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Numerically-aware orderings for sparse symmetric linear
systems

Jonathan D. Hogg1, Jennifer A. Scott1, H. Sue Thorne1

Abstract

Sparse symmetric indefinite problems arise in a large number of important application areas; they
are often solved through the use of an LDLT factorization via a sparse direct solver. Whilst for many
problems, prescaling the system matrix A is sufficient to maintain stability of the factorization, for
a small but important fraction of problems numerical pivoting is required. Pivoting often incurs a
significant overhead and consequently a number of techniques have been proposed to try and limit
the need for pivoting. In particular, numerically-aware ordering algorithms may be used, that is,
orderings that depend not only on the sparsity pattern of A but also on the values of its (scaled)
entries.

Current approaches identify large entries of A and symmetrically permute them onto the
subdiagonal where they can be used as part of a 2 × 2 pivot. This is numerically effective, but
the fill in the factor L and hence the runtime of the factorization and subsequent triangular solves
may be significantly increased over a standard ordering if no pivoting is required.

We present a new algorithm that combines a matching-based approach with a numerically-
aware nested dissection ordering. Numerical comparisons with current approaches for some tough
symmetric indefinite problems are given.

Keywords: nested dissection, numerically aware ordering, sparse symmetric matrices, sparse matrix
ordering, sparse direct methods.
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1 Introduction

In this paper, we are concerned with using a direct solver for the solution of large sparse linear systems

Ax = b,

where A is symmetric indefinite and non-singular. Sparse direct methods solve such systems by
performing a factorization of A of the form

A = LDLT ,

where L is a unit lower triangular matrix and D is a block diagonal matrix with non-singular 1× 1 and
2× 2 blocks. In practice, a more general factorization of the form

SAS = PLD(PL)T

is computed, where S is a diagonal scaling matrix and P is a permutation matrix that holds the
elimination order. For efficiency in terms of both time and memory, it is essential to choose P to
exploit the sparsity structure of A. The structure of L is the union of the structure of the permuted
matrix PTAP and new entries known as fill. The amount of fill is highly dependent on the choice of P .

It is well established that choosing P to minimize fill is an NP-complete problem [16]. Most sparse
symmetric factorization algorithms heuristically determine P on the basis of the sparsity pattern of A
before performing any numerical calculations, and two main classes of algorithm are commonly used.
The first are those derived from the original Markowitz minimum degree heuristic, with the approximate
minimum degree (AMD) algorithm of Amestoy et al. [1] currently being the most popular. The second
class are based on nested dissection techniques, with the METIS package [14] being the best known
implementation. This class of methods perform particularly well on very large problems (although they
cost more than AMD orderings to compute). For positive-definite systems, the elimination order chosen
during the analyse phase of the sparse direct solver using the sparsity pattern can be used unaltered by
the numerical factorization. However, for indefinite systems, it can be necessary to modify the elimination
order to maintain numerical stability. This is done by delaying the elimination of variables that could
cause instability until later in the factorization when the associated pivot (that is, the 1×1 or 2×2 block
used to eliminate one, respectively, two variables) can be safely used, and this is still the only provably
stable approach. The scaling matrix S is normally chosen to try and reduce the number of these delayed
pivots. A comparison of the effectiveness of common scalings is given in [10].

For the most numerically challenging indefinite systems, current scaling techniques alone are
insufficient to keep the number of delayed pivots acceptably low [12]. In such cases, methods have
been proposed to combine the fill-reducing ordering P and the scaling S so that a numerically-aware
ordering is computed. Based on the original idea of Duff and Gilbert [4], for rows and columns with a
small entry on the diagonal, Duff and Pralet [7] and Schenk and Gärtner [15] describe techniques for
permuting large entries of A onto the subdiagonal using a matching-based ordering. These entries can
be used to form stable 2× 2 pivots and to thus reduce the number of delayed pivots. In the sparse solver
package PARDISO [15], this approach is taken further, with no pivots being delayed beyond the current
node in the elimination tree; instead, pivot candidates that are too small are modified by some prescribed
perturbation. This is known as static pivoting; it generally requires the use of iterative refinement (or
other iterative method) to recover accuracy (potentially adding to the solution time). This works well
for many matrices, but is demonstrably unstable on a few very tough examples.

The survey paper of Hogg and Scott [12] discusses the above schemes and several others and concludes
that at present matching-based ordering techniques are the most effective method for keeping the number
of delayed pivots acceptably low.

Current state-of-the-art matching-based orderings use a matching as a preprocessing step before
applying the ordering scheme of choice to a compressed matrix. Whilst limiting the pivot modifications
needed during the factorization, the resulting ordering can lead to significantly more fill than if the
ordering scheme was applied directly to A. This results in higher memory costs and greater factorization
flops counts. The aim of this paper is to investigate ways of computing an elimination order that needs
few modifications when applied to tough indefinite problems but that also does not lead to large amounts
of extra fill. Duff and Pralet [7] consider a numerically-aware minimum degree algorithm but, as nested
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dissection is often the method of choice, our aim is to develop a numerically-aware nested dissection
algorithm. This is the key contribution of this paper. We compare the effectiveness of the proposed
algorithm in reducing the number of delayed pivots it produces with a traditional non-numerically aware
ordering and with the unpublished scheme of Gupta that is used in the sparse direct solver WSMP [9].

The paper is laid out as follows. In Section 2, we give a high-level overview of nested dissection
algorithms, whilst Section 3 provides the relevant background on pivoting techniques and Section 4 gives
an overview of the existing matching-based ordering algorithm. With the background established, in
Section 5 we go on to describe our new numerically-aware nested dissection ordering algorithm. In
Section 6, we describe the algorithm used by Gupta within WSMP. Finally, we present numerical results
in Section 7 and summarise our findings in Section 8.

2 Nested Dissection Overview

The nested dissection algorithm begins by associating with the symmetrically-structured matrix A =
{ai,j} an undirected graph G(A) whose vertices represent rows (equivalently, columns) and whose edges
represent non-zero entries of A. If there is an entry ai,j then there is an edge (i, j) from i to j. This is
illustrated by the example in Figure 1. We will assume throughout our discussions that A is irreducible
so that G(A) is connected (otherwise, the algorithms may be applied to each component in turn).

Nested dissection proceeds by identifying a small set of vertices S (known as a separator) that if
removed separates the graph into two disjoint subgraphs described by the vertex subsets B and W. The
rows and columns belonging to B are ordered first, then those belonging to W and finally those in S.
The reordered matrix has the following form ABB 0 ABS

0 AWW AWS
AT
BS AT

WS ASS

 .

This is illustrated for our example in Figure 2. Provided the variables are eliminated in the permuted
order, no fill will occur within the zero blocks. If |S| is small and the sizes of B andW are well balanced,
these zero blocks account for approximately half the possible entries in the matrix. The process can then
be applied recursively to the submatrices ABB and AWW .

The performance and efficacy of nested dissection is highly dependent on the approach used to
determine the separator S. However, the method presented in this paper will work with any approach.
There is one additional observation we will require: at some stage the vertex subsets become sufficiently
small that local ordering techniques (such as AMD) are more effective than nested dissection, so are used
for submatrices below a chosen threshold size.

For further details of nested dissection, and a description of the underlying implementation used in
this paper, we refer to the report by Ashcraft et al. [2].

3 Pivoting conditions

The method used to select pivots during the numerical factorization varies from solver to solver, but
essentially they seek to avoid dividing a large off-diagonal entry by a small diagonal one, leading to
growth in the entries of the factor L. By delaying the elimination of variable k, either an update from
another elimination will increase the magnitude of ak,k, or column k will become adjacent to column
k + 1 with the property that ak,k+1 is large and hence can be incorporated into a stable 2× 2 pivot.

In our work, we will use the sufficient (but not necessary) conditions given by Duff et al. [5] for
threshold partial pivoting to be stable. Let A(k) denote the Schur complement after columns 1, . . . , k−1
of A have been eliminated, and let unum be the pivot threshold. Then the stability conditions, which
are employed in a number of HSL solvers (including MA57 and HSL MA97 [3, 11]), are:

• a 1× 1 pivot on column k is stable if

max
i>k
|a(k)

i,k | < u−1
num|a

(k)
k,k| (1)
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Figure 1: Correspondence between a symmetrically structured matrix and its graph G(A)
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Figure 2: Partitioned graph and corresponding reordered of matrix
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• a 2× 2 pivot on columns k and k + 1 is stable if∣∣∣∣∣∣
(

a
(k)
k,k a

(k)
k,k+1

a
(k)
k+1,k a

(k)
k+1,k+1

)−1
∣∣∣∣∣∣
(

maxi>k+1 |a(k)
i,k |

maxi>k+1 |a(k)
i,k+1|

)
≤ u−1

num

(
1
1

)
, (2)

where the modulus of the matrix is interpreted element-wise. Additionally, it is required that the
pivot can be stably inverted.

Observe that these conditions imply that each entry in L is bounded in modulus by u−1
num and that growth

between A(k) and A(k+1) (and hence in D) is at most u−1
num. The default setting for unum is normally

0.01. In practice, columns with similar sparsity patterns are grouped into supernodes and pivots may be
freely chosen in any order from within the supernode without altering the amount of fill. We are only
concerned when we need to delay pivots to later supernodes.

4 Existing matching-based ordering algorithms

In this section, we recall the matching-based ordering algorithm and describe an existing proposal to
combine a matching-based ordering with a minimum-degree based ordering.

4.1 Basic matching-based ordering

Matching-based ordering algorithms are built on the assumption that large entries in A remain large (in a
relative sense) as the factorization progresses. Hence, large entries on the diagonal may be used as stable
1 × 1 pivots while symmetrically permuting large entries onto the subdiagonal before the factorization
commences allows the formation of stable 2×2 pivots without the need to modify the selected elimination
order. This assumption appears to be borne out in practice [12].

Matching algorithms work on the bipartite graph GA = (Vr ∪Vc, E), where Vr and Vc are vertex sets,
corresponding to the rows and columns of A, respectively, and E = {(i, j)|ai,j 6= 0} is the set of edges
connecting the vertices in Vr and Vc. A subset M ⊆ E is called a matching if no two edges in M are
incident to the same vertex. In matrix terms, a matching corresponds to a set of nonzero entries with
no two belonging to the same row or column. M is a symmetric matching if (i, j) ∈ M ⇒ (j, i) ∈ M;
otherwise, the matching is unsymmetric, which we denote as Munsym.

An unsymmetric matching Munsym may be found using the Hungarian algorithm (as implemented,
for example, in the widely used HSL package MC64 [6]). In addition to the matching Munsym, the
Hungarian algorithm also finds scaling matrices Sr and Sc such that the entries of the scaled matrix
SrASc satisfy the following conditions:

|(SrASc)i,j | = 1 (i, j) ∈Munsym,

|(SrASc)i,j | ≤ 1 (i, j) /∈Munsym.

It can be shown that by taking S =
√
SrSc (where the square root is interpreted element-wise), the

above conditions also hold for the symmetrically scaled matrix SAS. Thus the matched pairs (i, j) give
the location of the largest entries in the scaled matrix. These are exactly the entries that we want on
the subdiagonal.

However, as Munsym is not symmetric, it may supply more than one possible j for each column i.
To select a single j, we obtain a symmetric matchingM using Algorithm 1. We refer to pairs (i, j) ∈M
as partners.

Given a symmetric matching, the entries (i, j) and (j, i) of A may be symmetrically permuted into
2× 2 blocks on the diagonal. The graph of the permuted matrix may be compressed by replacing each
pair of rows and columns corresponding to a 2×2 block by a single row and column. The sparsity pattern
of the replacement row and column is the union of the patterns of the rows and columns it replaces.
A traditional fill-reducing ordering algorithm is computed for the compressed matrix AM. Finally,the
compression process is reversed to obtain an ordering for A. We summarise the matching-based algorithm
as Algorithm 2.
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Algorithm 1 Symmetrize a matching

Mark all vertices as unvisited
Initialize M = ∅
for each (i, j) ∈Munsym do

if i is unvisited and j is unvisited then
Add (i, j) and (j, i) to M
Mark i and j as visited

end if
end for

Algorithm 2 Basic matching-based ordering

Perform a Hungarian matching on A to obtain a matching Munsym (and a symmetrized scaling S)
Symmetrize Munsym to obtain M
Using M compress A to obtain AM
Compute a fill reducing ordering for AM
Uncompress the ordering of AM to obtain an ordering for A

The main downside to this approach is that the rows and columns represented by each (i, j) ∈ M
may have very different non-zero patterns. This can result in much worse fill than an ordering technique
that does not take into account numerical values (see, for example [7]).

In the rest of our discussion, we always refer to the scaled matrix SAS. Thus, for convenience of
notation, we shall here on refer to it as A.

4.2 Constrained orderings

Duff and Pralet [7] observe that partners (i, j) do not always need to be ordered together. Consider a
matched pivot (

ai,i ai,j
ai,j aj,j

)
,

ordered such that |ai,i| ≥ |aj,j |, and let θ be an absolute threshold. If |aj,j | > θ then the pivot may
be split and i and j eliminated as two 1 × 1 pivots in any order because both are large with respect to
θ. Unfortunately, experiments show that for our tough indefinite problems (see Section 7) this happens
sufficiently rarely that it offers little practical improvement.

A matched pivot may also be split if |ai,i| > θ > |aj,j | provided i is eliminated before j. Based
on these observations, Duff and Pralet describe modifying their AMD implementation to respect these
conditions to produce a constrained ordering. In addition, they propose a relaxed constrained ordering
in which j may be eliminated before i so long as it has been updated by some large entry aj,k satisfying
|aj,k| > drop for some given tolerance drop. In their tests, Duff and Pralet use θ = 10−2 and drop = 0.9.
They report that, as expected, the basic matching-based approach produces the smallest number of
delayed pivots but that the constrained and relaxed constrained orderings can significantly reduce the
factorization time required by the serial symmetric indefinite direct solver MA57 [3] as well as the total
operations performed and the fill in L.

5 A new numerically-aware nested dissection algorithm

Our numerically-aware algorithm proceeds along similar lines to the relaxed constrained ordering of Duff
and Pralet. However, we use relative rather than absolute criteria for defining large entries and we apply
the approach to the more complicated case of nested dissection.
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Given a threshold uord, we define entries of the (scaled) matrix A to be large as follows:

• a diagonal entry ai,i is large if
max
k 6=i
|ai,k| < u−1

ord|ai,i| (3)

• an off-diagonal entry ai,j is large if∣∣∣∣∣
(
ai,i ai,j
aj,i aj,j

)−1
∣∣∣∣∣
(

maxk 6=i,j |ai,k|
maxk 6=i,j |aj,k|

)
≤ u−1

ord

(
1
1

)
, (4)

where the modulus of the matrix is interpreted element-wise.

Entries that are not large are defined to be small. Note that these criteria correspond to the pivot tests
(1) and (2) with A(k) set to A but the value uord used to determine large entries need not be the same
as the threshold unum that is used in the numerical factorization. We define the graph GL(A) to be the
pruned graph that contains only those edges that correspond to large entries of A.

We define a matching M to be compatible with a partition (B,W,S) if:

1. For all (i, j) ∈M, both i and j are in the same subset; and

2. For each i /∈ S, the diagonal entry ai,i is large, or i has a partner j such that aj,i is large.

In terms of the ordering, this means that the submatrices associated with B and W are likely to have
full numerical rank, and the matching suggests large entries that can be permuted to the subdiagonal.
Note that vertices in the separator need not be matched: if j ∈ S is not matched, then all variables j
corresponding to large entries ai,j must be in ABS or AWS and hence will be eliminated before i. Hence

a pivot candidate a
(k)
j,j in ASS is likely to be large and accepted as a pivot (even if the diagonal entry

aj,j was not large in A).
The algorithms described below take a (symmetric) initial matching M, and a candidate partition

(B,W,S) and modifies them to obtain a compatible matching and partition. The initial matching can
either be derived from symmetrization of a Hungarian matching as described in Section 4, or can be
taken from a higher level of dissection in the recursive case. The candidate partition is obtained using
standard techniques that do not consider numerical information (see for example [2]).

In order to describe our algorithms, we need to define the following. An alternating path for a
matching M is a path whose edges are alternately in the matching and not in the matching. The
matching can be modified using such a path to obtain a new matching by removing those edges from
the path that are already in M, and adding those edges that are not. The set of matched vertices for
the modified matching is the same as the original, except that the vertices at each end of the path may
have been added or removed. We say an edge (i, j) is cut by the separator S if i ∈ S and j /∈ S, or if
j ∈ S and i /∈ S. We define an S-restricted alternating path to be an alternating path on which no edges
except the first and last are cut by the separator S.

The first algorithm iterates over matched edges that are cut by the separator. Either an alternating
path is found that makes the matching compatible, or one of the vertices is moved into S.

Algorithm 3 Make a partition (B,W,S) and matching M compatible

for each cut edge (i, j) ∈M do
Attempt to find a S-restricted alternating path in GL(A) from i to some vertex q that satisfies the
following conditions:

1. The first edge is (i, j); and
2. The last edge (p, q) satisfies either:

(a) q ∈ S and (p, q) ∈M; or
(b) q /∈ S and (p, q) /∈M.

If such a path exists, use it to modify the matching M.
If no such path exists, move j into S.

end for
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Figure 3: Example matrix with values, small edges highlighted in blue/bold.

Consider the matrix shown in Figure 3 (with the same partition as in our previous example of
Section 2) and an initial matching M = {(6, 9), (7, 11), (8, 12), (13, 14)}. The associated graph is shown
as Figure 4(a). Note that the partition and matching are not compatible because of the cut edges
(6, 9), (7, 11) and (8, 12). First we consider the cut edge (8, 12); a suitable alternating path is shown
in Figure 4(b). Note how condition (a) of Algorithm 3 on the alternating path ensures that when we
using it to modify the matching, we eliminate two cut edges, resulting in the new modified matching
M = {(11, 13), (12, 14)}. An alternative alternating path would be 8→ 12→ 14→ 13→ 15, which uses
the condition (b) for the final edge; in this case only one cut edge would be removed and an additional
iteration would be required to remove (7, 11). After applying the shown alternating path we are left with
the cut edge (6, 9). As there are no S-restricted alternating paths, we must move 6 into the separator.
This results in our final compatible partition and matching shown in Figure 4(c).

Note that the separator may now contain vertices that can be safely moved into subset B or W. In
our example, vertex 9 can be moved from S to W without violating our compatibility conditions. Our
next algorithm is used to find and move such vertices in the operation known as trimming, and is listed
as Algorithm 4. It does this by dividing S into adjacency sets: one each for those vertices that are
adjacent to vertices in only one of the subsets B, W, one for those that are adjacent to vertices in both,
and one for those that are fully internal to the separator. We refer to these adjacency sets as SB, SW ,
Sboth and S0, respectively (see Figure 5). Observe that (ignoring compatibility) we can move a vertex in
SB into B, a vertex in SW into W, or a vertex in S0 into either without losing the property that S is a
separator. However, doing so may cause other vertices to become adjacent to B or W when they were
not before, so the adjacency sets must be updated after each move. It is sufficient to only consider those
vertices adjacent to the one moved.

To maintain compatibility, we can only move a vertex i ∈ S into B or W if either ai,i is large, or we
can find a partner to match it with. For simplicity, we first consider a partner j ∈ S that can move to
the same partition. If no such j exists, we then look for an S-constrained alternating path that pairs i
either with an unmatched vertex in its destination set, or with another vertex in S \ Sboth. If there is no
such path, then we cannot move i into that subset and instead it remains in S and another i is chosen.
We observe that if this test fails at any given iteration, it will not pass at a future one.

Often there is a choice of vertex to move. We prefer to avoid moving vertices in S0 if possible because
after the move this normally results in more vertices being reclassified into Sboth; otherwise we only
consider whether we want to move a vertex into B or W. We select a candidate iB that can move to B
and a candidate iW that can move toW, determine whether we also need to move a partner to maintain
compatibility and then calculate which move would provide a more balanced partition (recall that the
more balanced these subsets are, the more we restrict fill).

It is sometimes beneficial to explicitly order dense rows at the end of the elimination order before using
nested dissection. This process may result in pairs given by our initial matching to become separated.
However, we can treat the set of dense rows as a separator S that generates a partition where one of B
or W is potentially empty. We can then apply Algorithm 3 to restore compatibility by either altering
M or ordering some additional rows with their partner dense rows.
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(a) Initial graph. Vertices in B ∪W with small diagonal are shown as dashed circles with text in
bold/blue. Edges in M are shown as double lines. Small edges are shown as dashed lines.
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(b) An alternating path from vertex 8 to 7.
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(c) After applying alternating path and merging 5 into separator.

Figure 4: Application of Algorithm 3 to make a partition (B,W,S) and matchingM compatible for the
matrix in Figure 3.
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Algorithm 4 Trim separator whilst maintaining compatibility

Partition vertices in S into the sets S0,SB,SW and Sboth as follows:

i ∈ S0 if j ∈ S ∀ edges(i, j)
i ∈ SB if j ∈ S ∪ B ∀ edges(i, j)
i ∈ SW if j ∈ S ∪W ∀ edges(i, j)
i ∈ Sboth otherwise

Initialise Signore = ∅.
while S0 ∪ SB ∪ SW is non-empty do

Initialise candidate vertex sets CB = ∅ and CW = ∅.
Initialise candidate alternating paths PB = ∅ and PW = ∅.
if ∃ iB ∈ SB, set CB = {iB} else if ∃ iB ∈ S0, set CB = {iB}.
if ∃ iW ∈ SW , set CW = {iW} else if ∃ iW ∈ S0, set CW = {iW}.
if ∃ iB ∈ CB and aiB,iB is small then

if ∃ jB ∈ S such that ajB,iB is large, set CB = CB ∪ {jB}.
else if ∃ a S-restricted alternating path P in GL(A) from iB to some unmatched vertex q ∈
B ∪ SB ∪ S0, set PB = P, and if q ∈ S, set CB = CB ∪ {q}.
else if iB ∈ S0, move iB to SW and goto next iteration.
else Move iB from SB to Signore and goto next iteration.

end if
if ∃ iW ∈ CW and aiW ,iW is small then

if ∃ jW ∈ S such that ajW ,iW is large, set CW = CW ∪ {jW}.
else if ∃ a S-restricted alternating path P in GL(A) from iW to some unmatched vertex q ∈
W ∪ SW ∪ S0, set PW = P, and if q ∈ S, set CW = CW ∪ {q}.
else if iW ∈ S0, move iW to SB and goto next iteration.
else Move iW from SW to Signore and goto next iteration.

end if
if c(CB,B) < c(CW ,W) then

Move CB into B.
Use alternating path PB to modify M.

else
Move CW into W.
Use alternating path PW to modify M.

end if
Update the sets S0,SB,SW and Sboth.

end while

B W

S

S0SB SB

Sboth

Figure 5: Division of separator into adjacency sets
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We also observe that we must be careful to ensure that the matched vertices resulting from the above
are adjacent in the final ordering. In our implementation, we use AMD to order the partition at the
lowest level of the nested dissection recursion and use the compression methodology of Section 4 at that
stage.

We do not want the analyse phase to split pairs that have very different sparsity patterns. To prevent
this, we ensure that for each pair (i, j):

• If either i or j has a large diagonal entry, it is ordered first to obtain a pivot of the form(
x x
x ε

)
,

where ε denotes a small (or zero) entry. If this pivot is split, it can be safely handled as two 1× 1
pivots.

• Otherwise, we have a pivot of the form (
ε x
x ε

)
.

In this case, we order the densest column first, in the hope that the filled-in pattern of the second
column will be sufficiently similar so that i and j are put into same supernode.

6 Gupta algorithm

The sparse solver WSMP [9] does not employ unsymmetric matchings. Instead, after appropriate scaling
of A (which is not necessarily matching-based), pairs (i, j) are identified as follows [8]. First define

Ediff(i, j) = {k : ak,i 6= 0, ak,j = 0} ∪ {k : ak,i = 0, ak,j 6= 0}.

That is, Ediff(i, j) is the set of all non-zero entries that occur in either column i or column j, but not in
both. Initialise M to ∅ and let i be the first column with a small diagonal entry. A partner j is chosen
as follows:

j = arg max
j

|aj,i|
|Ediff(i, j))|

.

This hopefully corresponds to a large off diagonal entry aj,i and a column j that has a similar sparsity
pattern to column i. Edge (i, j) is added to M. When the next column with a small diagonal entry is
considered, columns i and j are omitted from the search for a partner, and so on.

The criterion used in WSMP is a simple absolute threshold to detect whether the diagonal is effectively
zero; specifically, the test is

|ai,i| < small,

with small set to 10−18. Having constructed M, the matrix is compressed and then ordered using a
nested dissection algorithm that employs weights to reflect the compression. We do not do this in our
implementation, as we found it offers no significant advantage over the unweighted version [12].

7 Numerical results

In this section, we present numerical results for the 23 numerically challenging problems that were
identified by Hogg and Scott [12] as requiring a matching-based ordering to limit the delayed pivots; the
problems are listed in Table 1. Here we report the number of entries in L and flop count to compute L
returned by the analyse phase of HSL MA97 (v2.3.0) using the nested dissection code described in [2] to
compute the elimination order. We would like our new numerically-aware nested dissection algorithm
to produce orderings such that the subsequent factorization achieves statistics that are close to these
with few delayed pivots. With the exception of the choice of ordering, HSL MA97 is run with its default
settings. In particular, unless stated otherwise, the partial pivoting threshold is unum = 0.01. In all
tests, the symmetric scaling from the Hungarian algorithm discussed in Section 4.1 is used. As it is
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Table 1: Numerically challenging symmetric indefinite problems. n and nz(A) denote the dimension of
and the number of non-zero entries in A. nz(L) and fflop are the number of entries in L and the flop
count to compute L returned by the analyse phase of HSL MA97 with nested dissection ordering.

Problem n nz(A) nz(L) fflop Description/Application

1. TSOPF/TSOPF FS b39 c7 28216 730080 1.66× 106 1.06× 108 Optimal power flow
2. QY/case39 40216 1042160 2.39× 106 1.53× 108 Optimal power flow
3. TSOPF/TSOPF FS b39 c19 76216 1977600 4.51× 106 2.87× 108 Optimal power flow
4. TSOPF/TSOPF FS b39 c30 120216 3121160 7.11× 106 4.53× 108 Optimal power flow
5. GHS indef/stokes128 49666 558594 3.43× 106 5.78× 108 Finite Element: Stokes problem

6. TSOPF/TSOPF FS b162 c3 30798 1801300 4.09× 106 6.16× 108 Optimal power flow
7. GHS indef/darcy003 389874 2101242 8.23× 106 6.41× 108 Finite Element: Darcy’s equation
8. GHS indef/cont-201 80595 438795 4.54× 106 7.37× 108 Optimization: Convex QP
9. TSOPF/TSOPF FS b162 c4 40798 2398220 5.45× 106 8.32× 108 Optimal power flow

10. GHS indef/ncvxqp1 12111 73963 1.94× 106 1.00× 109 Optimization: Non-convex QP

11. GHS indef/cont-300 180895 988195 1.15× 107 2.62× 109 Optimization: Convex QP
12. GHS indef/d pretok 182730 1641672 3.01× 107 2.64× 109 Finite Element: Underground mine
13. GHS indef/cvxqp3 17500 122462 3.86× 106 2.83× 109 Optimization: Convex QP
14. TSOPF/TSOPF FS b300 29214 4400122 9.86× 106 3.85× 109 Optimal power flow
15. TSOPF/TSOPF FS b300 c1 29214 4400122 9.86× 106 3.85× 109 Optimal power flow

16. GHS indef/bratu3d 27792 173796 7.38× 106 5.42× 109 Optimization
17. TSOPF/TSOPF FS b300 c2 56814 8767466 1.96× 107 7.58× 109 Optimal power flow
18. TSOPF/TSOPF FS b300 c3 84414 13135930 2.96× 106 1.16× 1010 Optimal power flow
19. GHS indef/ncvxqp5 62500 424966 1.35× 107 1.19× 1010 Optimization: Non-convex QP
20. TSOPF/TSOPF FS b162 c1 10798 608540 8.27× 106 1.62× 1010 Optimal power flow

21. GHS indef/turon m 189924 1690876 2.68× 107 2.02× 1010 Finite Element: underground mine
22. GHS indef/ncvxqp3 75000 499964 2.13× 107 2.64× 1010 Optimization: Non-convex QP
23. GHS indef/ncvxqp7 87500 574962 3.19× 107 5.77× 1010 Optimization: Non-convex QP

beyond the scope of this paper to develop an efficient implementation of our new ordering algorithm (it
is highly non trivial to do this), timing results are omitted.

For each ordering, we are primarily concerned with two statistics reported by HSL MA97:

ndelay is the number of delayed pivots (the total number of times a pivot is passed up a node in
the assembly tree: a single pivot passed several steps up the tree counts multiple times). This
demonstrates how far we have deviated during the numerical factorization from the elimination
order chosen by the analyse phase. In addition to limiting the flop count and memory footprint,
keeping this statistic low is important for effective load balancing in parallel codes.

fflop is the number of floating-point operations (flops) performed during the numerical factorization
(including those arising from delayed pivots). Keeping this statistic low is important as the
factorization is (normally) compute-bound.

The number of entries in the factors may also be of interest, particularly where the solution phase of the
solver is applied repeatedly. We note that this statistic has similar behaviour to fflop and thus we do
not report on it explicitly.

For the sake of convenience, we will refer to the ordering methods as follows:

nd: Ordering computed using our nested dissection code.

match-nd: Basic matching-based ordering computed using Algorithm 2 of Section 4.

na-nd: Ordering computed using our numerically-aware nested dissection method described in Section 5.

gupta-zero: Ordering computed using our implementation of the Gupta heuristic, using an absolute
comparison with small = 10−18 to determine if a diagonal entry is zero.

gupta-small: Ordering computed using our implementation of the Gupta heuristic, using the test (3)
with uord = 0.4 to determine small diagonal entries.
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7.1 Choice of uord for na-nd

Table 2 presents results for our numerically-aware nested dissection algorithm (na-nd) run using a range
of values of the parameter uord that controls our definition of large entries (3). In general, as uord
increases, the number of delayed pivots (ndelay) reduces. There are two underlying effects that explain
the behaviour with respect to the number of flops. As uord increases, the constraints on the ordering
become more severe, resulting in the analyse phase predicting higher fill and flop count. However, a
large number of delayed pivots in the subsequent factorization phase can generate significant additional
fill and flops, and thus reducing ndelay can also reduce fill and flops.

Table 2: ndelay and fflop for a range of values uord. The best results are in bold and those that are more
than 20% worse than the best are in italics.

Problem ndelay fflop
uord = 0.01 0.1 0.4 0.01 0.1 0.4

TSOPF/TSOPF FS b39 c7 994 990 990 1.32×108 1.33×108 1.33×108

QY/case39 1771 1767 1767 1.99×108 2.00×108 2.01×108

TSOPF/TSOPF FS b39 c19 2663 2659 2659 4.15×108 4.17×108 4.20×108

TSOPF/TSOPF FS b39 c30 4202 4198 4198 8.06×108 8.11×108 8.18×108

GHS indef/stokes128 3424 3424 3426 6.01×108 6.01×108 6.01×108

TSOPF/TSOPF FS b162 c3 757 727 776 7.95×108 7.94×108 8.07×108

GHS indef/darcy003 15675 15675 15320 6.88×108 6.88×108 6.88×108

GHS indef/cont-201 3096 9680 446 9.23×108 1.29×109 7.37×108

TSOPF/TSOPF FS b162 c4 1055 1025 1029 1.14×109 1.14×109 1.14×109

GHS indef/ncvxqp1 234 238 40 1.48×109 1.50×109 1.88×109

GHS indef/cont-300 6584 23899 977 3.08×109 4.12×109 2.55×109

GHS indef/d pretok 7548 7064 2363 2.69×1010 2.71×1010 3.23×1010

GHS indef/cvxqp3 894 772 525 5.75×109 6.01×109 5.04×109

TSOPF/TSOPF FS b300 427 228 227 5.01×109 5.04×109 5.04×109

TSOPF/TSOPF FS b300 c1 823 853 452 4.91×109 6.02×109 5.61×109

GHS indef/bratu3d 9692 9692 341 6.29×109 6.29×109 5.44×109

TSOPF/TSOPF FS b300 c2 1058 613 813 1.05×1010 9.71×109 9.98×109

TSOPF/TSOPF FS b300 c3 1597 1561 1648 1.59×1010 1.49×1010 1.50×1010

GHS indef/ncvxqp5 962 468 136 1.21×1010 1.24×1010 1.84×1010

TSOPF/TSOPF FS b162 c1 514 194 190 3.60×1010 3.63×1010 3.64×1010

GHS indef/turon m 8189 8086 3555 2.04×1010 2.04×1010 2.09×1010

GHS indef/ncvxqp3 1620 1317 1397 3.45×1010 3.30×1010 3.87×1010

GHS indef/ncvxqp7 7087 13590 5615 1.01×1011 1.07×1011 1.18×1011

From further experiments using a wider range of values for uord, we observed that for each problem
the number of delayed pivots plateaus once uord is some critical value (which is problem dependent). For
uord ≥ 0.5, we observed a significant deterioration in the quality of the ordering. This was most apparent
in a large increase in the flop count (in many cases more than twice those required for uord = 0.4), but for
some problems the number of delayed pivots also increased. Based on our experiments, we use uord = 0.4
in the remainder of our tests as it provides a good balance between minimising ndelay and fflop.

Note that we also experimented with employing an absolute rather than a relative method for
determining large entries using the values and meaning of θ and drop as proposed by Duff and Pralet [7].
We found the relative scheme almost always gave better results, especially with regard to the flop count.

7.2 Variants of the basic matched ordering algorithm

Figure 6 presents a comparison of the factorization phase flop counts for the gupta-small and gupta-
zero orderings, normalised against the basic matching-based ordering (match-nd). Here, points above
the horizontal line 1 represent worse performance than match-nd, whilst points below the line indicate
better performance. The numbers of delayed pivots are reported in Table 3. We see that there is
generally little to choose between the relative gupta-small and absolute gupta-zero orderings, with both
often requiring 20-40% more flops than match-nd as well as leading to a higher number of delayed
pivots than match-nd. In particular, for problem 23 (GHS indef/ncvxqp7), the gupta-small ordering
gives almost 175,000 delayed pivots. Problem 20 (TSOPF/TSOPF FS b162 c1) represents an anomaly:
both gupta-small and gupta-zero do much better than match-nd. Further investigation reveals this is an
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Figure 6: A comparison of the factorization flop counts for the gupta-small and gupta-zero orderings,
normalised against the match-nd ordering (uord = 0.4).
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artifact of the nested dissection ordering software choosing a significantly worse separator in this case.

7.3 Comparison of ND methods

Figure 7 compares the factorization flop counts of the nd and na-nd orderings, normalised against match-
nd. The numerically-aware ordering (na-nd) generally has the lowest factorization flop count and is never
significantly worse than match-nd. Results for the standard nested dissection algorithm (nd) are included
for comparison; they confirm that it can perform significantly less well than either of the numerically-
aware algorithms, although for more than half our examples, its has a lower flop count than match-nd.

Table 3 reports the number of delayed pivots. We see that, with the exception of problem
7 (GHS indef/darcy003), na-nd significantly decreases the number of delayed pivots compared to
standard nested dissection (nd), although for some problems (including GSH indef/stokes128 and
GHS indef/d pretok), the number of delayed pivots for na-nd can be greater than for match-nd. A
closer look at problem 7 shows that each delay is very local; on average each delayed pivot moves only
1.7 nodes up the tree.

Table 4 gives the same information, but with a much smaller partial pivoting threshold (unum = 10−8).
Comparison with Table 3 shows that using a smaller threshold can reduce the number of delayed pivots
but often has little effect. However, using a small value of unum may reduce stability. We can assess this
by looking at the number of steps of iterative refinement that are required to obtain a scaled backwards
error of less than 10−14. For the default setting (unum = 0.01), no more than two iterations were required
for each of the problems in our test set. For unum = 10−8, iterative refinement failed to converge in
fewer than ten iterations for three problems using the nd ordering and for one problem using na-nd (it
achieved a scaled backwards error of < 10−13); for the other methods, convergence was achieved for all
problems within five iterations.

7.4 Comparison on general matrices

Finally, we measure the overhead of using na-nd on general indefinite matrices, for which a numerically-
aware ordering is not required. We use the set of 25 general symmetric problems from [13], shown in
Table 5; the set includes some problems with a saddle-point structure (for instance, GHS indef/c-72).

13



Figure 7: A comparison of the factorization flop counts for the nd and na-nd orderings normalised against
the match-nd ordering.
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Table 3: Number of delayed pivots for various orderings with uord = 0.4, unum = 0.01.

Problem nd match-nd na-nd gupta-small gupta-zero

TSOPF/TSOPF FS b39 c7 5367 1529 990 4668 2532
QY/case39 8180 2375 1767 12255 3457
TSOPF/TSOPF FS b39 c19 14457 4151 2659 17375 7334
TSOPF/TSOPF FS b39 c30 22768 6550 4198 18678 12098
GHS indef/stokes128 8312 8 3426 21 21

TSOPF/TSOPF FS b162 c3 11477 1365 776 6565 8141
GHS indef/darcy003 50042 79 15320 492 495
GHS indef/cont-201 64186 0 446 0 1
TSOPF/TSOPF FS b162 c4 19507 1885 1029 8269 11883
GHS indef/ncvxqp1 13640 27 40 7214 4455

GHS indef/cont-300 130615 0 977 0 1
GHS indef/d pretok 24809 106 2363 160 2859
GHS indef/cvxqp3 36775 130 525 16869 4127
TSOPF/TSOPF FS b300 14541 1265 227 877 1115
TSOPF/TSOPF FS b300 c1 14680 1680 452 60453 7569

GHS indef/bratu3d 16485 488 341 488 488
TSOPF/TSOPF FS b300 c2 22505 3986 813 7373 26520
TSOPF/TSOPF FS b300 c3 35435 5831 1648 40667 52032
GHS indef/ncvxqp5 10880 88 136 3715 4141
TSOPF/TSOPF FS b162 c1 65850 92 190 1979 2499

GHS indef/turon m 17633 19 3555 46 465
GHS indef/ncvxqp3 87069 578 1397 62260 59312
GHS indef/ncvxqp7 262548 443 5615 174362 104209
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Table 4: Number of delayed pivots for various orderings with uord = 0.4, unum = 10−8.

Problem nd match-nd na-nd gupta-small gupta-zero

TSOPF/TSOPF FS b39 c7 4302 56 552 2508 494
QY/case39 6676 46 672 8155 283
TSOPF/TSOPF FS b39 c19 11617 160 1490 11579 1561
TSOPF/TSOPF FS b39 c30 18274 258 2355 11411 2665
GHS indef/stokes128 8312 8 3426 21 21

TSOPF/TSOPF FS b162 c3 10431 24 369 3622 345
GHS indef/darcy003 50042 79 15320 492 495
GHS indef/cont-201 62858 0 442 0 0
TSOPF/TSOPF FS b162 c4 17967 37 412 4394 899
GHS indef/ncvxqp1 11960 8 28 4285 2609

GHS indef/cont-300 127237 0 974 0 0
GHS indef/d pretok 16634 106 1994 58 65
GHS indef/cvxqp3 36648 97 70 16410 3894
TSOPF/TSOPF FS b300 13925 0 70 50 3
TSOPF/TSOPF FS b300 c1 13925 21 51 52955 3106

GHS indef/bratu3d 7900 487 249 487 487
TSOPF/TSOPF FS b300 c2 20512 2 134 2547 380
TSOPF/TSOPF FS b300 c3 32560 3 202 28549 12035
GHS indef/ncvxqp5 10131 0 29 3473 3891
TSOPF/TSOPF FS b162 c1 63112 1 4 995 361

GHS indef/turon m 17529 19 3478 40 46
GHS indef/ncvxqp3 86383 397 727 54404 58885
GHS indef/ncvxqp7 259652 300 2601 170873 103704

Table 5: General symmetric indefinite problems. n and nz(A) denote the dimension of and the number
of non-zero entries in A. nz(L) and fflop are the number of entries in L and the flop count to compute
L returned by the analyse phase of HSL MA97 with nested dissection ordering.

Problem n nz(A) nz(L) fflop Description/Application

1. GHS indef/boyd1 93279 1211231 6.53×105 4.67×106 Optimization: convex QP
2. GHS indef/dixmaanl 60000 299998 6.53×105 7.55×106 Optimization: Dixon-Maany problem
3. GHS indef/a2nnsnsl 80016 347222 8.49×105 9.64×106 Optimization: linear complementarity
4. GHS indef/blockqp1 60012 640033 7.80×105 1.02×107 Optimization: Block QP
5. Oberwolfach/rail 79841 79841 553921 2.98×106 2.35×108 Model reduction problem

6. GHS indef/dawson5 51537 1010777 4.82×106 1.03×109 Structural: aeroplane actuator
7. GHS indef/c-72 84064 707546 4.62×106 1.68×109 Optimization
8. Boeing/bcsstk39 46772 2060662 7.93×106 2.24×109 Structural: solid state rocket booster
9. GHS indef/helm2d03 392257 2741935 2.33×107 5.75×109 Helmholtz

10. Oberwolfach/filter3D 106437 2707179 1.95×107 7.27×109 Model reduction

11. Boeing/pct20stif 52329 2698463 1.16×107 7.45×109 Structural
12. GHS indef/copter2 55476 759952 1.19×107 7.58×109 CFD: rotor blade
13. Boeing/crystk03 24696 1751178 1.11×107 8.25×109 Structural
14. Andrianov/mip1 66463 10352819 1.21×107 8.71×109 Optimization
15. Koutsovasilis/F2 71505 5294285 2.01×107 9.19×109 Structural: engine piston rod

16. McRae/ecology1 1000000 4996000 4.61×107 1.33×1010 Landscape ecology model
17. Oberwolfach/gas sensor 66917 1703365 2.96×107 3.01×1010 Model reduction
18. Cunningham/qa8fk 66127 1660579 3.02×107 3.65×1010 Acoustics
19. GHS indef/bmw3 2 227362 11288630 6.13×107 5.98×1010 Structural
20. Oberwolfach/t3dh 79171 4352105 6.04×107 1.12×1011 Model reduction: micropyros thruster

21. Lin/Lin 256000 1766400 9.01×107 1.63×1011 Eigenvalue problem
22. GHS indef/sparsine 50000 1548988 2.05×108 1.34×1012 Structural optimization
23. PARSEC/Ga10As10H30 113081 6115633 6.41×108 6.48×1012 Quantum chemistry
24. PARSEC/Ge99H100 112985 8451395 6.49×108 6.57×1012 Quantum chemistry
25. PARSEC/Ga19As19H42 133123 8884839 8.13×108 8.93×1012 Quantum chemistry
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Figure 8: A comparison of the factorization flop counts for the match-nd and na-nd orderings normalised
against the nd ordering for the test set given in Table 5.
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Once these problems have been scaled, very few delayed pivots are generated under any ordering.
The flop counts for nd, match-nd and na-nd are compared in Figure 8. In most cases the counts for
the matching-based orderings are similar to those for traditional nested dissection. Where there is a
difference, the overhead of using na-nd is considerably less than using match-nd. For 20 out of the 25
problems, na-nd results in less than a 10% overhead in the flop count.

We observe that for many of these test examples that do not have zeros on the diagonal, the matching
may be largely on the diagonal entries. Consequently, the ordering has few constraints, so both the
match-nd and na-nd approaches produce orderings that are similar to the traditional nd ordering.

8 Conclusions

We have presented a new version of the nested dissection sparse matrix ordering algorithm that maintains
a matching based on the numerical values. For tough symmetric indefinite problems, this new algorithm
is able to deliver a significantly lower operation count for a numerical factorization than standard nested
dissection whilst also keeping the number of delayed pivots small.

We have also compared the unpublished strategies suggested by Gupta and demonstrated they do
not offer significant benefit in terms of numerical quality over pre-existing matching-based methods or
our new scheme. We note however that in many cases they are much faster to apply.

Future work includes applying the modified AMD approach of Duff and Pralet at the base level of our
numerically-aware nested dissection algorithm to try and deliver further benefits. The implementation
of the resulting algorithm will then be optimized and integrated our existing nested dissection software
as an additional option.

Code Availability

A development version of the nested dissection ordering software used in this paper may be checked out
of our source code repository using the following command:

svn co -r619 http://ccpforge.cse.rl.ac.uk/svn/spral/branches/num_aware_nd
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This code has not been optimised for high performance and we do not currently plan to release it
as part of the HSL or SPRAL libraries that are we develop and maintain at the Rutherford Appleton
Laboratory (see http://www.hsl.rl.ac.uk/ and http://www.numerical.rl.ac.uk/spral/).
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