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Abstract 
A cascaded scattering matrix approach is used to 
determine the eigenmodes and driven modes in the main 
linac cavities of the ILC. This approach is used to 
compute higher order e.m. modes in the baseline 
configuration, and high gradient alternative 
configurations. We present results on three cavity 
designs: TESLA, Cornell University's re-entrant and, 
KEK's "Ichiro". This approach allows realistic 
experimental errors to be incorporated in the studies in an 
efficient manner and allows several cavities to be 
modelled. Implications of indentations in the cavity on the 
modal properties of the structure are presented. 

INTRODUCTION 
Several cavity structures exist for the proposed ILC 

linac alternate design including the prototype higher 
gradient of Cornell University’s re-entrant and KEK’s 
“Ichiro” or low loss cavity design. In a practical 
accelerating structure machining and alignment errors 
will exist; the effect of these realistic errors needs to be 
carefully considered and there is a need to be able to 
accurately model the higher order deflecting modes in the 
main linacs of the ILC en masse in which their influence 
on wake-fields and beam dynamics are ascertained. Here 
as part of this paper we present an initial study into the 
sensitivity of the three cavity designs to the effects of a 
symmetrically applied perturbation. However, it 
important to note that even with parallel FEM code [1] an 
accurate model of the main linacs of the ILC will require 
substantial resources and time to compute.  Moreover, the 
inclusion of realistic defects and misalignments into the 
baseline configuration will prove time consuming as it 
will potentially require remeshing of the problem and will 
not readily lend itself to the introduction of a distribution 
of errors.  An alternative to a direct numerical approach is 
to use the relatively mature concept of the globalised 
scattering (S) matrix technique [2] which focuses on the 
modes of interest. 

The generalised scattering matrix technique has been 
shown to be capable of accurately simulating structures 
[2], [3], [4]. The technique is very efficient and can 
readily incorporate misalignments and cavity 
perturbations into the calculation. There are a number of 
methods that can be found throughout the literature, the 
form used in this paper is that of [2]. We present the 
initial findings for cavity perturbations applied to a 9-cell 
structure using a generalised scattering matrix technique. 
This analysis has been restricted to try and better 
understand the complex nature of perturbations on an 

accelerating structure. The possibility of using 
symmetrically applied perturbations to eliminate trapped 
modes located too far from the couplers to be removed 
was tentatively investigated. Similar approaches by which 
deliberate perturbations are introduced to try and prevent 
beam breakup have appeared in the literature [5]. 

We focus our analysis on dipole modes because for  
small offsets in the beam from the electrical centre or 
small cell perturbations [6] these modes dominate the 
beam dynamics. The impact of these modes is described 
in terms of kick factors [7].  The distribution of these 
eigenmodes and kick factors are important as an adequate 
knowledge of them will allow beam dynamics simulations 
on the emittance of the beam down 11 km of the entire 
linac. 

All references to either the Cornell re-entrant [8] or 
KEK's “Ichiro” [9], [10] designs relate only to specifically 
chosen designs investigated within this paper. The 
geometry of the cavity tangent of α=75.75° optimised for 
a maximum GR/Q for the Cornell re-entrant [8] and the 
K. Saito January 2007 design [9], [10] were used in all the 
calculations conducted in this paper.    
Unless otherwise specified, all the eigen modal 
calculations were conducted using HFSS v8.5 employing 
linear FEM elements and the mesh was adaptively refined 
until a tolerance of 0.005% was achieved, which 
corresponds to a tolerance of ±0.5MHz. All the S matrices 
required for the cascading calculations were carried out 
using HFSS v10; where a driven modal solution was 
sought in which quadratic FEM elements were used and 
the mesh was adaptively refined until an overall accuracy 
below 0.01% was obtained for the resulting S parameters 
followed by a frequency sweep from 1 to 4.5GHz 
conducted in linear steps of 0.01GHz.  All the S matrices, 
cascaded, were renormalized within HFSS v10 using an 
impedance factor of 50 Ohms; in which the unit cell 
structure is taken from iris to iris. In all driven modal 
solutions conducted a finite copper conductivity was 
assigned to all metallic surface [3]. The dipole and 
sextupole modes, calculated either in an eigen or driven 
modal solution, for all the symmetrical structures were 
modelled using a quarter of the geometry and E and H 
symmetry planes. 

Benchmarking against Slater’s theorem    
Slater’s theorem [11] provides an approximate 

analytical form for the frequency shifts due to small 
perturbations in the cavity geometry. The main advantage 
of such a scheme is that once an accurate numerical 
simulation of a cavity structure has been preformed a 



TESLA TESLA TESLA 
Slice: mm 1 1 2 2 3 3
Dipole band 1 shift f0 0.05 -0.01 -0.15 -0.05 0.08 -0.10

-0.22 -0.25 -1.13 -1.24 -2.84 -2.47
Dipole band 2  shift f0 -0.39 -0.37 -1.76 -1.59 -3.97 -3.28

0.06 -0.01 0.00 -0.05 -0.07 -0.10
Dipole band 3 shift f0 0.28 0.10 0.64 0.42 1.33 0.86

-0.04 -0.13 -0.18 -0.65 -0.98 -1.28
Dipole band 4 shift f0 -0.01 -0.13 -0.57 -0.57 -1.49 -1.22

0.46 0.21 1.20 0.96 1.86 1.76
0.12 -0.06 -0.18 -0.30 -0.62 -0.61
0.21 -0.05 -0.13 -0.28 0.17 -0.42
-0.95 -0.79 -3.56 -3.31 -7.78 -6.76
-0.90 -0.69 -3.44 -3.33 -7.90 -6.63

SLATER SLATER SLATER

Dipole band 1 shift fpi

Dipole band 2 shift fpi

Dipole band 3 shift fpi

Dipole band 4 shift fpi
Sextupole band 1 shift f0
Sextupole band 1 shift fpi
Sextupole band 2 shift f0
Sextupole band 2 shift fpi

straightforward and rigorous application of Slater's 
theorem provides a reliable estimate of the frequency 
shift. This scheme requires little in the way of 
computation resources. We apply Slater’s theorem to 
verify the simulations performed herein. 
The benchmarking problem of a TESLA [7] middle cell 
with four symmetrically placed perturbations to simulate  
frequency shifts expected from typical experimental 
errors was investigated. As the perturbed structure is a 
symmetric one only a quarter of the geometry needs to be 
simulated. An isoparametric drawing of the simulated 
structure is presented in Fig. 1, in which the perturbation 
is located upon the equator radius at an equal distance 
between the symmetry planes.  This perturbation shall be 
referred to henceforth as a “slice”, because it is effectively  
a removal of material at a distance perpendicular from the 
surface of the equatorial radius, which henceforth will be 
referred to as the slice size. As this perturbation is located 
on an electric boundary Slater’s theorem is simplified to 
accounting for only the case of an electric mirror 
perturbation. The numerical eigen calculations were 
conducted using HFSS v8.5 with periodic boundary 
conditions applied at the ports and which all simulations 
were run until a tolerance of 0.005% was achieved. 
Slater’s theorem was applied to an unperturbed cavity 
using the internal calculator within HFSS v8.5, in which a 
virtual object was included for the purpose of 
representing the perturbation. A Table comparing the 
frequency shifts calculated by numerical means to those 
calculated by the application of Slater’s theorem are 
shown in Table 1 for various slice sizes.  
All the results depicted in Table 1 are accurate to 
±0.5MHz, due to the tolerance of HFSS 8.5. Notable 
frequency shifts above this tolerance have been 
highlighted in yellow. 
 
The numerically calculated results generated with HFSS 
v8.5 are in general in good agreement with those 
predicted from Slater’s theorem. This validates the 
accuracy of the numerical method employed to study the 
effects of cavity perturbations and provides some 
confidence in the accuracy of the results.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

It was discovered that slice sizes above 3 mm gives rise to 
a distortion of some of the modes of interest.  These 
distortions correspond to a significant mode conversion. 
Within this paper we restrict the slices to a maximum of 3 
mm and hence we are limited to the effects of 
perturbations on the eigen-modes. 

 
Figure 1 Isoparametric representation of a quarter of a 
TESLA middle cell with a 3 mm slice size perturbation 
applied at the equator radius.  

DENTED STRUCTURE SIMULATIONS 
 
The effect of a symmetrically placed perturbation upon 

the middle cell cavity designs of the TESLA [7], Cornell 
University's re-entrant [6] and KEK's “Ichiro” [9], [10] 
was investigated. The aforementioned cavity perturbation 
discussed in the benchmarking example was used to 
investigate the sensitivity of the three designs in terms of 
frequency shifts for various slice sizes. The results of this 
investigation are summarised in Table 2, in which all the 
results are accurate to ±0.5MHz and notable frequency 
shifts above this tolerance have been highlighted in 
yellow. 

Curves comparing the three designs showing the effect 
of frequency shifts as a function of slice size for various 
bands are displayed below in Fig 2 and Fig 3, in which 
some of the more interesting trends displayed in Table 2 
are graphically displayed. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 Table. 1 Comparison between numerically calculated frequency shifts (MHz) and those 

calculated by Slater’s theorem for various slice size perturbations applied at the equatorial 
radius for four symmetrically placed slices for 0 (F0) and π (Fpi) phase modes. Notable 
frequency shifts are highlighted in yellow. All results are accurate to ±0.5MHz. 
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Figure 2 Frequency shifts as a function of slice size for 
the π phase mode of the second dipole band. 
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Figure 3 Frequency shifts as a function of slice size for 
the 0 phase mode of the third dipole band. 

CASCADED SIMULATIONS WITH 
MACHINING ERRORS 

The effect of cavity perturbations of the type considered 
in the preceding sections was applied to a 9-cell TESLA 
cavity with TTF type beam pipes [7]. This initial 
investigation provides a means to evaluate both the 
sensitivity of such a structure to perturbations as well as 
the possibility of using deliberately introduced  
perturbations to attempt to eliminate trapped modes and  
reduce the effect of beam breakup instabilities [5]. 
A generalised scattering matrix approach [2] was utilised 

 
 
 
 
to study these effects, as it provides a means to simulate 
very large amalgams of accelerating structures. However 
here the analysis has been restricted to a single 9-cell 
structure in order to reduce the complexity of the problem 
and to provide a better means for understanding the 
effects of such perturbations. 
The unit cell calculations were carried out using a total of 
six modes per port, in which slice sizes of 1mm, 2mm and 
3mm were individually applied to the middle cells only.  
A comparison of frequency shifts induced by various  
perturbations in the unit cell structures are presented in 
Fig 4 and Fig 5. Even though a 1 mm slice size on its own 
does not produce any appreciable frequency shifts (as can 
be seen perusing results contained in both Table 1 and 
Table 2) it does change the magnitude of S21.  A plot of 
the dominant S21 mode scattered into the third mode 
(sextupole), shown in Fig 5, has been illustrates that a 
small perturbation can effect the structure by altering the 
energy distributed into the various modes.  Thus, a 
relatively small perturbation can change the mode kick 
factor appreciably.  
Both the size of the perturbation and its location in the 9-
cell structure have a noticeable effect on the cascaded S 
matrices. Even though the higher order multi-poles are 
progressively more sensitive to perturbations their effect 
on the beam dynamics is relatively small compared to the 
dominant dipole modes.  In the frequency range of 
interest we included sextupole modes and found that they 
are indeed more sensitive to perturbations than dipole 
modes.   We will focus on the dominant TE11 mode as it 
has the largest scattering coefficient.  
Trapped modes which do not penetrate the higher mode 
coupler region will not be damped in the present 
superconducting cavity design.  However, one possible 
means of removing such modes would be to deform a cell 
in the region of the trapped mode to shift the frequencies 
and mode distributions of the cells.  The symmetric 
perturbation considered herein could be employed to this 
end.  Any trapped mode located in the middle of the 9-cell 
structure will be particularly difficult to deal with as it 
cannot be readily removed via the couplers. In Fig, 6 
curves are presented to illustrate the induced frequency 
shifts and alterations in the energy distribution for a 3 mm  

Table. 2 Comparison of the numerically calculated frequency shifts (MHz) for three designs and for various slice
size perturbations applied at the equator radius for 0 (F0) and π (Fpi) phase modes. Notable frequency shifts are
highlighted in yellow. All results are accurate to ±0.5MHz. 

TESLA CORNELL TESLA CORNELL TESLA CORNELL
Slice: mm 1 1 1 2 2 2 3 3 3
Dipole band 1 shift f0 0.05 -0.05 -0.01 -0.15 -0.01 0.07 0.08 -0.09 -0.31

-0.22 0.05 -0.09 -1.13 -0.05 -0.17 -2.84 -0.18 -0.33
Dipole band 2  shift f0 -0.39 -0.45 -0.35 -1.76 -2.12 -1.56 -3.97 -4.73 -4.25

0.06 -0.39 -0.46 0 -1.77 -1.38 -0.07 -3.87 -3.48
Dipole band 3 shift f0 0.28 0.42 0.21 0.64 1.37 0.58 1.33 2.94 1.61

-0.04 -0.56 -0.17 -0.18 -0.84 -0.31 -0.98 -1.6 -0.91
Dipole band 4 shift f0 -0.01 -0.45 -0.21 -0.57 -1.86 -1.31 -1.49 -4.04 -3.61

0.46 0.03 -0.44 1.2 -0.6 -0.99 1.86 -1.91 -1.78
0.12 -0.23 -0.17 -0.18 -0.63 -0.68 -0.62 -1.62 -1.47
0.21 0.81 -0.24 -0.13 1.85 0.65 0.17 3.97 2.21
-0.95 -0.03 0.01 -3.56 -0.01 0.11 -7.78 -0.15 -0.1
-0.9 -0.43 -0.61 -3.44 -2.48 -1.93 -7.9 -5.48 -5.07

ICHIRO ICHIRO ICHIRO

Dipole band 1 shift fpi

Dipole band 2 shift fpi

Dipole band 3 shift fpi

Dipole band 4 shift fpi
Sextupole band 1 shift f0
Sextupole band 1 shift fpi
Sextupole band 2 shift f0
Sextupole band 2 shift fpi
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Fig. 4 Zoomed in unit cell S21 matrix comparison between 
an unperturbed structure and a perturbed structure with a 
slice size of 3mm for the dominant TE11 mode scattered 
into the TE11 mode. 

 
 
 
 
 
 
 

 

 

 

 

Fig. 5 Zoomed in unit cell S21 matrix comparison between 
an unperturbed structure and a perturbed structure with a 
slice size of 1mm for the dominant TE11 mode scattered 
into the third mode (sextupole).  

 
 

 
 
 
 

 

 

 

 

 

Fig 6 Zoomed in region of the generalised cascaded S21 
matrix for a 9-cell TESLA structure comparison between 
an unperturbed structure and the RMS of a randomly 
perturbed structure for the TE11 mode scattered into the 
TE11 mode. Here the middle cells in the structure were 
randomly perturbed using slice sizes of 0mm, 1mm, 2mm 
and 3mm with the RMS taken for 20 different 
simulations. 

 

randomly distributed slice errors.  Here, we consider the 
dominant TE11 mode scattered into the TE11 mode.   This 
provides an initial step towards simulation of realistic 
experimental errors that will be present in the fabrication 
of 16,000 of such cavities for the ILC. 

ELECTROMAGNETIC FIELDS AND 
FUTURE WORK 

A generalised cascaded scattering matrix by itself only 
gives an indication of the energy distribution within a 
structure, from plots of the scattering coefficients of the 
various elements of the S matrices the modal frequencies 
of a structure can be determined (from direct inspection). 
However in order to determine trapped and beam pipe 
modes the electromagnetic fields need to be derived. The 
electromagnetic fields are also necessary for calculating 
the kick factors and transverse R/Q values of an 
accelerating structure. 
There are two basic approaches that could be employed in 
order to re-derive the electromagnetic fields from the 
cascaded S matrices. The first approach entails directly 
incorporating the derived S matrices as boundary 
conditions into a driven modal FEM scheme to 
recalculate the electromagnetic fields. The main 
advantage of such an approach would be that it is direct 
and the same computational mesh used in the unit cell 
calculations could be employed. The disadvantage with 
this approach is that it would require extra computation 
resources and time in order to re-derive the 
electromagnetic fields. 

The second approach would be to directly employee an 
analytical mode match scheme to the generalised 
cascaded S matrices. Such an approach has been the 
approach of choice for cascading schemes in previously 
developed accelerator structures [12].  Provided enough 
modes are considered the method is robust, efficient and 
requires little in the way of computational resources. 
However in applying such an approach to any of the three 
cavity designs cavities is not a trivial matter. The mode 
matching process is complicated for such cavity shapes, 
because the propagation constant is no longer a constant 
with respect to the radial direction.   
Once the electromagnetic field has been characterised 
along the axis for a specific radial offset, the kick factors 
and transverse R/Qs are obtained using [7].  This will 
enable beam dynamics issues to be investigated firstly, 
using a sum wake-field [3] and later  with full beam 
dynamics tracking simulations.  Additional complex 
phenomena [13] may also be investigated using this 
method.   Furthermore, a more thorough perturbation 
investigation can be conducted, with the final aim to 
model a significant fraction of the accelerating modules 
of the ILC with realistic effects and locate potentially 
harmful trapped modes.  

DISCUSSION 
The numerical results calculated directly with HFSS 

v8.5 are in good agreement with those predicted by 



Slater’s theorem.   This provides a validation of the 
method employed to investigate symmetrically applied 
cavity perturbations. A symmetrically applied 
perturbation was chosen to evaluate both the sensitivity of 
the three designs to perturbations and also to provide an 
initial means to investigate the effect of such 
perturbations upon a 9-cell structure. It was discovered 
that slice sizes greater than 3mm distorted the modes of 
interest. This provides an indication of the tolerance of 
such cavities to machining and alignment errors as in this 
case the modes are sufficiently distorted, they fail to 
follow the e.m. field distribution designed for the cavity.  
This may give rise to a finite number of insufficiently 
damped modes.  

A number of interesting trends may be gleamed from 
the calculated frequency shifts in Table 2; in general it can 
be seen that the Cornell and Ichiro designs follow similar 
frequency shift trends in which it is the Ichiro design 
which is more sensitive to cavity perturbations of the 
symmetric nature discussed in the paper. The TESLA 
design typically follows the trends observed in the other 
designs in which it appears to be the least effected by 
symmetric cavity perturbations.  However the TESLA 
design does significantly depart from the observed 
behaviour of the other cavities for several of the HOM 
modes (an example of which is shown in Fig 2). The 
effect of randomly placed perturbations on a real 
accelerating structure, which occurs naturally as a result 
of the fabrication process, is in fact beneficial. In a true 
idealised accelerating structure the cumulative effect of 
all the transverse fields acting consecutively would 
ultimately result in beam breakup. Detuning of the 
accelerating structure would then be required, as was the 
case for the X-band accelerating structure [12]. However 
the presence of machining and alignment errors (which 
will be present in any accelerating structure) will 
randomly shift the transverse modes and limit the effect 
of emittance dilution.  Thus, it is clear that these cavities 
are quite sensitive to perturbation errors and thus detuning 
of the accelerating structure will occur naturally as a 
result of the fabrication process. 
The perturbation study was extended to the situation of a 
9-cell TESLA cavity, in which a cascading technique was 
employed to analyse the effects of perturbations on the 
structure with the possibility of using such a perturbation 
to eliminate trapped modes that are localised too far from 
the couplers to be damped adequately. A cascading 
technique was used for this purpose because it provides a 
means to simulate very large accelerating structures. The 
analysis was restricted to a single 9-cell structure in order 
to reduce the complexity of the problem and provide a 
better means for understanding the effects of such 
perturbations. Comparison of the perturbed and 
unperturbed unit cell S matrices displayed the expected 
frequency shifts predicted by the eigen modal analysis. 
However it was found that a small perturbation can affect 
the structure by altering the energy distributed into the 
various modes, as can be seen by referring to Fig 5 in 
which a 1mm slice size (a perturbation which by in itself 

does not cause any appreciable frequency shifts as can be 
seen by the results displayed in Table 2) caused energy to 
be distributed into some of the HOM modes (sextupole). 
The effect of altering the size of the perturbation produces 
a more striking effect in the energy distribution than the 
induced overall frequency shift alone, as can be seen in 
Fig 3.  However, for slice indentation larger than 3 mm a 
significant mode distortion is observed. 
In applying a perturbation to a 9-cell structure the 
placement and size of the perturbation has a significant 
effect on the generalised scattering matrix. The altered 
energy distribution of the HOM’s is a somewhat random 
and unpredictable effect, as can be seen in the altered 
energy distribution in Fig 6, in which it may be noted that 
the 3rd and 8th dipole bands are significantly effected. The 
possibility of using perturbations to shift or damp the 
energy distributed into trapped modes was considered.  
However, in a realistic accelerating structure the 
cumulative effect of perturbations may result a complex 
energy distribution that will be quite different to that 
predicted by an idealised structure.  However, modelling 
such perturbations will allow particularly damaging 
modal distributions to be predicted and the sensitivity of 
the cavity to errors to analysed. 
The use of a generalised scattering technique to model the 
entire ILC linac is a straightforward and practical way to 
incorporate machining and alignment errors into the 
simulation without the necessity to re-mesh the entire 
geometry. In the present paper the calculations are 
restricted to the generalised cascaded S matrix technique 
and redistribution of the frequencies and energy of the 
modes. The details of the calculation of e.m. fields and 
associated wake-fields, based on the same generalised 
scattering matrix technique, will be the subject of a future 
publication. 
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