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Abstract. In recent years a number of solvers for the direct solution of large sparse, symmetric linear

systems of equations have been developed. These include solvers that are designed for the solution of

positive-definite systems as well as those that are principally intended for solving indefinite problems.

The available choice can make it difficult for users to know which solver is the most appropriate for

their applications. In this study, we use performance profiles as a tool for evaluating and comparing

the performance of serial sparse direct solvers on an extensive set of symmetric test problems taken

from a range of practical applications.

1 Introduction

Solving linear systems of equations lies at the heart of numerous problems in computa-

tional science and engineering. In many cases, particularly when discretizing continuous

problems, the system is large and the associated matrix A is sparse. Furthermore, for many

applications, the matrix is symmetric; sometimes, such as in finite-element applications, A

is positive definite, while in other cases, including constrained optimization and problems

involving conservation laws, it is indefinite.

A direct method for solving a sparse linear system Ax = b involves the explicit factor-

ization of the system matrix A (or, more usually, a permutation of A) into the product of

lower and upper triangular matrices L and U . In the symmetric case, for positive definite

problems U = LT (Cholesky factorization) or, more generally, U = DLT , where D is a

block diagonal matrix with 1× 1 and 2× 2 blocks. Forward elimination followed by back-

ward substitution completes the solution process for each given right-hand side b. Direct

methods are important because of their generality and robustness. Indeed, for the ‘tough’

linear systems arising from some applications, they are currently the only feasible solution

methods. In many other cases, direct methods are often the method of choice because the

difficulties involved in finding and computing a good preconditioner for an iterative method

can outweigh the cost of using a direct method. Furthermore, direct methods provide an

effective means of solving multiple systems with the same A but different right-hand sides

b because the factorization needs only to be performed once.

Since the early 1990s, many new algorithms and a number of new software packagesfor

solving sparse symmetric systems have been developed. Because a potential user may be
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bewildered by such choice, our intention to compare the serial solvers (including serial

versions of parallel solvers) on a significant set of large test examples from many different

application areas. This study is an extension of a recent comparison by Gould and Scott [4]

of sparse symmetric direct solvers in the mathematical software library HSL [8]. This earlier

study concluded that the best general-purpose HSL package for solving sparse symmetric

systems is currently MA57 [1]. Thus the only HSL direct solver included here is MA57, but

for some classes of problems, other HSL codes may be more appropriate. For full details

and results for the HSL symmetric solvers are given in [5].

The sparse solvers used in this study are listed in Table 1. The codes are discussed in

detail in the forthcoming report [6]. Some of the solvers are freely available to academics

Code Date/version Language Authors

BCSLIB-EXT 11.2001, v4.1 F77 The Boeing Company

MA57 01.2002, v1.0.0 F77/F90 I.S. Duff, HSL

MUMPS 11.2003, v4.3.2 F90 P.R. Amestoy, I.S. Duff,

J.-Y. L’Excellent, and J. Koster

Oblio 12.2003, v0.7 C++ F. Dobrian and A. Pothen

PARDISO 02.2004 F77 & C O. Schenk and K. Gärtner

SPOOLES 1999, v2.2 C C. Ashcraft and R. Grimes

SPRSBLKLLT 1997, v0.5 F77 E.G. Ng and B.W. Peyton

TAUCS 08.2003, v2.2 C S. Toledo

UMFPACK 04.2003, v4.1 C T. Davis

WSMP 2003, v1.9.8 F90 & C A. Gupta and M. Joshi, IBM

Table 1. Solvers used in our numerical experiments. A ‘&’ indicates both languages are used

in the source code; ‘F77/F90’ indicates there is a F77 version and a F90 version.

while to use others it is necessary to purchase a licence. This information is provided in

Table 2. For each code a webpage address is also given (or, if no webpage is currently

available, an email contact is provided). Note that for non academic users, the conditions

for obtaining and using a solver varies between the different packages.

Code Free to Webpage / email contact

academics

BCSLIB-EXT × www.boeing.com/phantom/BCSLIB-EXT/index.html

MA57 × www.cse.clrc.ac.uk/nag/hsl

MUMPS
√

www.enseeiht.fr/lima/apo/MUMPS/

Oblio
√

dobrian@cs.odu.edu or pothen@cs.odu.edu

PARDISO
√

www.computational.unibas.ch/cs/scicomp/software/pardiso

SPOOLES
√

www.netlib.org/linalg/spooles/spooles.2.2.html

SPRSBLKLLT
√

EGNg@lbl.gov

TAUCS
√

www.cs.tau.ac.il/∼stoledo/taucs/

UMFPACK
√

www.cise.ufl.edu/research/sparse/umfpack/

WSMP
√

www-users.cs.umn.edu/∼agupta/wsmp.html

Table 2. Academic availability of and contact details for the solvers used in our numerical

experiments.
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2 Test environment

Our aim is to test the solvers on a wide range of problems from as many different application

areas as possible. In collecting test data we imposed only two conditions:

– The matrix must be square and of order greater than 10, 000.

– The data must be available to other users.

The first condition was imposed because our interest is in large problems. The second

condition was to ensure that our tests could be repeated by other users and, furthermore,

it enables other software developers to test their codes on the same set of examples and

thus to make comparisons with other solvers. Our test set comprises 88 positive-definite

problems and 61 numerically indefinite problems. Any matrix for which we only have the

sparsity pattern available is included in the positive-definite set and appropriate numerical

values generated. Application areas represented by our test set include linear programming,

structural engineering, computational fluid dynamics, acoustics, and financial modelling.

A full list of the test problems together with a brief description of each is given in [7]. The

problems are all available from

ftp://ftp.numerical.rl.ac.uk/pub/matrices/symmetric

In this study, performance profiles are used as a means to evaluate and compare the

performance of the solvers on our set T of test problems. Let S represent the set of solvers

that we wish to compare. Suppose that a given solver i ∈ S reports a statistic sij ≥ 0

when run on example j from the test set T , and that the smaller this statistic the better

the solver is considered to be. For example, sij might be the CPU time required to solve

problem j using solver i. For all problems j ∈ T , we want to compare the performance of

solver i with the performance of the best solver in the set S.

For j ∈ T , let ŝj = min{sij; i ∈ S}. Then for α ≥ 1 and each i ∈ S we define

k(sij, ŝj, α) =

{

1 if sij ≤ αŝj

0 otherwise.

The performance profile (see [2]) of solver i is then given by the function

pi(α) =

∑

j∈T k(sij, ŝj, α)

|T |
, α ≥ 1.

Thus pi(1) gives the fraction of the examples for which solver i is the most effective (ac-

cording to the statistic sij), pi(2) gives the fraction for which it is within a factor of 2 of

the best, and limα−→∞ pi(α) gives the fraction for which the algorithm succeeded.

In this study, the statistics used are the CPU times required to perform the different

phases of the solver, the number of nonzero entries in the matrix factor, and the total

memory used by the solver (but in this paper, limitations on space allow us only to present

CPU timings). Since some of the solvers we are examining are specifically designed for

positive-definite problems (and may be unreliable, or even fail, on indefinite ones), we

present our findings for the positive-definite and indefinite cases separately. In our tests,

default values are used for all control parameters.
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3 Preliminary results

The numerical results were obtained on a Compaq DS20 Alpha server with a pair of EV6

CPUs; in our experiments only a single processor with 3.6 GBytes of RAM was used. The

codes were compiled with full optimisation; the vendor-supplied BLAS were used. All CPU

reported times are in seconds. A CPU limit of 2 hours was imposed for each code on each

problem; any code that had not completed after this time was recorded as having failed.

The scaled residual of each computed solution was checked before and after one step of

iterative refinement; a residual after iterative refinement greater than 0.0001 causes an

error to be flagged.

3.1 Positive definite problems
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Performance Profile: 0.AFS.CPU − 88 positive−definite problems, u=default

α

fra
ct

io
n 

of
 p

ro
bl

em
s 

fo
r w

hi
ch

 s
ol

ve
r w

ith
in

 α
 o

f b
es

t

BCSLIB−EXT (1 failed)
MA57 (1 failed)
MUMPS (1 failed)
Oblio (2 failed)
PARDISO (1 failed)
SPOOLES (2 failed)
SPRSBLKLLT (1 failed)
TAUCS (2 failed)
UMFPACK (4 failed)
WSMP (1 failed)

Fig. 1. Performance profile, p(α): CPU time (seconds) for the complete solution (positive-definite problems).

The reliability of all the solvers in the positive-definite case was generally high. Only

problem audikw was not solved by any code, this example being one of the two largest—it is

of order roughly 950 thousand, and involves some 39 million nonzeros; the solvers with no

out-of-core facilities were not able to allocate sufficient memory while the CPU time limit

was exceeded for the remaining solvers. We present the performance profile for the CPU

time for the complete solution (that is, the CPU time for analysing, factorising and solving

for a single right-hand side) for the solvers in Figure 1, with the profiles for the separate

analyse, factorise, and solve times in Figures 2 to 4. We see that, with the exception of

SPOOLES and UMFPACK (which is primarily designed for unsymmetric problems), there is

little to choose between the solvers when comparing the complete solution time. Many of

the solvers use the nested dissection ordering from the METIS package [9] to obtain the



Evaluation of sparse direct solvers 7

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Performance Profile: 0.Analyse.CPU − 88 positive−definite problems, u=default

α

fra
ct

io
n 

of
 p

ro
bl

em
s 

fo
r w

hi
ch

 s
ol

ve
r w

ith
in

 α
 o

f b
es

t

BCSLIB−EXT (1 failed)
MA57 (1 failed)
MUMPS (1 failed)
Oblio (2 failed)
PARDISO (1 failed)
SPOOLES (2 failed)
SPRSBLKLLT (1 failed)
TAUCS (2 failed)
UMFPACK (4 failed)
WSMP (1 failed)

Fig. 2. Performance profile, p(α): CPU time (seconds) for analyse phase (positive-definite problems).
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Performance Profile: 0.Factorise.CPU − 88 positive−definite problems, u=default
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BCSLIB−EXT (1 failed)
MA57 (1 failed)
MUMPS (1 failed)
Oblio (2 failed)
PARDISO (1 failed)
SPOOLES (2 failed)
SPRSBLKLLT (1 failed)
TAUCS (2 failed)
UMFPACK (4 failed)
WSMP (1 failed)

Fig. 3. Performance profile, p(α): CPU time (seconds) for the factorization (positive-definite problems).
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Performance Profile: 0.Solve.CPU − 88 positive−definite problems, u=default
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BCSLIB−EXT (1 failed)
MA57 (1 failed)
MUMPS (1 failed)
Oblio (2 failed)
PARDISO (1 failed)
SPOOLES (2 failed)
SPRSBLKLLT (1 failed)
TAUCS (2 failed)
UMFPACK (4 failed)
WSMP (1 failed)

Fig. 4. Performance profile, p(α): CPU time (seconds) for the solve phase (positive-definite problems).

pivot sequence and so they record similar analyse times. The multiple minimum degree

algorithm used by SPRSBLKLLT is notably faster while WSMP computes both a minimum

local fill ordering and an ordering based on recursive bisection and selects the one that

will result in the least fill-in. This extra investment pays dividends with WSMP having the

fastest factorise times. In some applications, many solves may be required following the

factorisation. The codes BCSLIB-EXT, MA57, and PARDISO have the fastest solve times.

3.2 Indefinite problems

We now turn to the indefinite test suite. For these problems, pivoting is needed to main-

tain stability. The pivoting strategies offered by the codes are summarised in Table 3. Since

SPRSBLKLLT and the current version of TAUCS are designed only for solving definite prob-

lems, they are omitted. We have experienced problems when using SPOOLES for some

BCSLIB-EXT Numerical pivoting with 1 × 1 and 2 × 2 pivots.

MA57 Numerical pivoting with 1 × 1 and 2 × 2 pivots.

MUMPS Numerical pivoting with 1 × 1 pivots.

Oblio Numerical pivoting with 1 × 1 and 2 × 2 pivots.

PARDISO Supernode Bunch-Kaufmann.

SPOOLES Fast Bunch-Parlett.

UMFPACK Partial pivoting with preference for diagonal pivots.

WSMP No pivoting.

Table 3. Default pivoting strategies.

indefinite systems, and thus results for SPOOLES are not currently included. MUMPS uses

1 × 1 pivots chosen from the diagonal and the factorization terminates if at any stage
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no numerically stable diagonal pivot is available. Because this may mean some problems

are not solved, at the authors’ suggestion, we run both the symmetric and unsymmetric

versions of MUMPS when testing indefinite examples.

The profiles for the indefinite results are given in Figures 5 to 8. The overall reliability

of the solvers in the indefinite case was not as high as for the positive-definite one, with

all the codes failing on some of the test problems. Because it does not include pivoting,

WSMP had the highest number of failures. The majority of failures for the other codes

were due to insufficient memory or the CPU time limit being exceeded or, in the case of

symmetric MUMPS, no suitable diagonal pivots. The main exception was PARDISO, which had

the fastest factorization times, but for two problems the computed solutions were found

to be inaccurate.
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Performance Profile: 1.AFS.CPU − 61 indefinite problems, scaled, u=default
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BCSEXT−LIB (15 failed)
MA57 (10 failed)
MUMPS (14 failed)
MUMPS−unsym (7 failed)
Oblio (5 failed)
PARDISO (2 failed)
UMFPACK (2 failed)
WSMP (30 failed)

Fig. 5. Performance profile, p(α): CPU time (seconds) for the complete solution (indefinite problems).

We note that v1.0.0 of MA57 uses an AMD ordering and computing this is significantly

faster than computing the METIS ordering; this accounts for the fast MA57 analyse times.

MA57 also has the fastest solve times; the solve times for PARDISO are slower even though it

produces the sparsest factors since by default its solve phase includes one step of iterative

refinement. Overall, PARDISO was the fastest code on our set of indefinite problems.

4 General remarks

In this paper, we have introduced our study of sparse direct solvers for symmetric linear

systems and presented preliminary results. Full details of the study together with further

information on all the solvers used will be given in the forthcoming report [6]. This report

will also contain more detailed numerical results and analysis of the results; the full results

will be made available in a further report [7].
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Performance Profile: 1.Analyse.CPU − 61 indefinite problems, scaled, u=default
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BCSEXT−LIB (15 failed)
MA57 (10 failed)
MUMPS (14 failed)
MUMPS−unsym (7 failed)
Oblio (5 failed)
PARDISO (2 failed)
UMFPACK (2 failed)
WSMP (30 failed)

Fig. 6. Performance profile, p(α): CPU time (seconds) for analyse phase (indefinite problems).
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Performance Profile: 1.Factorise.CPU − 61 indefinite problems, scaled, u=default
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BCSEXT−LIB (15 failed)
MA57 (10 failed)
MUMPS (14 failed)
MUMPS−unsym (7 failed)
Oblio (5 failed)
PARDISO (2 failed)
UMFPACK (2 failed)
WSMP (30 failed)

Fig. 7. Performance profile, p(α): CPU time (seconds) for the factorization (indefinite problems).
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Performance Profile: 1.Solve.CPU − 61 indefinite problems, scaled, u=default
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BCSEXT−LIB (15 failed)
MA57 (10 failed)
MUMPS (14 failed)
MUMPS−unsym (7 failed)
Oblio (5 failed)
PARDISO (2 failed)
UMFPACK (2 failed)
WSMP (30 failed)

Fig. 8. Performance profile, p(α): CPU time (seconds) for the solve phase (indefinite problems).
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