then reduce to the following
relations:

δ⊥d⊥H
B = 0

d⊥H
b = #⊥d⊥

(

∂uH
B
)

, d⊥H
ϕ = #⊥d⊥H

Φ

δ⊥d⊥W − 2∂2
uζW − ∂2

ζζW

+ ∂uH
Φ + ∂uH

B + ∂ζH
B = P (r, θ, u)

δ⊥d⊥X − 2∂2
uζX − ∂2

ζζX + ∂ζH
ϕ + ∂uH

ϕ + H
b = 0

(13)

where∂uP (r, θ, u) = ρ(r,θ,u)
ε0

. The second equation in (13)
implies the harmonic equations

δ⊥d⊥H
b = δ⊥d⊥H

ϕ = δ⊥d⊥H
Φ = 0 (14)

The waveguide wall is the spacelike hypersurface

f := r − R(ζ) = 0 (15)

for some smooth functionR(ζ). We assume a perfectly
conducting boundary condition forF :

df ∧ F = 0 at f = 0 (16)

Equation (16) can be satisfied by setting

W = ∂rX = 0, H
B = ∂ζW, H

Φ = −R′(ζ)
1

r
∂θX

(17)
on the boundaryf = 0.

GRADUALLY TAPERING WAVEGUIDE

Consider first a regular cylindrical waveguide with con-
stant radiusR(ζ) = R0. As ∂ζρ = 0, the source and con-
fining geometry are both symmetric with respect to trans-
lations in the∂ζ direction. The simplest solution to the
Maxwell system (13) with the boundary conditions (17) is
then

X0 = H
b
0 = H

B
0 = H

Φ
0 = H

ϕ
0 = ∂ζW0 = 0 (18)

δ⊥d⊥W0 = P (r, θ, u) (19)

with W0 = 0 on the boundary.
A waveguide is defined to be gradually tapering if

f := r − Ř(ǫζ) = 0 (20)

whereǫ is a small, dimensionless parameter. The fields will
then vary slowly withζ. Introduce a ‘slow’ longitudinal co-
ordinate

s = ǫζ (21)

and rewrite all the potentials in terms ofs, using the nota-
tion

χ(r, θ, ζ, u) = χ̌(r, θ, s, u) (22)

whereχ̌ ∈
{

W̌ , X̌, ȞB, Ȟb, ȞΦ, Ȟϕ
}

. Express the po-
tentials in the form of asymptotic series inǫ:

χ̌ =

∞
∑

n=0

ǫnχ̌n (23)

Note ∂ζχ = ǫχ̌′ (where, from now on, a prime denotes
differentiation with respect tos). The Maxwell equations
(13) with boundary conditions (17) decouple to yield a hi-
erarchical set of 2-dimensional Laplace and Poisson equa-
tions for every ordern, and the boundary conditions oňHB

n

andȞΦ
n depend on(n − 1)-order potentials. This leads to

a straightforward procedure for calculating the potentials
order-by-order. Forn = 0, the only non-zero potential is
Ŵ0 which is a solution toδ⊥d⊥W0 = P (r, θ, u) and van-
ishes atr = R(s).
For every subsequent order ofn:

1. Calculate the harmonic potentiaľHB
n by solving the

2-dimensional Laplace equation

δ⊥d⊥Ȟ
B
n = 0 (24)

subject to the boundary condition2

Ȟ
B
n = W̌ ′

n−1 atr = Ř(s) (25)

2. CalculateȞb
n from 3

d⊥Ȟ
b
n = ∂u#⊥d⊥Ȟ

B
n (26)

3. Calculate the harmonic potentiaľHΦ
n by solving the

2-dimensional Laplace equation

δ⊥d⊥Ȟ
Φ
n = 0 (27)

subject toȞΦ
n = −Ř′(s)1

r
∂θX̌n−1 atr = Ř(s)

4. CalculateȞϕ
n from

d⊥Ȟ
ϕ
n = #⊥d⊥Ȟ

Φ
n (28)

5. Calculate the potentialWn by solving the 2-
dimensional Poisson equation

δ⊥d⊥W̌n = W̌ ′′
n−2 + 2∂uW̌ ′

n−1

− ∂uȞ
Φ
n − ∂uȞ

B
n − Ȟ

B′
n−1 (29)

whereW̌n vanishes atr = Ř(s).
6. Calculate the potentialX̌n by solving the 2-

dimensional Poisson equation

δ⊥d⊥X̌n = X̌ ′′
n−2+2∂uX̌ ′

n−1−Ȟ
b
n−∂uȞ

ϕ
n−Ȟ

ϕ′
n−1

(30)
with ∂rX̌n = 0 at r = Ř(s)

2Throughout this section, we are dealing with thetransverse Laplacian
δ⊥d⊥. When considering the boundary conditions,s can thus be treated
as a parameter.

3As ȞB
n is harmonic, the converse of Poincaré’s Lemma guarantees

that a solution exists to (26).̌Hb
n is thus defined up to arbitrary functions

of s andu. These are subsequently constrained to zero by the boundary
condition onX̂n. By an analogous argument, a unique value forHϕ can
be obtained fromHΦ using (28).



EXAMPLE

The method can be used to replicate and extend the
longitudinal impedance4 calculation in [2] for a harmonic
Fourier component of a transverse delta-function beam off-
set from the central axis. In our notation, the source term
and impedance formula are

ρω(r, θ, u) = λωeiωu 1

r
δ(r − r0)δ(θ) (31)

Z‖(ω, r, θ, u) = −Z0
ε0

λω

∫ ∞

−∞

e−iωuΦdζ (32)

= −Z0
ε0

λω

1

ǫ

∫ ∞

−∞

e−iωuΦ̌ds (33)

whereλω is the linear charge density,Z0 is the impedance
of free space andΦ is given by (12). First,W̌ 0 is obtained
by solvingδ⊥d⊥W̌ 0 = −

i
ω
ρω(r, θ, u) subject to Dirichlet

boundary condition atr = Ř(s). The solution is

W̌ 0 = −
i

ω
p(u)

{

ln

(

r2r2
0

Ř(s)
2 + Ř(s)

2
− 2rr0 cos θ

)

− ln
(

r2 + r2
0 − 2rr0 cos θ

)

}

(34)

wherep(u) := λωeiωu

4πε0

. Furthermore,

W̌ ′
0 = −

2i

ω
p(u)

Ř′(s)

Ř(s)

{

1 + 2

∞
∑

m=1

Υm(r, θ, s)

}

(35)

whereΥm(r, θ, s) :=
(

r0r

Ř(s)2

)m

cosmθ. Evaluating the

potentials according to the procedure in the previous sec-
tion givesȞB

1 = W ′
0, ȞΦ

1 = Ȟ
ϕ
1 = 0 and

Ȟ
b
1 = 4p(u)

Ř′(s)

Ř(s)

∞
∑

m=1

(

r0r

Ř(s)2

)m

sinmθ (36)

W̌ 1 =
p(u)

2

Ř′(s)

Ř(s)

(

Ř(s)2 − r2
)

[

1 +

∞
∑

m=1

2Υm(r, θ, s)

1 + m

]

(37)

X̌1 = p(u)
Ř′(s)

Ř(s)

∞
∑

m=1

1

1 + m

(

r0r

Ř(s)2

)m

×

(

r2
−

m + 2

m
Ř(s)2

)

sin mθ (38)

Ȟ
B
2 = p(u)Ř′(s)2

[

1 +

∞
∑

m=1

2Υm(r, θ, s)

1 + m

]

(39)

Ȟ
Φ
2 = 2p(u)Ř′(s)2

∞
∑

m=1

Υm(r, θ, s)

1 + m
(40)

As can be seen from the equation forΦ in (12), Ȟb
2,

Ȟ
ϕ
2 , W̌ 2 andX̌2 are not required in order to evaluate the

4Transverse impedance can be obtained from the Panofsky-Wenzel re-
lation [5].

impedance to second order. The longitudinal electric field
at this approximation is

Φ̌ = p(u)

{

2ǫ
Ř′(s)

Ř(s)

[

1 + 2

∞
∑

m=1

Υm(r, θ, s)

]

+iωǫ2

[(

Ř′(s)

Ř(s)

(

r2
− Ř(s)2

)

[

1+
∞
∑

m=1

2Υm(r, θ, s)

1 + m

])′

+ Ř′(s)2

(

1 + 4

∞
∑

m=1

Υm(r, θ, s)

1 + m

)]}

(41)

The longitudinal impedance follows from (33). If the
waveguide aproaches constant radiiR1 ass → −∞ and
R2 ass → ∞, thenR′(s) = 0 at s = ±∞ and the second
line of (41) will not contribute to the integral. Thus, to this
approximation,

Z‖ = Z0
ε0

4πλω

{

2 ln
R1

R2
− iωǫ

∫ ∞

−∞

Ř′(s)2ds

+

∞
∑

m=1

(

Υm

∣

∣

∣

R(s)=R2

R(s)=R1

−
4iωǫ

1 + m

∫ ∞

−∞

ΥmŘ′(s)2ds

)

}

(42)

After changing variable froms to ζ and truncating the se-
ries atm = 1, the second-order impedance (42) is identical
to the tapered cylinder result in [2]. EvaluatinǧW 2 and
X̌2 and repeating the procedure of the previous section for
n = 3, 4, . . . yields higher order correction terms. The
third order correction turns out to be zero for an asymptot-
ically cylindrical pipe. The fourth order correction is

Z‖4
=

Z0ε0

4πλω

iωǫ3
∫ ∞

−∞

(Λ1Ř
′(s)4 + Λ2Ř

′′(s)2Ř(s)2)ds

(43)
where

Λ1 =
5

24
+

∞
∑

m=1

Υmκ1m

3

(

2m2 + 6m + 1

− ω2(4m − 3)κ2mŘ(s)2
)

Λ2 =
3

24
−

ω2

12
Ř(s)2 +

∞
∑

m=1

Υmκ1m

(

1 − ω2κ2mŘ(s)2
)

κ1m =
2

m(m + 1)(m + 2)
, κ2m =

3m2 + 8m + 6

m(m + 1)2(m + 3)

while the fifth order contribution is zero.
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