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Abstract

We complement the concept of the invariant spin field in storage rings by defining
the invariant polarisation—tensor field for spin-1 particles and we suggest how to calcu-
late it by stroboscopic averaging or directly from the invariant spin field. The invariant
polarisation—tensor field and the invariant spin field are used to construct equilibrium
spin density—matrix fields, and thereby offer a clean framework for describing equilib-
rium spin-1 ensembles in storage rings. We also introduce a formalism for describing
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1 Introduction

This is the first of two papers in which we explore the concept of the invariant polarisation—
tensor field for spin-1 particles in storage rings. This paper deals with the mathematical
foundations. The second paper will present numerical results for a simple but important
model.

Spin motion in electric and magnetic fields is governed by the T-BMT equation [1]. This
describes the rate of precession of the rest—frame, pure—state, spin expectation value S (“the
spin”) of a particle and in general, the independent variable is the time. In circular particle
accelerators and storage rings the electric and magnetic guide fields are fixed in space so
that it is more convenient to take the distance around the ring as the independent variable
[2]. Then, at the position s along the design orbit and the point u in the 6-dimensional
phase space, we write the T-BMT equation as dS/ds = Q(u;s) x S where the vector
Q(u; s) describing the precession axis and the rate of precession, depends on the electric and
magnetic fields in the laboratory, and on the reference energy of the ring. The motion of a
particle is governed by the Lorentz force [1]. Thus both the motion of the particle and the
motion of the spin expectation value can be treated classically. Nevertheless, as we shall see,
for some aspects of spin motion we still need to look at the quantum mechanics. For this we
exploit the spin density matrix.

Earlier works have emphasised the utility of the invariant spin field (ISF) for describing
equilibrium spin distributions for beams of spin-1/2 fermions and have shown how the ampli-
tude dependent spin tune (ADST) can be exploited [3, 4, 5, 6, 7]. In this paper we embrace
spin-1 particles too by introducing the concept of the invariant field of the Cartesian polari-
sation tensor, which we call the “invariant tensor field” (ITF). Then we show how to define
equilibrium density-matrix fields (EDMF) in terms of the ISF and ITF and explain how
they can be diagonalised by rotations of the coordinate system when a certain ansatz for the
ITF is valid. We continue our discussion by giving examples of ensembles with and without
EDMEF’s. Following this, we address the matter of adiabatic invariants and mention other
representations for the spin-1 density matrix. The paper is rounded off by extending earlier
work on the effect of noise and damping on the evolution of the so—called vector—polarisation
density to include their effect on the tensor—polarisation density.

We begin by reviewing the concept of the ISF for spin-1/2 fermions.

2 Equilibrium spin distributions for spin-1/2 fermions

The properties of a mixed spin state for spin-1/2 fermions are completely defined by the
2 x 2 density matrix p [8]. The density matrix is Hermitian and its trace is constrained to a
definite value (in fact unity) and it is therefore defined by just three real parameters which
can be chosen as the three components of the vector polarisation P. Then we write

1 .
p={I+P-5}, (2.1)

where the ¢ is the matrix—valued 3-vector formed from the Pauli matrices
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representing the normalised spin operators §; (i = 1,2,3) and I is the unit matrix. The
labels 1, 2 and 3 are chosen to be consistent with those in [6, 9] and refer to the axes of a
right-handed Frenet—Serret coordinate system attached to the design orbit whereby in the
arcs of a flat ring, axis 2 is vertical, axis 1 is radial and axis 3 is longitudinal. For spin-1/2
particles we normalise the length of S to unity. The polarisation vector is the mixed-state
expectation value of the normalised spin operator and it can be written as P = Tr(pd).
Its components are P; = (§;) where the brackets () signal taking the expectation value. In
accelerator physics, we define a density matrix for each point v and s. Then at v and s
we write the density matrix in terms of the local vector polarisation P (u;s) [10, 11, 7] as
p= %{I+I3ioc(u; s)-&}. In general one should describe the system by a combined spin—orbit
density matrix and the corresponding Wigner function as in [10] but in Sections 2 and 3, the
orbital motion is defined by a Hamiltonian so that the density in phase space is conserved
along a trajectory. This allows us to focus our attention on the spin density matrix. The
degree of polarisation at a point in phase space, P, = |]310C|, is at most unity. Of course,
since the density of particles in phase space is finite, the notion of a mixed spin state at
each position (u, s) is an idealisation, but this and other idealisations in this paper will not
detract from the value of the basic concepts presented. In Section 4 we show how to proceed
when the phase space density is not preserved along a trajectory.

2.1 The invariant spin field

Since the T-BMT equation is linear in S and since the particles at (u, s) all see the same
Q(u; s), ﬁoc(u(s); s) obeys the T-BMT equation along trajectories. Of course, the same
result emerges by exploiting the equation of motion for p [12, Section 1-8¢| [10]. Furthermore,
P, is constant along a trajectory. For a storage ring at fixed energy, Q is 1-turn periodic
in s at a fixed position in phase space u so that Q(u;s) = Q(u;s + C) where C is the
circumference. This opens the possibility of a configuration for the polarisation that is the
same from turn to turn in the sense that ]310C(u; s) is 1-turn periodic in s for fixed wu, i.e.,
ﬁoc(u; s+C) = ]310C(u; s). For reasons that will become clear we denote such a By by ﬁeq.
Since ﬁeq also obeys the T-BMT equation we then have

Po(M(u; s+ C,5); s+ C) = Pog(M(u; s + C, 5); 5) = R(us; s + C, 5) Pog (u; 5) (2.3)

where M (u; s+ C,s) is the new position in phase space after one turn starting at « and s,

R(u;s + C,s) is the corresponding 3 x 3 spin transfer matrix representing the solution to

the T-BMT equation for one turn from s to s + C' and where here, P, is represented by a

column matrix of its components. By writing the T-BMT equation in matrix form we have
d

%R(u(s); S,80) = Q(u(s), s)R(u(s); s, so) , (2.4)

where



The relations (2.3) motivate the introduction of a vector field n(u;s) of fixed, and in
particular, unit length, obeying similar constraints, namely

n(M(u;s+C,s);s+C) =n(M(u; s + C,s);s) = R(u; s + C, s)n(u; s) . (2.6)

where 7 is represented by a column matrix of its components. Where appropriate, a similar
convention will be used in the rest of this paper. When it exists, the field n is simply a
3—vector function of u and s obeying the T-BMT equation and the periodicity conditions
as in (2.6). No reference to real particles and their spin states is required. Since the vector
field 7 (u; s) is invariant from turn to turn and independent of the real state of a beam it is
called the invariant spin field (ISF). The ISF can be used to define the amplitude dependent
spin tune (ADST) and together they provide a most elegant way to systematise spin motion
in storage rings and circular accelerators [3, 4, 5, 6, 7]. Note that if all parameters of the
system, such as the energy, are fixed, the scalar product Iy, = S .7 is invariant along a
trajectory, since both vectors obey the T-BMT equation. Thus the motion of S is simply a
precession around the local n.

On the closed, i.e., periodic, orbit, u = 0 and we denote the vector n on the closed orbit
by n9(s) = 1(0; s). The vector ng(s) is 1-turn periodic and is given by the real, unit-length
eigenvector of R(0;s+ C,s).

For the remainder of the paper we assume that the orbital motion is integrable to a
good approximation so that u can be parametrised in terms of three pairs of action—angle
variables (J;, ¢;, i = 1,2,3) which we abbreviate by (.J,¢). We will use the symbols u and
(J, ¢) interchangeably. The actions J are constants of motion. Thus the orbital phase space
is partitioned into disjoint tori, each of which is characterised by a unique set J. We also
assume that the orbital motion is nonresonant so that, in time, a trajectory could cover its
torus. Then from (2.3) P,y must have the same value at all points ¢ on a torus but can
depend on the .J. Furthermore we will only consider ISF’s which are continuous in ¢ and
we avoid spin-orbit resonances [7]. Then apart from the sign, n(.J, ¢; s) is a unique function
of ¢ and s, 2r—periodic in ¢ [7]. So we may write ﬁeq(J, ¢;5) = Pog(J) 1(J, ¢; s), bearing in
mind that || = 1. The requirement that 7 be continuous reflects our expectation that the
polarisation in a real ring varies continuously in ¢ . If we also require that the particles on
a torus are distributed uniformly in ¢, we find that the polarisation for the torus, defined as
the average Peq(J)/(27)? 027r n(J, ¢; s)d¢, is invariant from turn to turn, i.e., in equilibrium.
Examples in which the polarisation is not in equilibrium are presented in [3, 9].

We close this section by listing key aspects of the ISF and the ADST.

1. For a turn—to—turn invariant particle distribution in phase space, a distribution of
spins in which each is initially aligned parallel to the ISF at its position in phase space,
remains invariant (in equilibrium) from turn to turn, and the ISF gives the direction
of the equilibrium polarisation ﬁeq at each (u,s).

2. For integrable orbital motion and away from orbital resonances and spin—orbit reso-
nances [7, 14] the ISF determines both the maximum attainable time averaged po-

!However, an infinite number of totally discontinuous ISF’s can easily be envisaged through the so—called
“filling—up method” [13].



larisation and the maximum equilibrium polarisation P, = |(n(J, ¢;s))s| on a phase
space torus at each s, where the brackets (), denote the average over the orbital phases.

3. As shown in [15], under appropriate conditions Iy, is an adiabatic invariant, i.e., it
does not change as parameters such as J or the reference energy are slowly varied. It
is pointed out there, that this result does not rely on defining a spin Hamiltonian for
the system but emerges from the T-BMT equation and the properties of 7. The proof
is therefore independent of whether it deals with fermions or bosons. We return to this
later.

4. The ISF provides the main axis for orthonormal coordinate systems constructed at each
point in phase space for defining the ADST. This, in turn, is used to define the concept
of spin—orbit resonance. Away from orbital resonance and spin—orbit resonance, n(u; s)
is unique up to a sign [7, 14].

5. On the closed orbit, the ADST reduces to the number of precessions of a spin, per
turn, around ng. We denote this spin tune by 4. Its fractional part can be extracted
from the complex eigenvalues e*270 of R(ﬁ; s+ C,s). For a perfectly aligned flat ring
with no solenoids, 1y = a7, where a is the gyromagnetic anomaly and y, is the Lorentz
factor for the beam energy.

These and other matters are explained and illustrated in great detail in the sources cited
above. In order to limit this paper to a reasonable length we will assume that the reader is
familiar with that material.

The most general, model-independent way, to construct the ISF is by so—called strobo-
scopic averaging [3, 5, 6, 13]. This just requires a spin-orbit tracking code such as SPRINT [6]
which delivers 3 x 3 spin transport matrices along particle orbits. As explained in [3, 5, 6, 13],
the ISF, ni(ug; So), at the starting positions ug and s = sy can be found in terms of multi—turn
spin transfer matrices by taking the average

—

() (uo; 50) =

N
ﬁ I; R(u(so — kC): s0, 50 — kC))ito(s0) , (2.7)
for very large N and normalising this to unity: 7(ug;sg) = (f}N(uo; 30)/|(f>N(u0; So)]. In
this expression we have used notation similar to that in eqn. 22 in [3] and chosen 7y as the
“seed” spin field, although more general choices could be used [13]. If the orbital motion
is integrable and nonresonant, the vector n need only be calculated by this means at one
position (uyg, o). After that, i can be found all over the corresponding torus by propagating
this initial n along the trajectory. Thus for integrable, nonresonant orbital motion, there
is usually no need to execute stroboscopic averages on a grid of pre—chosen positions ¢ on
a torus since the approach just suggested suffices for obtaining the significant information,
namely averages.
Typical plots of P, , the ADST or the components of the ISF, can be found in [3, 5, 6,
15, 16, 9] and we give examples in Part II. For rational orbital tunes, ISF’s can always be
extracted trivially as the normalised real eigenvectors of multi—turn spin maps [9]. But for

other cases we know of no analytical proof that the ISF always exists and indeed we know of



examples for irrational tunes, off orbital resonance, where there is no numerical convergence
for the stroboscopic averages, implying that the ISF perhaps does not exist in those cases.
Nevertheless, in most cases of interest we have found ISF’s via stroboscopic averaging. For
detailed discussions on convergence of stroboscopic averages, see [13, 3, 5.

2.2 The equilibrium density—matrix field for spin-1/2 particles

The existence of a 1-turn periodic ﬁeq and the corresponding ISF implies the existence of
an equilibrium density-matrix field (EDMF), p®, obeying the periodicity condition
P4 (u; s + C) = p*Y(u; s) and which we can write in the form:

1
Py (1 858) = S{I + Peg(J) 2(J, 63 5) - 6}, (2.8)

T2
in an obvious notation. Different ensembles of spins at a (u, s) with the same f’eq cannot be
distinguished by measurements from a mixture of spins in eigenstates of the operator n - &
with that P.,. The corresponding density matrix at each (u,s) is diagonal in a coordinate
system in which the components of 1 are (0, 1, 0).

3 Equilibrium spin distributions for spin-1 particles

Spin—1 particles such as deuterons have three eigenvalues, namely +1,0, —1, for the projec-
tion of the normalised spin operator § onto a chosen quantisation axis, and a 3 x 3 density
matrix. Since it is Hermitian and its trace is constrained to a definite value, this density
matrix can be completely specified in terms of eight real parameters. Three of these can be
the components of vector polarisation P analogous to those for spin-1/2 fermions and the
other five are the so—called tensor polarisations. Various representations of the latter are in
use. For us, a particularly useful parametrisation for the density matrix p is that given in [8,
Section 3.1.12] in terms of a rank-2, 3 x 3, real, symmetric, traceless, Cartesian tensor T as:

1 3o o 3 N~~~ o~
p:§{f—|—§P'J+ §;ﬂj(‘sidj +dei)} : (3.1)
where the three matrices J
1 0 —: O 10 0 1 010
J=—01| 1 0 —i Jo=10 0 0 Jg3=—=| 1 0 1 , (3.2)
V2 0 2 O 0 0 —1 V2 010

representing the normalised spin operators §; (i = 1,2,3), are the analogues for spin-1 of
the Pauli matrices and where J is the corresponding matrix—valued 3-vector. The tensor
T has just five independent components and is irreducible in that it contains no non—zero
tensors of lower rank [17, 18]. The tracelessness of the tensor and the matrices J ensures
that Tr(p) = 1 as required. The matrices J are cyclically permuted with respect to the
corresponding matrices in [8] because of the labelling of the axes explained in Section 2. See
the Appendix for a way to derive (3.1).



The vector polarisation, with its components P; = (§;), is now P = Tr(pﬁ) and again,
P = |P| is at most unity. However, the components of 7" which are also needed for the spin-1
density matrix, depend of quadratic combinations of spin operators. In particular,

1 /3 (.. R 4

where the Kronecker delta has been used [8]. This can be seen by computing the (;5;) using
Tr(pJi3;)- The degree of tensor polarisation T = /37, . T7 = VIr(TTT) = \/Tr(T?) is at
most unity [8].

In contrast to the case of spin-1/2 particles, for spin-1 particles, there are pure states
for which |S] is zero. In that case |S| cannot be normalised to unity [19]. If |S| is zero Iy,
vanishes and it is automatically adiabatically invariant since |§ | is invariant under rotations.

For the other pure states, |§| can be normalised to unity but we have no need to do this.
The overall degree of polarisation for spin-1 particles is 2P? 4+ T* [8, egs. 3.1.55, 3.1.65]. So
an ensemble is unpolarised only when both P and ¥ are zero. In that case p = %I so that
the probabilities for the three substates are equal at 1/3.

3.1 The invariant tensor field

Given the existence of ISF’s in most cases of interest, it is natural to ask if invariant ten-
sor fields (ITF) can exist. We now examine this possibility by defining the ITF and then
suggesting how to construct it by stroboscopic averaging and in terms of the ISF.

For this we use the analogue for T" of solutions of the T-BMT equation for spin. In
particular, if an initial spin, gi, is transformed to a final spin, gf, by a spin transfer matrix
R according to the relation

S'=R S, (3.4)
then the components of 7" are transformed according to the rule [17]
" =RTR". (3.5)

Of course, P' = R P!, Equation (3.5) conserves the trace and the symmetry of the tensor as
well as €. Moreover,

dT::mgﬂzQT—TQ\mm ar

- - QP. 3.6
ds ds ( )

We emphasise the fact, obvious from (3.4) and (3.5), that as soon as the matrix R for rotating
spins in known, the transformation for 1" follows trivially.

We now define the ITF T, in analogy with the definition for the ISF, by the periodicity
condition
THM(u;s+C,5);5+C) =T (M(u; s+ C, s);8) = R(u; s + C, 5) T (u; )R (u; 5 + C, 5)
(3.7)



with \/T'r(T")? = 1. This normalisation is preserved along a trajectory. Just as with the ISF,
when it exists, the ITF is simply a tensor function of u and s obeying (3.5) and the periodicity
conditions as in (3.7). No reference to real particles and their spin states is required. Intuition
suggests that the ITF is unique up to a sign away from orbital resonances and spin-orbit
resonances. We also expect that the I'TF can be constructed using stroboscopic averaging in
analogy with the ISF:

N
1
(g (o 0) = = > " R(u(so — kC); 50, 50 — kC) T(s0) R (u(s0 — kC); 50, 50 — kC)
k=0

(3.8)

where N is very large and T'(sp) is a fixed 3 x 3 symmetric matrix with zero trace. The sym-
metry and tracelessness ensure that the 3 x 3 matrix (g) , (uo; so) is traceless and symmetric.

The ITF is obtained as T"(uo; s0) = () x/+/Tr((9)%)-

Just as with 7(ug; s¢), once T"(uo; $9) is known, and if the orbital motion is integrable
and non-resonant, one simply propagates it forward using (3.5) to obtain 7 all over the
corresponding torus.

Given the simplicity of the form (3.5) it is also tempting to try to express the ITF in
terms of the ISF, and the form

3 1
T =+ 3 {fmT — 51} : (3.9)

suggests itself. The term with the 3 X 3 unit matrix ensures that the tensor is traceless

2
orthogonal, it is trivial that this ansatz satisfies (3.5). Note that the required periodicity
conditions (3.7) are fulfilled owing to the analogous periodicity of nn. The ansatz (3.9) clearly
satisfies all requirements for T". So, if T" is unique, any other ansatz must be give the same
result up to a sign. Alternatively, if this ansatz is unique, then T' is unique up to a sign
when 7 is unique.

If the stroboscopic average in (3.8) is calculated for many different, non—zero, traceless,
symmetric matrices T'(sp) in the simple, non—trivial but important model of Part II, then,
away from orbital resonances and spin—orbit resonances, the same normalised stroboscopic
average is obtained (up to a sign) and it is a single valued function of the orbital phases.
This suggests, but does not prove, that the I'TF is indeed unique up to a sign. One also finds
that the normalised stroboscopic average agrees with the ansatz of (3.9).

If T is unique, it can be obtained using (3.9) as soon as the ISF is known, without further
stroboscopic averaging. Then, for example, in a parameter regime where the so—called single
resonance model [9, 20] provides an approximation to the spin dynamics, one not only has
an approximate analytical formula for the ISF, but also for the ITF.

Later we shall see that the ansatz (3.9) is supported by another consideration. So we
will adopt this form in the remainder of the paper. Moreover it will suffice to choose the +

sign. Then, for example, T3, = \/g(% cos? 0 — ) where 6 = cos™!(n,).

and the factor \/g ensures the chosen normalisation. Since a spin transfer matrix R is
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3.2 The EDMTF for spin-1 particles

The kind of argument that leads to the concept of the equilibrium polarisation ﬁeq(J, o;8) =
Po n(J, ¢;s) on a torus, also leads to the concept of the equilibrium polarisation tensor
Too(J, 03 8) = Teg(J) T'(J, ¢; s) where Teq(J) is the degree of equilibrium tensor polarisation.
If the particles are distributed uniformly in ¢ on the torus J and T'(J, ¢;s) = Teq(J, @5 9)
at some s, the polarisation tensor for the torus, defined as Toq(J)/(27)? OZW TYJ, ¢; s)do, is
invariant from turn to turn.

With the ITF we can now construct an EDMF for spin-1 particles:

e 1 3 N R ~~ ~ ~
PPy ) (] #35) = 3{1+§Peq(J)n-d \[ ZTI 33 JJ)}. (3.10)

So on a torus, the EDMF is defined by two free parameters, Poy(J) and Teq(J). As required,
Tr(p*) = 1 for any pure or mixed state. However, for a pure state we require that Tr(p?) =
1. Then in a pure state, from (3.10) and (3.9) and after some matrix algebra, we find the
constraint

1= § {3 * ipeq + 6194‘1} = 1= Zpeq + r’;:eq‘ (3'11)

which is clearly independent of the precise values of the components of 7 and 7". In this
context it should be emphasised that the ISEF and the ITF just encode the relative sizes of
their components and that to specify actual invariant spin states on tori we need Pey(J)
and Teq(J) too. Relation (3.11) corresponds to the fact that pure states are fully polarised
according to the definition in [8, eqgs. 3.1.55, 3.1.65].

As we are reminded in [8], although the density matrix for spin-1/2 particles can always
be diagonalised by a rotation of the coordinate system (see Section 2), this is not always
the case for spin-1 particles. However, it is always possible for the EDMF of spin-1 particles
when the ansatz in (3.9) is valid since the ITF, and thus the EDMF, will be diagonal if n
has components (0, 1, 0) and this can always be achieved at each (u,s) by rotating the
coordinate frame to make n vertical in that frame. According to the definition in [8], the
ISF therefore defines the quantisation axes for the EDMF on a torus for spin-1 particles too.
In particular, different ensembles of spins at a (u,s) with the same ﬁeq and T, cannot be
distinguished by measurements from a mixture of spins in eigenstates of the operator 7 - 3
with those ﬁeq and Ty. Of course, since all spin transformations here are rotations according
to the matrices R, it is clear that if p®*d can be diagonalised at one point on a trajectory, it
can be diagonalised by a rotation everywhere else along the trajectory.

We now illustrate these concepts with simple examples in which we choose some special
configurations of spins and then check to see if they can be described by EDMF’s

3.2.1 Example 1

Consider the case where all particles at some arbitrary (J, ¢g, so) are in the eigenstate of 7+ J
whose eigenvalue is +1 so that B,. = 1. We write this eigenstate as |[n*). The corresponding
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3-spinor is
1+n2

e’ Vo (3.12)
1—n9o ni+ing
2 ni—ins

where ¢ is an arbitrary phase. Then, by evaluating the expectation values in (3.3) for |n™),

we find for the local polarisation tensor:

Tioe = % ; {fmT — %1} : (3.13)
So Thoc(J, do; s0) is proportional to the TU(J, ¢g; so) of (3.9). The proportionality factor is
1/2 and the same value will be obtained at any other (.J, @o, o). Also, it is preserved as the
ensemble moves over the torus. So there is an EDMF. In particular we have Teq(J, ¢o; S0) =
Toc(J, do; $0) = TH(J, do; $0) /2 and we define Toq(J, ¢; 5) = Teq(J) TH(J, ¢; 5) where Teq(J) =
1/2. With P = Peq = 1, this value of Tq(.J) satisfies (3.11), as expected for a pure state.
We can now write

e I 1 -~ . 1 (Jid; + J;3:)
P a — {g + §Peqn -J T+ ‘qu ;(TLZTL] — 5521)#
I 1. = 1 T (3 + J0)
1,J

where we have suppressed the dependences on .J, ¢ and s for convenience. It is now clear
that the ansatz (3.9) is natural if (3.10) is to be able to encompass these pure states on a
torus. It is easily checked that this density matrix is idempotent as required for pure states.

Note that these states are the so—called coherent states appearing in the discussion of
the matter of defining the classicality of spin states in [21]. There, the density operator for
the pure state with a spin expectation value n of unit magnitude, is given by the projector

o I 1. - 1 L. 1o (3T +3530)
|n)(n| = {§ + §n T+ B sz:(nmj - 55@')# 5 (3.15)
With the explicit representation (3.12), the equality of the 3 x 3 matrices on each side of
(3.15) is readily confirmed.

Of course, if all particles are in the eigenstate |n~) of n - J whose eigenvalue is —1,

P., = —1. However, T, is again 1/2.

3.2.2 Example 2

~

Consider the case where all particles at some (J, @, s9) are in the eigenstate [n°) of 7 - J
whose eigenvalue is 0 so that P,. = 0. The corresponding 3-spinor is

., 1 —mn3 \1/
e’ — vang (3.16)

2 ni—ing
__nitwng
ni—ing
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where ¢ is an arbitrary phase. Then, by evaluating the expectation values in (3.3) for |n°),
we find for the local polarisation tensor:

1
Toe = —\/g {fmT — g1} . (3.17)

So the ansatz (3.9) for 17 appears again. Thus there is again an EDMF and in this case
Teq(J) = —1. Since Py = 0, (3.11) is satisfied as expected for a pure state.

3.2.3 Example 3

Although ensembles in the pure states [n™) or [n~) can be described by EDMF’s, this is
not necessarily true for ensembles in coherent superpositions of these states. For example,
consider the case where all particles at some (.J, ¢y, sg) are in the pure state |[NT) = {|n™) +
|n7)}/v/2 or where all particles are in the pure state [N~) = {|n*)—|n")}/v/2. In both cases
P, =0 and T = 1 so that the relation 1 = %PZ + %2 for pure states is fulfilled. However,
neither of the local polarisation tensors, T," for |[N*) and T}, for [N™), is proportional to
the T' calculated using (3.9). So ensembles in one or the other of these pure states are not
described by an EDMF.

Alternatively we may say that the states |[N*) cannot be represented by a projector of
the form (3.15). This is in contrast to the case of spin-1/2 particles. There, all pure states
can be represented in the corresponding form namely, [n)(n| = 1{I 4+ 7 -G}, since every pure
state is an eigenstate of n - & for some unit vector n.

3.2.4 Example 4

We now turn to mixed states. Consider the mixed state at some arbitrary (J, ¢g, so) com-
prised of equal proportions of the pure states |[NT) and |N~). The density matrix is the

average of the density matrices for the two pure states. Then Tj,. = %Tlic + %Tlgc and we
find
1 /3 (.. 1
T’loc = 5 5 {TLTLT — g[} y (318)

so that there is an EDMF and eq(J) = 1/2. Since Poq = 0, 2P2 + T2, < 1 as expected in
a mixed state.

This example illustrates nicely how an EDMF can exist for a mixture of states which
individually do not have EDMF’s. There is an unlimited number of such examples.

3.2.5 Example 5

Consider now the mixed state at some arbitrary (J, ¢, so) in which the fraction p, is in the
state |[n™) and the remainder is in the state |n~). Then

1 /3 1
Tioc = —\ﬁ ant — =1 (3.19)
2V 2 3
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and there is an EDMF with P = 2p; — 1 and Teq(J) = 1/2. With p; = 1/2, the EDMF
is the same as that in Example 4 so that the two ensembles cannot be distinguished by
measurements.

3.2.6 Example 6

As a final example, consider the mixed state at some arbitrary (J, ¢y, s9) comprising equal
proportions of the pure states [n*), |n™) and |n°). As we have seen, each of these pure states
has a Tioc(J, Po; so) proportional to the TU(.J, ¢o; so) of (3.9) and thus an EDMF. The Teq(J)
is the average of those for the three pure states and is zero. Since P = 0 as well, this
ensemble is fully unpolarised.

3.3 Adiabatic invariants based on the ISF and ITF

With 7, we have the adiabatic invariant Iy,. Then it is clear from (3.9) that
_ 3] L g0 Tl & GGl

is the corresponding adiabatic invariant associated with 17". For a 3 x 3 tensor 1" satisfying
(3.5), Iy = Tr(T T") is invariant along a trajectory if the parameters of the system are fixed.
We comment on the adiabatic invariance of this in Part II.

3.4 Other parametrisations

Once the Cartesian version of the ITEF has been established, the five components of the
corresponding invariant spherical polarisation—tensor field follow trivially using the relations
in [8, egs. 3.1.66 - 67]. See [22, 23] too. Thus it is simple to find the invariant spherical
polarisation—tensor field for the single resonance model. In analogy with the expansion for
spin-1/2 particles in (2.1), the density matrix for spin-1 particles can also be expanded in
terms of the generators of the group SU(3) and the so—called coherence (or Bloch) vector
[24, 25]. Other matrix bases and the corresponding Bloch vectors can be used too: see
[26] and also the Appendix. However, the expansion in terms of the polarisation and the
Cartesian tensor seems to be the most convenient for calculating and discussing the EDMF.

Not all Bloch vectors inside their so—called Bloch hyper—spheres lead to admissible density
matrices [26]. So perhaps some ITF’s constructed by the purely numerical technique of
stroboscopic averaging could also lead to inadmissable density matrices. However, that will
not be the case for mixed or pure states constructed with the ansatz (3.9).

4 The Bloch equations

In the previous sections, the orbital motion is deterministic and governed just by a Hamil-
tonian so that the density in phase space is conserved along a trajectory and one can work
with spin density matrices instead of spin—orbit density matrices. However, if the particles
are subject to noise and damping, the evolution of the density of particles in phase space is
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more complicated and spin—orbit density matrices and their Wigner functions come into play
[10, 27]. Alternatively, we can work with the classical phase space density and the so—called
polarisation density as in [11, 28]. The effect of noise and damping on the polarisation tensor
can be studied in an analogous way. So we round off this paper on the polarisation tensor
by showing how to do this. In order to avoid undue repetition we assume that the reader
is familiar with the concepts in [11, 28]. The final result of this section is perhaps no more
than a curiosity but we include this material for completeness.

Charged particles suffering deflection in magnetic fields emit synchrotron radiation and,
as is well known, this has important consequences for the properties of electron beams in
storage rings. For example, the stochastic nature of photon emission together with damping
mechanisms cause the phase space density Wop(u;s) to reach equilibrium, ie., to become
1-turn periodic: W, (u; s+ C) = W (u; s) [29]. It often suffices to approximate the effects
of the photon emission as a Gaussian white noise process so that if interparticle forces can
be ignored, the evolution of W, can be described in terms of the Fokker—Planck equation
[29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39]. For our purposes it is sufficient to write the
Fokker—Planck equation somewhat symbolically as in [11] in the form

aVVorb
88 = LFp,orb Worb ) (4].)
where the orbital Fokker-Planck operator can be decomposed into the form:
Lip g, = Lham + Lo+ L1+ Lo (4.2)

whereby Ly, L£;, Lo are terms due to damping and noise containing respectively zeroth,
first and second order derivatives w.r.t. the components of u. The term L, is the Poisson
bracket { Horb, Worb} of Worp with the orbital Hamiltonian. Detailed forms for the other £’s
can be found in [34, 35, 36] but are not important for the argument that follows. After
a few damping times W, approaches the periodic form. We normalise W, to unity:
[ dPu W (us s) = 1.

We have introduced the Fokker—Planck equation by mentioning synchrotron radiation but
the Fokker—Planck equation can be applied when the particles are subject to other sources
of noise and damping by adopting appropriate forms for £y, £, and L. Of course, except at
very large energies, synchrotron radiation is irrelevant for particles other than electrons or
positrons. But as in the case of synchrotron radiation, noise can lead to irreversible loss of
vector polarisation [10], and even when W, has reached periodicity. The chief mechanism is
simple: the noise causes random perturbations in the trajectories and thereby causes random
perturbations in Q) in the non—uniform fields of the quadrupoles.

Since the local vector polarisation ]310C is not a density, its evolution cannot be described
by a Fokker—Planck equation. However, as explained in [11, 28], if the noise has no di-
rect effect on spins, the vector—polarisation density P = Worbﬁloc evolves according to the
equation

oP
0s
where the Poisson bracket L., is now {Horb,ﬁ}. Thus, if £,
immediate, succinct, classical encapsulation of the way in which ﬁloc is modified both by

= L, P+QOxP. (4.3)

FP,orb

oo 18 known, we have an
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precession and by the effect of noise and damping on the mixture of spin states at each
(u,s). We call (4.3) the Bloch equation for the vector-polarisation density?. Although (4.3)
was derived with spin-1/2 fermions in mind, it applies to spin-1 particles too. The vector—
polarisation density is proportional to the density in phase space of S. To obtain ﬁmc(u; s),
(4.1) and (4.3) should be solved in parallel and then P (u;s)/Wow(u; s) should be calculated.

Although (4.3) might appear to lack transparency, it is easy to appreciate it in two
limits. For example, if £y, £; and L, vanish leaving just the Poisson bracket Lyam, (4.3)
then reduces to the T-BMT equation for P along a trajectory, just as expected when we
recall that in this case W, is preserved along the trajectory. On the other hand, if there
is no direct spin—orbit coupling in (4.3) (Q = (), the components of P reach equilibrium
forms proportional to the equilibrium form for W, so that the components of ﬁloc(u; s)
become independent of (u,s). In this case, the spins do not precess but are mixed by the
motion of the particles. It is then not too surprising that the polarisation becomes uniform.
However, in reality, Q does not vanish but instead mixes the components of the polarisation
directly. This is the route, in this picture, leading to variation of Pc(u;s) even when Wy,
has reached equilibrium. Further aspects of this formalism and the connection with the
spin—orbit density operator are discussed in [11, 28, 10].

In order to study the evolution of the Cartesian polarisation tensor we introduce the
tensor—polarisation density 7 = Wo,Tioc. Then, from the previous discussion we expect
that the Bloch-like equation for 7 is

oT ~
% - ‘CFP,orbT+ [Q, 7—] ) (4'4)

where the commutator derives from (3.6) and where the Poisson bracket Lyam is {How, 7T }-
To obtain Tjec(u; s), (4.1) and (4.4) should be solved in parallel and then 7 (u; s)/Wom(u; s)
should be calculated.

If the spin-orbit coupling terms in (4.4) were to vanish (€ = 0), the components of T
would each reach equilibrium forms proportional to the equilibrium form for W, so that
the components of Tjoc(u; s) would become independent of (u, s). However §} does not vanish
but instead mixes the components. Since, by definition, 7 is symmetric and traceless at all
(u, s), the right-hand side of (4.4) is traceless and symmetric too. Therefore (4.4) preserves
the symmetry and tracelessness of Tjo.. As a next step we must prove that (4.3) ensures that
P <1, that (4.4) ensures that the local tensor polarisation T, is at most unity and that
1PZ. + T2, < 1. These matters will be the subjects of a separate work. Other formalisms
[10, 34] show that in the absence of a polarising mechanism, P, tends to fall to zero in
beams of spin-1/2 particles subject to noise and damping. This will also happen in this case
for spin-1 particles and we suspect that <, will fall to zero too.

Note that the relationships between (4.1) and (4.3) and between (4.1) and (4.4) survive if
Lyp . 18 Teplaced by any physically admissible transport operator K, — which could even
contain derivatives beyond second order.

2This equation has nothing directly to do with the Bloch vectors mentioned earlier.
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5 Summary

We have proposed a definition of an invariant rank—2 Cartesian polarisation—tensor field for
spin-1 particles, and a procedure for calculating it numerically by stroboscopic averaging or
analytically once the ISF is known. The ISF and ITF provide “scaffolding” on which to
“hang” equilibrium spin distributions for spin-1 particles on a phase—space torus and the
two fields can be combined to construct equilibrium density—matrix fields which depend on
just two parameters, the degree of equilibrium vector polarisation Pey(.J) and the degree of
equilibrium tensor polarisation Te,(.J). We have also pointed out that the EDMF for spin-1
particles can always be diagonalised by a rotation of the coordinate system when the ansatz
(3.9) for the ITF is valid and we have shown with examples how that ansatz is entirely
natural. Moreover, we have identified adiabatic invariants associated with the ITF.

Finally, we have extended earlier work to include the effects of noise and damping on the
polarisation tensor and we have provided an evolution equation for the tensor polarisation
density.

In Part II of this work we present the results of calculations for a simple but important
model.
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Appendix

In this appendix we give a pedagogical demonstration of how to arrive at the representation
(3.1) for the spin-1 density matrix.

We need to write p as a linear combination of 3 x 3 matrices. There is a variety of
possibilities [24, 25, 26] but we want to use the matrices J. Since eight real parameters are
needed, an expansion of the form p =Y., ,U;J; with complex U; does not suffice. So we
try an expansion of the form

p=> UsdJi (A1)
i

with complex U;;. Then we have space for the required eight independent real parameters
but their identity is not immediately evident among the eighteen real parameters defining
the Uzg

To come further we note that Tr(J;3J;) = 0 for ¢ # j but that Tr(3%) = Tr(J3) =
Tr(J3) = 2. Then Tr(U) = 1/2 since Tr(p) = 1. Moreover, with the rule (3; $;) = Tr(pJ;J;

we find )
Uij = (5:8;) — 55@' ; (A.2)
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which we can write in matrix form as
U= (85" —=T, (A.3)

in an obvious notation. The matrix (557) transforms as a Cartesian tensor. This means
that U transforms as a Cartesian tensor too. Thus U' = R U'R" in analogy with (3.5) so
that (UT)! = R (UT)'RT.

For the next step we write U as the sum of its symmetric and antisymmetric parts:
U=t+awitht=(U+U")/2and a = (U —U")/2. Both t and a are Cartesian tensors.
Furthermore, using the Hermiticity of p it can be shown that ¢ is real and a is pure imaginary.

Equation (A.1) can now be written as

p= Z = (335 + J;3i) + a12(J132 — J2J1) + a3 (J2Js — J3J2) + ar3(J133 — J331) » (A4)

and from the commutation relations among the matrices J we obtain

Lij m ~ n~ . . o
P = Z EJ(JNJ‘ + J;3i) + ia1233 + ias 1 — iai3J2 - (A.5)
i7j
We now define a real 3—component object ¥ with elements ©) = tag, 0y = —tay3 and

U3 = itapp. Then, using the fact that a is a Cartesian tensor, we can easily show that ¢
transforms as a 3—vector. Thus (A.5) takes the form

Vij jm o~ o~ B
p=> (33 +33)+7-3. (A.6)

With the definition C' = t/2 so that Tr(C) = 1/4, we rewrite (A.6) as
p= ZQ‘;‘(&TI;‘ +3;3:) +7-3. (A7)
1]
This, it turn, can be rearranged in terms of the traceless tensor C' — %I to give

1

1 ~ ~ ~
p=gl+ > (Cy - 150u) (3idj + 3 : (A-8)
i

(S]]

i)—i-U-

)

Then by making the identifications P = Tr(pJ) = 2 and %T = C — 551 we arrive at (3.1).
The passage from (A.1) to (A.8) is a demonstration of how to usefully decompose the
tensor U into its scalar, vector and irreducible tensor parts [17]. Moreover, by explicitly
isolating the scalar term, %I, in (A.8) we obtain a transparent form for p when the three
spin substates are equally populated: P and T must vanish.
The parametrisation (A.8) contains nine real constants, but of course, only eight of them
are independent owing to the condition Tr(C') = 1/4. However, we can also begin with a
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parametrisation based on the matrices J but with just eight parameters. For this we recall
that the density matrix can be written in the form:

1
=1 A0 A9
g 3 ! k;S o ( )

where the 3 x 3 matrices O are traceless and Hermitian and Tr(OxO;) = axdg so that

together with %I they comprise an orthogonal basis. The coefficients « are real and the

components, \y = Tr(p Oy) /i, of the Bloch vector are real and mutually independent.
Then we can, for example, choose the eight assignments:

O, = % Oy = Jo O3 = J3
Oy = 1d2+J2d1 O5 = J2J3 + J3J2 O = J1J3 + Jsh
. . . 2
Or = J1d1 — IsJs Os = J2d2 — 51- (A.10)

It is simple to show that, as required, the value of (81 §; + 89 S5 + §3 §3) is 2 independently
of the coefficients A, i.e, for any mixed state. Of course, P and T are simply related to the
coefficients A. Moreover, the parametrisation (A.10) is convenient for using the equation of
motion of the density matrix as in [12, Section 1-8¢|, but with the commutation relations
for the matrices J, to demonstrate that P for spin—1 particles obeys the T-BMT equation.
That approach also leads to the equation of motion (3.6) for T
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