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1 Introduction

The conjugate gradient method is a very effective iterative algorithm for solving a linear system
of equations

Au = b (1)

where A ∈ IRN×N is large, sparse, symmetric and positive definite and b ∈ IRN . In particular, the
conjugate gradient method (CG) has for long been successfully used to solve symmetric positive
definite systems obtained by the finite-element approximation of elliptic partial differential equa-
tions. The convergence of the CG method is enhanced by introducing a matrix M to precondition
the system (1) (see Greenbaum, 1997 for an introduction to this topic). The Preconditioned CG
algorithm (PCG) requires the product of the matrix A by a vector and the product of the matrix
M−1 by a vector. A rather common situation is one where the matrices A and M−1 are not
explicitly available. This may occur either because these matrices cannot be directly built or
because their size is too large to be stored in the CPU memory of the machine. In such cases,
the PCG method can still be used by performing the matrix-vector products mentioned above as
a sequence of simpler arithmetic operations. Consequently, a general purpose implementation of
the preconditioned conjugate gradient has to allow the user to incorporate his/her own routines
for matrix-vector products. Reverse communication makes it possible to achieve this task. For
these reasons, the implementation of the PCG algorithm provided by the HSL Fortran95 package
MI31 is based on reverse communication. This implementation also includes the recent results by
Arioli (2004), Golub and Meurant (1997), and Meurant (1999b) on the construction of stopping
criteria that are reliable and computationally inexpensive.

The outline of the paper is as follows. In Section 2, we briefly review the mathematical
aspects of the CG algorithm and the theoretical results on the error estimates that are pertinent
to the current implementation. In Section 3 we discuss the technical aspects concerning the
implementation of MI31 ; in particular, Sections 3.2 and 3.6 give a detailed description of the
implementation of reverse communication. In Section 4 we illustrate the performance of the
current implementation and discuss the use of error estimators for stopping the conjugate gradient
iterations on a set of 2-D elliptic problems and on a set of 3-D models of structural engineering
problems. Finally, in Section 5 we draw the final remarks and conclusions.

2 The CG algorithm

Let r(k) = b−Au(k) be the residual of (1). We assume that the linear system (1) is symmetrically
preconditioned by the nonsingular matrix U , in order to speed up the convergence of the method.
We obtain the equivalent system

U−TAU−1y = U−T b, (2)

where y = Uu.
If we directly apply the CG method to (2), the iterates satisfy the following relations (Green-

baum 1997, Meurant 1999a)

y(k) = y(k−1) + αk−1p̂
(k−1), αk−1 =

r̂(k−1)T r̂(k−1)

p̂(k−1)TU−TAU−1p̂(k−1)
,

r̂(k) = r̂(k−1) − αk−1U
−TAU−1p̂(k−1) ,

p̂(k) = r̂(k) + βk−1p̂
(k−1), βk−1 =

r̂(k)T r̂(k)

r̂(k−1)T r̂(k−1)
,
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where y(0) = 0 and r̂(0) = p̂(0) = U−T b. In exact arithmetic, we have that r̂(k) = U−T b −
U−TAU−1y(k), and, therefore, by defining u(k) = U−1y(k), we have that

r̂(k) = U−T (b−Au(k)) = U−T r(k).

Then, we have that

‖r̂(k)‖2
(U−T AU−1)−1 = r̂(k)TUA−1UT r̂(k) = ‖r‖2

A−1 .

Finally, if we define p(k) = U−1p̂(k), and M = UTU , we obtain the following variant of the PCG

Preconditioned Conjugate Gradient Algorithm (PCG)
Given an initial guess u(0), compute r(0) = b − Au(0), and solve
Mz(0) = r(0). Set p(0) = z(0), β0 = 0, and α−1 = 1.

for k = 1, 2, . . . , until convergence

αk−1 =
r(k−1)T z(k−1)

p(k−1)TAp(k−1)
;

u(k) = u(k−1) + αk−1p
(k−1);

r(k) = r(k−1) − αk−1Ap
(k−1);

Solve Mz(k) = r(k);

βk =
r(k)T z(k)

r(k−1)T z(k−1)
;

pk = zk + βkp
(k−1);

Figure 1: Preconditioned Conjugate Gradient Algorithm (PCG)

2.1 Error estimators and stopping criteria

The common stopping criterion uses the ratio between the residual and the right-hand side, i.e.

ω =
||r(u)||2
||b||2

.

This implies that, if ω 6= ∞, there is a vector δb, with ||δb||2 ≤ ω||b||2, such that

Au = b+ δb.

Nevertheless, the experiments described by Arioli (2004) give very good evidence that the stopping
criteria based on the Euclidean norm of the residual b − Au may be totally unsatisfactory and
frequently misleading. For this reason, our implementation of the PCG method incorporates new
stopping criteria that are based on a posteriori component-wise and norm-wise backward error
theory (Arioli, Duff and Ruiz 1992).
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2.1.1 Dual norm of the residual

If we use the conjugate gradient method, it is quite natural to have a stopping criterion that takes
advantage of the minimization property of the iterative method. At each step k, the conjugate
gradient approximation u(k) of the solution u of (1) minimizes the energy norm of the error
δu(k) = u− u(k) on the Krylov space Kk = span{p(0), . . . , p(k−1)} (Greenbaum 1997). Formally,

δu(k) = arg min
δu(k)∈u−Kk

δu(k)TAδu(k).

Let us consider the space IRN endowed by the norm

‖y‖A = (yTAy)1/2,

and its dual space endowed by the dual norm

‖f‖A−1 = (fTA−1f)1/2.

The stopping criterion

IF ‖Au(k) − b‖A−1 ≤ η‖b‖A−1 THEN STOP, (3)

where η < 1 is a suitable a priori threshold chosen by the user, guarantees that the iterative
approximation u(k) is the solution of the perturbed linear system

Au(k) = b− r(k),

‖r(k)‖A−1 ≤ η‖b‖A−1 ;

see (Arioli, Noulard and Russo 2001) for details. The value of η may depend on the properties
of the problem that we want to solve, and, in practical cases, may be much larger than ε, the
roundoff unit of the computer finite-precision arithmetic. When the linear system (1) arises from
the finite-element discretization of a partial differential equation, reasonable choices for η are
provided by η = h and η = h2, where h is a parameter that takes into account the mesh density.
In accordance with the definition proposed by Ciarlet (1978), the parameter h is usually the
maximum diameter of the control volumes of the mesh covering the computational domain where
the partial differential equation is formulated. The major implications of the two choices of η,
which are mentioned above, on the effectiveness of the stopping criterion (3) are discussed by
Arioli (2004).

In order to build a suitable stopping criterion, we need to add some tool to the conjugate

gradient algorithm for estimating the error e
(k)
A = r(k)TA−1r(k) at the step k. The estimation of

the error can be performed by using either the rule proposed in the original paper by Hestenes and
Stiefel (1952) or the Gauss and Gauss-Radau quadrature rules proposed by Golub and Meurant
(1997). We should point out that the Gauss quadrature rule is mathematically equivalent to the
Hestenes and Stiefel rule. Furthermore, Strakoš and Tichý (2002) proved that the Hestenes and
Stiefel rule is numerically stable. These bounds are computed using the information of the last
d steps of the conjugate gradient algorithm. As suggested by Golub and Meurant (1997) and by
Strakoš and Tichý (2002), these rules provide both lower bounds and upper bounds for the error

e
(k−d)
A .

In our implementation of stopping criteria for the PCG method, we consider the two following
variants:

• the one based on the Gauss quadrature rule, as proposed by Hestenes and Stiefel, that gives

the lower bound τk for the error e
(k−d)
A ;
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• the one based on the Gauss-Radau quadrature rule that provides the upper bound Ξk and

the lower bound ξk for the error e
(k−d)
A ;

The calculation of the upper bound Ξk requires an estimate of the smallest eigenvalue λmin of
the matrix A (or of the preconditioned matrix). Likewise, the calculation of the lower bound ξk

requires an estimate of the largest eigenvalue of the matrix A (or of the preconditioned matrix).
As

u =

N
∑

j=0

αjp
(j), u(k) =

k
∑

j=0

αjp
(j), and p(i)Ap(j) = 0, i 6= j,

we have that

u− u(k) =
N

∑

j=k

αjp
(j),

and the Hestenes and Stiefel rule can be reformulated by

‖u− u(k)‖2
A =

N
∑

j=k

N
∑

i=k

αiαjp
(j)TAp(i) ≈

k+d
∑

j=k

αjr
(j)T z(j).

Arioli (2004) discussed the choice of the delay parameter d. It turns out that d = 5 or d = 10
are successful compromises when the convergence is reasonably fast, i.e. the preconditioner is
effective. The numerical experiments support this conclusion (see Arioli, 2004, Meurant, 1999b,
and Golub and Meurant, 1997).

2.1.2 Dual norm of b

Finally, we must estimate bTA−1b. Taking into account that (Arioli 2004)

‖b‖2
A−1 = ‖u‖2

A ≥ bTu(0) + r(0)Tu(k), (4)

and that the lower bound converges to ‖u‖2
A, we could replace ‖b‖A−1 with its lower bound at

step k of the conjugate gradient algorithm. Alternatively, we can use the values ψk computed
during the conjugate gradient method to estimate the following lower bound for ‖u− u(0)‖2

A:

‖u− u(0)‖2
A ≥ ‖u(k) − u(0)‖2

A =

k
∑

j=1

ψj. (5)

Since
‖u− u(0)‖2

A = ‖u‖2
A + ‖u(0)‖2

A − 2bTu(0),

we have the following lower bound for ‖b‖2
A−1 :

‖b‖2
A−1 = ‖u‖2

A ≥ r(0)Tu(0) + bTu(0) +
k

∑

j=1

ψj . (6)

Strakoš and Tichý (2004) point out that this lower bound is much less sensitive to the roundoff
than the lower bound (4).
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The stopping criterion given by (3) can be replaced either by:

IF ςk ≤ η2
(

bTu(0) + r(0)Tu(k)
)

THEN STOP , (7)

or by

IF ςk ≤ η2(r(0)T u(0) + bTu(0) +

k
∑

j=1

ψj) THEN STOP , (8)

where ςk is one of the estimates of the dual norm of the residual.
However, both (7) and (8) have stability problems when u(0) 6= 0 has large entries and u

has very small entries (≈ √
ε, ε machine precision) such as in the case of structural engineering

problems with small displacements. The lower bound of a small energy norm of u is computed by
a strong cancellation of large terms. In these situations, we can approximate ‖u‖2

A by the more
crude value bTu(k), even if we cannot guarantee that it will be a lower bound. Finally, we poit
out that the previous case is quite artificial. Nevertheless, we use the control (8), which requires
only one floating-point operation per step, as the default stopping criterion of the code.

In Figure 2, we formulate the PCG algorithm that incorporates the proposed stopping criteria.
Note that the introduction of a preconditioner to speed up the convergence rate of the conjugate

gradient algorithm requires adapting the previous technique for the evaluation of e
(k)
A . Further

details can be found in (Arioli 2004).

3 The implementation of MI31

3.1 Subroutine list

Our implementation in FORTRAN 90 is composed of ten subroutines, one integer function and
one parameter module. For the sake of this presentation, the subroutines are logically grouped
as listed below.

• Routines implementing the user front-end :

subroutine MI31AD ( n,rhs,w,ldw,icntl,cntl,Ido,info,rinfo,iptr );

subroutine MI31ID ( icntl,cntl ).

• Routines implementing the initialization phase and the check-up of the input arguments
provided by the user:

subroutine sub_CG_INITIALISATION ( n,w,ldw,cg,icntl,cntl,Ido,info,rinfo );

subroutine sub_CHECK_PARAMETERS ( icntl,cntl ).

• Routines implementing the preconditioned conjugate gradient method by reverse communi-
cation:

subroutine sub_CG_SETPARS ( flag,cg,Ido,info,rinfo );

subroutine sub_CG_PART_1 ( n,w,ldw,cg );

subroutine sub_CG_PART_2 ( n,w,ldw,cg ).

• Routines implementing the stopping criteria:

5



Let u(0) be the initial guess; compute r(0) = b −Au(0), solve Mz(0) = r(0), and, then,
set p(0) = z(0), β0 = 0, α−1 = 1, χ1 = 1, ς0 = 1, and k = 0:

while ςk > η2norm u est do

k = k + 1;

αk−1 =
r(k−1)T z(k−1)

p(k−1)TAp(k−1)
; ψk =

(r(k−1)T z(k−1))2

p(k−1)TAp(k−1)
; ωk =

1

αk−1
+
βk−1

αk−2
;

if k = 1 then

ρ1 = ω1; φ1 = ω1 − λmin; Φ1 = ω1 − λmax;

else

χk =
χk−1πk−1

ρk−1
; ρk = ωk −

π2
k−1

ρk−1
;

φk = ωk − ωu
k−1; Φk = ωk − ωl

k−1;

endif

u(k) = u(k−1) + αk−1p
(k−1);

r(k) = r(k−1) − αk−1Ap
(k−1);

Solve Mz(k) = r(k);

βk =
r(k)T z(k)

r(k−1)T z(k−1)
; πk =

√
βk

αk−1
;

pk = zk + βkp
(k−1);

ωu
k = λmin +

π2
k

Φk
; ωl

k = λmax +
π2

k

φk
;

ψl
k =

χ2
kπ

2
k

ρk(ω
l
kρk − π2

k)
; ψu

k =
χ2

kπ
2
k

ρk(ω
u
kρk − π2

k)
;

if k > d then

τk =

k
∑

j=k−d+1

ψj ; ξk = ‖r(0)‖2
M−1ψ

l
k + τk; Ξk = ‖r(0)‖2

M−1ψ
u
k + τk;

ςk = τk or{= ξk} or{= Ξk};
norm u est = (r(0)T u(0) + bTu(0) +

∑k
j=1 ψj) or{= bTu(0) + r(0)Tu(k)}

endif

end while.

Figure 2: Preconditioned conjugate gradient algorithm (PCG)

subroutine sub_CHECK_RESIDUAL ( n,w,ldw,cg,icntl,cntl );

subroutine sub_ERROR_ESTIMATE_1_HS( n,w,ldw,cg,icntl,cntl,Ido,info,rinfo );

subroutine sub_ERROR_ESTIMATE_2_HS( n,w,ldw,cg icntl,cntl,Ido,info,rinfo ).

Furthermore, we use the integer function next_action defined as

function next_action( last_action,icntl,cntl ),

and a parameter module called

6



module CG_PARAMETERS.

3.2 Reverse Communication

Reverse communication is based on a double loop system. The user implements the external loop,
which performs the matrix-vector product and, if requested, the preconditioning. The external
loop has the logic structure depicted in Figure 3. The internal loop is provided by the package
and performs the rest of the CG algorithm. Figure 3 illustrates the flow chart of the external
loop of the user, while the following piece of source code exhibits a possible implementation of
this loop.

do while ( Ido>0 )

call mi31ad( n, w, ldw, icntl, cntl, Ido, info, rinfo, iptr )

select case ( Ido )

case ( 1 )

call matvec( w(1,z), w(1,iptr), ip, ind, value, m, n, ne )

case ( 2 )

call precon( w(1,z), w(1,iptr), diag, n )

end select

end do

The variable Ido contains the logical flag which drives the loop. This variable can take the values

0, stop the CG iterations;

1, perform the matrix-vector product;

2, perform the preconditioning (if requested).

If preconditioning is not required the variable Ido will never take the value 2.

While(  Ido > 0  )                              

MI31AD

external operation
Matrix−Vector Product

Preconditioner

Ido = 1

Ido = 2

Figure 3: Flow chart of the user external loop

Any iteration of the CG algorithm is basically split as shown in Figure 4, where we also
indicate the routines performing the various internal and external operations.

7



Matrix-vector product:

(external loop) z = Ap(k)

First Part:

(sub CG PART1) curvk = zT p(k))

αk−1 =
ρk

curvk

u(k) = u(k−1) + αk−1p
(k−1)

r(k) = r(k−1) − αk−1z

ψk = αk−1 ∗ ρk

norm u est = norm u est + ψk

or set norm u est = bTu(k)

Preconditioning step:

(external loop) solve Mz = r(k−1)

(MI31AD) or set z = r(k−1)

Second Part:

(sub CG PART2) ρk = r(k)T z

βk−1 =
ρk

ρk−1

p(k) = z + βkp
(k−1)

Stopping Criteria:

(sub CHECK RESIDUAL) if ||r(k)||2 ≤ max(||r(0)||2 ∗ CNTL(1), CNTL(2)) then stop

(sub ERROR ESTIMATE 1) if Gauss error est. ≤ norm u est ∗ CNTL(1)2 then stop

(sub ERROR ESTIMATE 2) if Gauss-Radau error est. ≤ norm u est ∗ CNTL(1)2 then stop

Figure 4: The way a CG iteration is split (case u(0) = 0)

3.3 The Subroutine MI31AD

The subroutine MI31AD implements the internal loop in a do while statement, and its flow chart
is given in Figure 5.

When the execution stream enters into or exits from MI31AD, the subroutine sub CG SETPARS

is called.
This subroutine is called at the beginning of MI31AD with the first header entry set to

INITIAL SETUP. In this case part of the entries of the arrays INFO and RINFO are copied into
the data structure cg to restore the current status of the CG algorithm. Conversely, when the
subroutine is called with the first option flag set to FINAL SETUP at the end of MI31AD, the status
of the CG algorithm in the data structure cg is saved into the arrays INFO and RINFO. The final
statement iptr = icntl(i VECTOR PTR) set the integer pointer iptr. This pointer indicates the

8



next−action manager

sub_CG_INITIALISATION

sub_CG_setpars

in out

in out

external action

sub_CG_PART_1

sub_CG_PART_2

sub_CHECK_RESIDUAL

sub_ERROR_ESTIMATE_1_HS

sub_ERROR_ESTIMATE_2_HS

internal actions:

Figure 5: Flow chart of MI31AD

correct column of the array W that must be operated on by the user.

call sub_CG_SETPARS( INITIAL_SETUP, cg, Ido, info, rinfo )

do while ( .true. )

cg % the_action = next_action( cg % the_action, icntl )

select case ( cg % the_action )

case ( ... )

!! ... internal loop implementation

end select

end do while

call sub_CG_SETPARS( FINAL_SETUP, cg, Ido, info, rinfo )

iptr = icntl(i_VECTOR_PTR)

The internal do while loop is expanded as follows.

do while ( .true. )

cg % the_action = next_action( cg % the_action, icntl )

select case ( cg % the_action )

case ( INIT_PHASE )

call sub_CG_INITIALISATION ( n, rhs, w, ldw, cg, icntl, cntl,

Ido, info, rinfo )

case ( CG_PART_1 ) !! z = A p

cg % iter = cg % iter+1 !! begin a new iteration

call sub_CG_PART_1 ( n, w, ldw, cg )

case ( CG_PART_2 ) !! z = M r

9



call sub_CG_PART_2 ( n, w, ldw, cg )

case ( NO_PRECONDITIONER )

w(1:n,z) = w(1:n,r)

case ( CHECK_RESIDUAL )

call sub_CHECK_RESIDUAL ( n, w, ldw, cg, icntl, cntl )

case ( ENERGY_ESTIMATE_1 )

call sub_ERROR_ESTIMATE_1_HS ( n, w, ldw, cg, icntl, cntl,

info, rinfo )

case ( ENERGY_ESTIMATE_2 )

call sub_ERROR_ESTIMATE_2_HS ( n, w, ldw, cg, icntl, cntl,

Ido, info, rinfo )

case default

exit

end select

end do

Any internal cycle performs an action decided by the next-action manager on the basis of the
last action performed and the internal status of the routine. This latter one is recorded in the
variable rinfo(i AUX ACTION), and, during the initialization phase, rinfo(i EXT ACTION). The
next action to be performed by the code is returned by the integer function next action, which
implements the next action manager and is held in the variable cg % the action.

The statement select case ( cg % the action ) switches to the call of the corresponding
subroutine or exits from the loop. The different switches are self-explanatory (see Figure 5).
Other than the values of this switch, cg % the action can take the following values:

- EX PRECONDITIONER, exit and perform the user preconditioner;

- MAT VEC PRODUCT, exit and perform the user matrix-vector product;

- STOP CG, stop the CG iterations.

When one of these values is set, the routine enters the default switch and executes the exit

statement. Notice that a new iteration starts when the condition

cg % the_action == MAT_VEC_PRODUCT .and. icntl(i_VECTOR_PTR) == p

is satisfied.

3.4 The part of a CG iteration performed internally.

As shown in Figure 4, the matrix-vector product and the preconditioner are performed exter-
nally, but the rest of the CG iteration is performed in the two subroutines sub CG PART 1 and
sub CG PART 2 briefly described in this section.

The array w contains five columns, whose entries are the CG vectors u(k), p(k), r(k), the
auxiliary vector z, and the initial residual b−Au(0).

These columns of w are addressed by the integer pointers

• u = 1,

• p = 2,

• r = 3,
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• z = 4,

• b = 5.

The first three vectors are the usual vectors of the CG definition. The vector z is used to store
temporarily the result of the external operations. The fifth vector is set to the initial residual
and is used during the iterations to perform the error estimates.

3.4.1 The subroutine sub CG PART 1

The subroutine sub CG PART 1 executes the first part of the CG algorithm as indicated in Figure 4.
Basically, the subroutine consists in the following piece of source code, which calls the BLAS

routines ddot and daxpy:

cg % curv = ddot( n, w(1,z), 1, w(1,p), 1 )

cg % alpha = cg % rho / cg % curv

call daxpy( n, cg % alpha, w(1,p), 1, w(1,u), 1 )

call daxpy( n, -cg % alpha, w(1,z), 1, w(1,r), 1 )

The updated value of the scalar parameters curvk and αk−1 are stored in the data structure cg.

3.4.2 The subroutine sub CG PART 2

The subroutine sub CG PART 2 executes the second part of the CG algorithm as indicated in
Figure 4. Basically, the subroutine consists in the following piece of source code, which calls the
BLAS routines ddot, dscal and daxpy:

cg % rho = ddot( n, w(1,r), 1, w(1,z), 1 )

cg % beta = cg % rho / cg % rho1

cg % rho1 = cg % rho

call dscal( n, cg % beta, w(1,p), 1 )

call daxpy( n, one, w(1,z), 1, w(1,p), 1 )

The updated value of the scalar parameters ρk−1, ρk, and βk are stored in the data structure cg.

3.5 The initialisation routines

The package contains three routines that are called in the initialisation phase. These ones are
MI31ID, sub CG INITIALISATION and sub CHECK PARAMETERS.

3.5.1 The subroutine MI31ID

This routine sets the default values for the control arrays ICNTL and CNTL.

3.5.2 The subroutine sub CG INITIALISATION

This routine initialises the CG solver. The way this routine interacts with the next-action manager
is the most complex part of the entire implementation. Indeed, during the initialisation phase,
both the external operations of matrix-vector product and preconditioning may be required as
well as several internal set-ups. The part of the routine to be performed each time it is entered
is driven by the flags.

11



ext_action = icntl(i_EXT_ACTION) !! last external action

set_r0 = icntl( i_SET_R0 ) == TRUE !! r0 needs init

set_p0 = icntl( i_SET_P0 ) == TRUE !! p0 needs init

set_b = icntl( i_SET_B ) == TRUE !! b needs init

The variable icntl(i EXT ACTION) is set to the INIT PHASE the first time by MI31ID. At
other times it contains the name of the last external operation performed by the code. This value
allows the code to select between the two following updates:

select case ( ext_action )

case ( MAT_VEC_PRODUCT )

call daxpy( n, -one, w(1,z), 1, w(1,b), 1 ) !! z = A u0, b <-- b-z = r0

w(1:n,r) = rhs(1:n) !! set r0

case ( EX_PRECONDITIONER )

w(1:n,p) = w(1:n,z)

end select

that respectively complete the set-up of the initial residual stored in w(1:n,r) and in w(1,b)

when a guess solution is provided by the user, and the conjugate direction vector, stored in
w(1:n,p), when a user preconditioner is available. The piece of code

if ( set_b ) then

!! performs the copy the first time the routine is entered

icntl( i_SET_B ) = FALSE

w(1:n,b) = rhs(1:n)

end if

sets the right-hand-side vector into the array column w(1:n,b). The piece of code

if ( set_r0 ) then

if ( icntl(i_USER_U0).eq.TRUE ) then

icntl(i_SET_R0) = FALSE

icntl(i_VECTOR_PTR) = u

icntl(i_AUX_ACTION) = MAT_VEC_PRODUCT !! --> set_r0 = T

icntl(i_EXT_ACTION) = MAT_VEC_PRODUCT !! --> uso interno

else

set_r0 = .false. !! --> set_r0 = F

end if

end if

controls whether a user guess u(0) for the solution is provided. In such a case, the code calls for
the external matrix-vector product Au(0) to complete the calculation of the initial residual, i.e.
r(0) = b−Au(0). We also set icntl(i SET R0) = FALSE, so that this fragment of the code is not
rerun when the routine is reentered.

Note that, at this stage, the value of set r0 is kept equal to TRUE, so that the following
if/end if pieces of source code are not to be executed. If no user guess u(0) is given, we set
set r0=.false.. This is also required to perform the next if/end if pieces of source code. The
piece of code

if ( set_p0 .and. .not.set_r0 ) then

if ( icntl(i_USER_PRECON).eq.TRUE ) then

icntl(i_SET_P0) = FALSE

12



icntl(i_VECTOR_PTR) = r

icntl(i_AUX_ACTION) = EX_PRECONDITIONER !! uso last-action manager

icntl(i_EXT_ACTION) = EX_PRECONDITIONER !! uso interno

else

print *,’ cg-init: p0 OK!!! ’

w(1:n,z) = w(1:n,r)

w(1:n,p) = w(1:n,z)

set_p0 = .false.

end if

end if

controls whether a user preconditioner is in use to set the initial value of the conjugate direction
p0. This block of statements is driven by the logical variables set p0 and set r0 and its logic
is the same as the previous if/end if block. Notice that these statements are run only after
that the set-up of the initial residual has been terminated. Eventually, the initialization routine
executes the if-end if block:

if ( .not.set_r0 .and. .not.set_p0 ) then

!! set the beginning of the real CG loop

icntl(i_INIT_PHASE) = FALSE

icntl(i_VECTOR_PTR) = p

icntl(i_AUX_ACTION) = MAT_VEC_PRODUCT

cg % r0_nrm2 = dnrm2( n, w(1,r), 1 )

if ( cg % r0_nrm2 .eq. 0.d0 ) then

write(ICNTL(i_STDERR_UNIT),’(a)’) &

’ERROR MESSAGE: INITIAL RESIDUAL HAS 2-NORM EQUAL TO ZERO.’

info(i_ERROR_FLAG) = i_ERRFLAG_ZERO

icntl(i_AUX_ACTION) = STOP_CG

else

cg % resid = cg % r0_nrm2

end if

cg % rho = ddot ( n, w(1,r), 1, w(1,z), 1 )

cg % rho1 = cg % rho

rinfo(i_B0X0) = ddot ( n, rhs, 1, w(1,u), 1 )

rinfo(i_Z0R0) = cg % rho

if ( CNTL(i_TOL_2) == 0.d0 ) then

CNTL(i_TOL_2) = CNTL(i_TOL_1)

end if

if ( ICNTL(i_MAX_ITER) .eq. 0 ) then

ICNTL(i_MAX_ITER) = n !! max n iterations

end if

!! final check of parameters

call sub_check_parameters( info, icntl, cntl )

end if
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The first three statements set the control array icntl for the next-action manager. Then, it ini-
tializes the variables used in the first CG iteration and stored in cg, and calculates bTu(0), stored in
rinfo(i B0X0), and ρ0, stored in rinfo(i Z0R0). Finally, it calls the routine sub check parameters

to perform some checks on the input values of the control arrays icntl and cntl.

3.5.3 The subroutine sub CHECK PARAMETERS

This routine verifies the consistency of the control parameters given in input to MI31AD. These
parameters are set to their default values by MI31ID, but can be arbitrarily changed by the user
before the CG algorithm starts the run..

3.6 The Next-Action Manager

Basically, any action of the CG iterative scheme, which has been performed internally or ex-
ternally, is followed by a “next action”. The “next action” to be performed is decided on the
basis of the value of the variable last action, which is taken as an input argument, and by con-
trolling the internal flags icntl(i AUX ACTION) and icntl(i INIT PHASE). These parameters
are used during the initialisation phase and when an error-estimate routine is called. When an
external operation is selected, the code must also specify the input field by setting suitably the
variable icntl(i VECTOR PTR). The structure of the routine, which implements the initialisation
mechanism, is as follows.

function NEXT_ACTION( last_action, icntl )

use CG_PARAMETERS

implicit none

integer :: next_action, last_action

integer, dimension(ndim) :: icntl

if ( icntl(i_INIT_PHASE) == TRUE ) then

last_action = INIT_PHASE

end if

select case ( last_action )

case ( INIT_PHASE )

next_action = icntl(i_AUX_ACTION)

icntl(i_AUX_ACTION) = INIT_PHASE

case ( ... ) !! other case implementations

end select

if ( icntl(i_PRT_NEXT_ACTION) == TRUE ) then

!! some printing stuff ...

end if

return
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end function NEXT_ACTION

When icntl(i INIT PHASE) == TRUE, last action is forced to INIT PHASE, so that the
next-action manager selects case ( INIT PHASE ). The next action is then set to the value
stored in icntl(i AUX ACTION). This latter variable has been set the first time to INIT PHASE

by MI31ID. During the initialization phase, this variable is set by sub CG INITIALISATION to the
external operations required by the initialization steps, and eventually to the first user matrix-
vector product that starts the CG iterations. Notice that icntl(i AUX ACTION) = INIT PHASE,
that is the auxiliary action flag is re-set to the value INIT PHASE to continue the initialization the
next time the action manager is re-entered after an external operation. The external operation
that has been performed during the initialization phase is indicated by the value of the flag stored
in icntl(i EXT ACTION), sub CG INITIALISATION.

The select statement is fully described as follows.

select case ( last_action )

case ( INIT_PHASE )

next_action = icntl(i_AUX_ACTION)

icntl(i_AUX_ACTION) = INIT_PHASE

case ( CG_PART_1 )

if ( icntl(i_USER_PRECON) == TRUE ) then

icntl(i_VECTOR_PTR) = r

next_action = EX_PRECONDITIONER

else

next_action = NO_PRECONDITIONER

end if

case ( EX_PRECONDITIONER, NO_PRECONDITIONER )

next_action = CG_PART_2

case ( CG_PART_2 )

next_action = stopping_criteria( icntl( i_STOPPING ) ) !! select the stopping

!! criterion

case ( CHECK_RESIDUAL )

if ( icntl(i_AUX_ACTION)==STOP_CG ) then

next_action = STOP_CG

else if ( icntl(i_AUX_ACTION)==LOOP_CG ) then

icntl(i_VECTOR_PTR) = p

next_action = MAT_VEC_PRODUCT

else

stop ’- WRONG ACTION.’

end if

case ( ENERGY_ESTIMATE_1, ENERGY_ESTIMATE_2 )

if ( icntl(i_AUX_ACTION) == STOP_CG ) then

next_action = STOP_CG

else if ( icntl(i_AUX_ACTION) == LOOP_CG ) then

icntl(i_VECTOR_PTR) = p

next_action = MAT_VEC_PRODUCT
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else

stop ’- WRONG ACTION.’

end if

case ( MAT_VEC_PRODUCT )

next_action = CG_PART_1

case ( STOP_CG )

next_action = STOP_CG

end select

3.7 The Module CG PARAMETERS

All of the access entries of the control arrays ICNTL and CNTL, the info and working arrays INFO,
RINFO, and W, and the values that any parameter flag can take are parameterised and referred to
by a label name. The definitions are contained in the module CG PARAMETERS, which is included
at the beginning of the package. Such a parameterisation makes it possible to change the position
of the control and info flags and the value that they attain consistently. The name of the entries
and index values are self-explanatory, and for this reason are not included in this discussion.

4 Numerical experiments

In this section, we present the results of the PCG algorithms on two set of test problems. In all
the tests, we used the incomplete Cholesky factorization, icfs, by Lin and Moré (1999) as the
preconditioner.

4.1 Test problems

The first set of test problems is related to the solution by finite elements of a 2-dimensional
Poisson problem defined on Ω = (0, 1) × (0, 1) (the unit square) as

(P1)

{

div c(x) grad u(x) = 1 in Ω
u(x) = 0 on ∂Ω

where (see Figure 6)
{

c(x) = 1 x ∈ Ω1

c(x) = 10−6 x ∈ Ω \ Ω1

The meshes and the discrete problem have been generated using FEMLAB (2004). In Figure 7,
we show the mesh of the coarser problem where there are 8 points on each segment of ∂Ω. The
other meshes (see Table 1 for the details) have been built by doubling the number of nodes on
each segment of the boundary of the previous mesh. On the quadrilateral meshes, we consider
the finite-element approximation provided by the quadratic Lagrange elements.

The second set of test problems is related to the solution of a structural mechanics elasticity
problem in three dimensions, and is formulated on the domain Ω, that represents an iron beam
of length 10. Figure 8 shows the iron beam, and Figure 9 its cross section. The two extremes of
the beam are clamped and the body force is gravity. The union of the two clamped faces (x = 0
and x = 10) is represented by the sub-domain ∂Ω1, while ∂Ω2 is the top face of the beam (see
Figure 8).
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Figure 6: Domain Ω for problem (P1)

Mesh 8 Mesh 16 Mesh 32 Mesh 64

n (# degree of freedom) 6241 25281 101761 408321
nz (# nonzeros) 51481 211721 858601 3457961

h 0.05 0.025 0.0125 0.00625

Table 1: Data relating to the meshes for problem (P1).

The physical model is described by the steady Navier’s equation:

(P2)































−div c gradu = K in Ω
u = 0 on ∂Ω1

(n · σ)z = −4000 on ∂Ω2

(n · σ)x = 0 on ∂ Ω \ {∂ Ω1 ∪ ∂ Ω2}
(n · σ)y = 0 on ∂ Ω \ {∂ Ω1 ∪ ∂ Ω2}
(n · σ)z = 0 on ∂ Ω \ {∂ Ω1 ∪ ∂ Ω2}

where the tensor c is a 9×9 constitutive matrix defined by the material properties, the tensor σ is
the stress tensor, the vector u ∈ IR3 takes into account the displacements, and K is the body force.
As for the first set, the meshes and the finite dimensional problems have been generated using
FEMLAB (2004). In Figure 9, we exhibit the coarser mesh relative to a cross-section of the beam
where, on each segment of the boundary, we have two points. The other cross-section meshes
(see Table 2 for the details) have been built by doubling the number of nodes on each segment
of the boundary of the previous mesh. The global meshes have been built by subdividing the
beam along the x-axis with parallel cross-sections (see Table 2 for the details) and using bilinear
Lagrange finite-element approximation on the resulting 3-rectangles (see Ciarlet, 1978, Chapter
2 Section 2.2).

In the next section, we use the first set of test problems to compare the different estimators
for the energy norm of the error (see τk, ξk, and Ξk in Figure 2). The second test problem
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Figure 7: Mesh 8 for problem (P1)

Mesh 2 Mesh 4 Mesh 8

n (# degree of freedom) 22113 78813 597789
nz (# nonzeros) 769248 2948472 23386248
# cross-sections 64 64 128

h 0.3 0.15625 0.078125

Table 2: Data relating to the meshes for problem (P2).

set is a realistic application. It will be used to illustrate the benefit of using the Hestenes and
Stiefel criterion versus the residual based stopping criterion with the usual threshold of 10−8.
In particular, we will be able to indentify much sooner an iteration where the corresponding
approximated solution is satisfactory from the mathematical and engineering point of views.

4.2 Numerical results

The lower and upper bounds based on the Gauss-Radau rule need an estimate of, respectively,
the largest and smallest eigenvalues of the preconditioned matrix. We should point out that this
is a serious handicap, insofar as the computation of these two eigenvalues can be as costly as the
solution of the system by PCG. In particular, the Gauss-Radau lower bound that relies on the
assumption that the largest eigenvalue of M−1A is less than ||A||2 ≈ 7.8 does not improve the
Hestenes and Stiefel bound. In Figure 10, we exhibit the ratio between the two estimates for
problem P1 and for all the meshes. We have the same behaviour for problem P2. Owing to this
poor gain, we omit in what follows the results of the Gauss-Radau lower bound.

We assume that the energy norm Ẽ of the computed solution on the finest mesh is a good
approximation of the true energy norm E of the continuous solution. This assumption enables

us to estimate the true energy norm error E
(p)
k , p = 8, 16, 32 at step k and on each of the coarser
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Figure 8: Geometry for problem (P2)

meshes using the simple formula

E
(p)
k =

√

|Ẽ2 − rinfo(1)|
Ẽ2

, (9)

where rinfo(1) stores the value of norm_u_est at step k (see Figure 4).
The error estimates are compared with the values of ek given by the formula

e
(p)
k =

√

√

√

√

k̃
∑

i=k

ψ
(p)
i , p = {8, 16, 32}, (10)

on each mesh, and where k̃ denotes the final iteration step index.

4.2.1 Discussion of results for the model problem (P1)

In Figures 11, 12, and 13, we compare the values E
(p)
k , p = 8, 16, 32 with the values of ek given

by the formula (10). The value of Ẽ on mesh 64 is 3.3911964104 .
In all the plots, the two curves are very close until the approximation error in energy norm

becomes dominant. The discontinuous coefficient in P1 makes the regularity of the solution very
poor and we cannot expect a better global error (see Petzoldt, 2001) even if we use quadratic
Lagrangian elements.
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Figure 9: Cross section with a mesh example for problem (P2)

In Figures 14, 15, and 16, we compare the Hestenes and Stiefel lower bound, the Gauss-Radau
upper bound, and the preconditioned residual with the error. In order to have the Gauss-Radau
upper bound, we need to input a lower bound λ of the smallest eigenvalue of M−1A. In our test,
we choose

λ = hmin
x∈Ω

c(x).

This choice is the result of a “trial-and-error” procedure. In all the experiments, we choose
the delay parameter d = 10, and, for this set of problems, the tolerance η = h2. This will not
guarantee a global error of order O(h2) but will help in having O(h2) error in the regular subsets
of Ω1 and of Ω \ Ω1 far away from the discontinuity on c(x).

The first set of test problems shows that the Gauss-Radau upper bound is reliable but is
also more expensive in terms of additional iterations. The Hestenes and Stiefel criterion may
suffer from oscillations during the initial phase; nonetheless, after the super-linear convergence
has started, it becomes very efficient. However, in all our tests the oscillation amplitude of the
Hestenes and Stiefel lower bound is smaller than h and becomes even smaller by increasing the
value of the parameter d to 20. Note that the value of the preconditioned residual is quite close to
the Gauss-Radau upper bound. This fact suggests that the incomplete Cholesky preconditioner
works fine and that the resulting matrix M preserves the energy properties of the matrix A.

4.2.2 Discussion of results for the model problem (P2)

In Figures 17, and 18, we compare the values E
(p)
k , p = 8, 16, 32 with the values of ek given by

the formula (10). The value of Ẽ on mesh 8 is 1.147732910−1 . We found the same behaviour we
had for the model problem (P1).

In Figure 19 and Figure 20, we plot the errors and the estimates of Hestenes and Stiefel, Gauss-
Radau (only the upper bound) and the 2-norm of the preconditioned residual. For the second
set of test problems, the Gauss-Radau upper bound seems less efficient and more conservative
than necessary. As before, we have chosen d = 10. Moreover, we have assumed that the smallest
eigenvalue of M−1A is ≈ 10−4. The energy norm error is quite high owing to the poor global
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Figure 10: Ratio between the Hestenes-Stiefel and Gauss-Radau lower bounds for problem (P1)

regularity of the solution. This is a direct consequence of the geometry of the domain. The
Hestenes and Stiefel bound is still reliable and suggests that a threshold η = O(h2) will guarantee
that the computed solution has an energy norm error smaller than the true error without requiring
several additional iterations. We point out that for mesh 8, a stopping criteria requiring that the
residual of the preconditioned problem be less than 10−8 would have required ≈ 1900 iterations
to reach convergence. A stopping criterion based on the Hestenes and Stiefel bound requires 350
iterations to have the energy norm less than O(h2).

5 Conclusions

The numerical experiments performed on the two sets of test problems support the use of stopping
criteria based on the energy norm of the error. In particular, the Hestenes and Stiefel criterion
is numerically stable and does not require any a priori information regarding the preconditioned
problem. Moreover, the numerical experiments show that the conjugate gradient method, applied
to matrices related to the solution of partial differential equations with not a very regular solution,
needs one of our stopping criteria in order to avoid unnecessary iterations. The stopping criterion
based on the Euclidean norm of the preconditioned residual is not related to the energy norm of
the error and, thus, is not able to predict when we have a stable solution.
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Figure 16: Error estimates for problem (P1) and mesh 32
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Figure 17: E
(8)
k (solid line) vs e

(8)
k (circles) for problem (P1) and mesh 8
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Figure 18: E
(16)
k (solid line) vs e

(16)
k (circles) for problem (P1) and mesh 16

25



0 50 100 150 200 250
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Iteration

 e
rr

or
s 

in
 L

O
G

 s
ca

le
BEAM−2 problem − Error and error bounds

error
Residual
HS est
Gauss−Radau upper

Figure 19: Error estimates for problem (P2) and mesh 8
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Figure 20: Error estimates for problem (P2) and mesh 16
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