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Abstract

The concept of photon acceleration is revisited. It is shown here than it can described as an

inelastic scattering process. This new approach is applied to the study of relativistic plasma

bubbles or wakefields, as those created by an intense laser pulse or by a particle beam moving in a

background plasma. Scattering of an incident probe photon beam by a relativistic plasma density

perturbation is considered. The angular dependence of frequency and intensity of the scattered

signal are discussed in detail. The case of relativistic electron beams propagating in vacuum is also

considered for comparison. Such a scattering process could be used as a diagnostic of the space-time

structures created by laser driven bubbles and wakefields, for particle acceleration studies.
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I. INTRODUCTION

Photon acceleration is a generic optical process which takes place in plasmas and in other

optical media, and includes a variety of phenomena such as photon trapping by electron

plasma waves, and self-phase and cross-phase modulation in optical fibers [1]. It is well

known that it can lead to significant frequency upshifts. This occurs when a probe photon

beam interacts with relativistic perturbations, created by moving ionization fronts [2, 3] or

by moving nonlinear perturbations, as those created by intense laser pulses in the medium

[4, 5]. These two cases are similar but physically distinct, and they have both been confirmed

experimentally. Photon acceleration by relativistic ionization fronts has be observed in

microwave experiments [6], as well as in optical experiments where a proof of principle was

established [7]. More recently, photon trapping effects were identified in laser wakefield

experiments [8], similar to those used for laser acceleration [9].

Photon acceleration is also related to sophisticated kinetic effects, most particularly, to

photon Landau damping of electron plasma waves. For plasma waves with relativistic phase

velocities, as those created by a laser pulse, electron Landau damping is negligible, but

photon Landau damping can be significant. This kinetic process was first proposed using

geometric optics and a phenomenological photon kinetic equation [10], and then confirmed

by a full wave description of electromagnetic radiation [11]. It is also interesting to notice

that photon Landau damping shows striking similarities with electron Landau damping in

the quantum plasma regime [12]. Such kinetic processes, although conceptually relevant and

innovative, have not yet been experimentally addressed.

A variety of theoretical descriptions can be used to describe photon acceleration, from

geometric ray tracing to full wave calculations, using both classical and quantum methods [1].

An additional and different view of this process is proposed here. We show that, in certain

configurations, photon acceleration can also be seen as an inelastic photon scattering. This

could be particularly relevant to diagnose the velocity and shape of relativistic bubbles and

wakefield structures, excited by intense laser pulses or by short particle beam moving across

the plasma.

We first consider photon scattering by a relativistic bubble with arbitrary shape, moving

in a background isotropic plasma and driven by an intense laser pulse, or by a particle beam.

Our scattering model, the resulting angular dependence of the scattered frequency shifts and
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scattered efficiencies will be discussed. We then compare the laser driven bubble with the

case of a bunch of charged particles moving in vacuum.

II. WAVE SCATTERING MODEL

Let us assume a relativistic bubble, with arbitrary shape, moving in a plasma with velocity

u. The electron plasma density can be described by

n = n0 [1− εF (r− ut)] (1)

where n0 is the equilibrium plasma density, ε = δn/n0 is the perturbation amplitude associ-

ated with the bubble, and F (r−ut) is a generic shape function of the moving perturbation,

to be specified later.

The incident wave, associated with a probe photon beam, can be described by its vector

potential

Ai(r, t) = A0 exp(ik0 · r− iω0t) + c.c. (2)

The interaction of this incident wave with the moving bubble creates an electron current,

given by

J = −env , v =
e

m
(Ai + As) (3)

where −e and m are the electron charge and mass, and the vector potential As describes

the scattered wave. This current can then be written as

J = −e
2n0

m
[As − εF (r− ut)Ai] (4)

The scattered wave will then be determined by the wave equation(
∇2 − 1

c2
∂2

∂t2

)
As = −µ0J (5)

where µ0 the magnetic permeability of vacuum. At this point, it is useful to introduce a

time Fourier transformation of the scattered vector potential, such that

As =

∫
Aω(r) exp(−iωt)dω

2π
(6)

The wave equation (5) then becomes (∇2 + k2) Aω = −µ0Jω, with the current spectral

component given by

Jω = ε
ω2
p

µ0c2
A0

∫
F (r− ut)eiωt

{
eik0·r−iω0t + c.c.

}
dt (7)
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where ωp is the equilibrium plasma frequency, and the wave number of the scattered wave

k is determined by the linear dispersion relation k2c2 = ω2 − ω2
p. Let us now consider the

following decomposition of the bubble profile F (r − ut) = f(r⊥)g(η), with η = x − ut.

where f(r⊥) and g(η) pertain for the perpendicular and parallel (with respect to the bubble

motion) bubble profiles. Without loss of generality we have assumed here that the bubble

moves along the x-coordinate, u = uex. We now introduce a Fourier transformation of the

parallel shape function, as

g(η) =

∫ ∞
−∞

g(q) exp(iqη)
dq

2π
(8)

Two simple but useful models can be used for g(η). The first one is a Gaussian shape of

width σ, with the corresponding Fourier transformation

g(η) = exp

(
− η2

2σ2

)
, g(q) = 2πσ exp

(
−1

2
q2σ2

)
(9)

It is well known that wakefields produced by an intense laser pulse, in the so-called bubble

regime [17], have a nearly spherical shape [18, 19], with a strong electron depletion. A

super-Gaussian shape would probably be more adequate to describe the bubble, but the

final frequency shift of photons interacting with such moving structures is not very much

sensitive to the actual shape of the electron density depletion, and is mainly determined

by the electron density minimum and by the bubble velocity [1]. The use of this simple

Gaussian profile is therefore justified. Alternatively, we can use a cosine function

g(η) = [1−H(|η| − πσ/2)] cos(η/σ) (10)

where H(x) is the Heaviside function, and the Fourier components are determined by the

simple integral

g(q) = 2

∫ π/2

0

cosx exp(iqσx)dx (11)

This simple cosine model can accurately describe a laser wakefield for moderate laser in-

tensities, below the bubble regime. Instead of an isolated bubble, or a simple cosine wake,

we could equally consider a sequence of bubbles associated with a more complex wakefield

structure. It was shown recently that donut wakefields could be excited in a plasma, using

a laser with orbital angular momentum [20]. In the high intensity laser regime, the corre-

sponding toroidal bubble is able to accelerate positron beams [21]. Replacing the Fourier

development (8) in the wave equation (7), we can then derive

Jω = ε
ω2
p

µ0c2
[
S+(r⊥)ei(q+ex+k0)·r + S−(r⊥)ei(q−ex−k0)·r] (12)
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where we have defined the following auxiliary quantities

S±(r⊥) = (A0 · eω)
f(r⊥)

u
g(q±) , q± =

1

u
(ω ∓ ω0) (13)

with eω = Aω/Aω. This will allow us to determine the intensity and spectrum of the

scattered radiation, as discussed next.

III. SCATTERED RADIATION

Let us now consider a given direction of propagation for the scattered wave signal, as

determined by the wavevector k, such that eω · k = 0. The solution of equation (12) gives

the scattered field observed at a a generic position r, as

Aω(r) = −
εω2

p

2kc2
eik·r

∫ r

dr′
∫

dq⊥
(2π)2

× (14)

×e−ik·r′
∑
±

{
S±(q⊥)ei(qpm±k0)·bfr′

}
where S±(q⊥) results from an additional Fourier transformation in the trasnverse coordinate

direction, as defined by

f(r⊥) =

∫
f(q⊥) exp(iq⊥ · r⊥)

dq⊥
(2π)2

(15)

The asymptotic value of the radiation field, which can be measured far away from the

interaction zone, can be obtained by assuming |r| → ∞ in the above integration. We

therefore get, for the dominant spectral components

Aω(r) ' −
πεω2

p

kc2
eik·r

∑
±

S±(q⊥)δ(q± − (k− k0)) (16)

where the relevant wavevectors of the bubble structure components are q± = q±ex + q⊥.

This defines the wavevectors of the allowed scattered radiation as

k = q± ± k0 ≡
1

u
(ω ∓ ω0)ex + q⊥ ± k0 (17)

Using the dispersion relation for the scattered waves, we can write this expression in terms

of the radiated frequency ω, as

ω2

γ2
b

∓ 2ωω0

(
1− k0 · u

ω0

)
+ ω2

0

(
u2

c2
− 2

k0 · u
ω0

)
+Q2

⊥u
2 = 0 (18)
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where we have used Q2
⊥ = q2

⊥± 2(q⊥ ·k2
0⊥). We have also introduced the relativistic gamma

factor of the moving bubble, as γb = (1− u2/c2)−1/2. The solution is

ω = ±ω0γ
2
b

(
1− k0 · u

ω0

)
{1± ξ} (19)

where the two plus and minus signs have to be taken independently, and the quantity ξ is

determined by

ξ2 = 1− [(1 +Q2
⊥c

2/ω2
0)u2/c2 − 2k0 · u/ω0]

(1− k0 · u/ω0)2γ2
b

(20)

It is clear from this result that the scattered frequency ω will depend on the direction

and magnitude of the bubble velocity, as well as on of the direction of propagation of the

incident and scattered radiation, as determined by k0 and k. Very large frequency shifts

∆ω ≡ (ω − ω0) � ω0 can eventually occur. It is interesting to note that this expression

for the scattered frequency strongly resembles the result obtained independently by Mori

[13] and by one of us [1] for the ”dark source”, where radiation is generated by a plasma

perturbation moving across a static electric field. Here the static field is replaced by the

incident wave. Before discussing the frequency shifts in detail, it is useful to consider the

amplitude of the scattered radiation, as determined by equation (16). This leads to the

following form factor, characterizing the intensity of the scattering radiation.

S(ω, ω0) ≡
|Aω|2

|A0|2
=

(
πεω2

p

kuc2

)2

|(e0 · eω)|2|F (q⊥, q±)|2 (21)

where F (q⊥, q±) ≡ f(q⊥)g(q±). In order to be more specific, it is useful to consider the case

of a Gaussian bubble, defined by

F (q⊥, q±) = exp

(
− η2

2σ2
− r2

⊥
2σ2
⊥

)
(22)

The intensity form factor becomes

S(ω, ω0) ≡
|Aω|2

|A0|2
=

23π5ε2ω4
p

k2u2c4
|(e0 · eω)|2 × (23)

×σ2σ2
⊥ exp

[
−q2
±σ

2 − (k∓ k0)
2
⊥σ

2
⊥
]

We notice here that the scattered amplitudes are only significant for |q±| ≤ 1/σ, and

|q⊥| ≤ 1/σ⊥. We will come back to this later. It is now useful to discuss equation (20)

for some specific condition. First, we consider the explicit angular dependence of the scat-

tered frequencies, by defining a scattering angle θ such that

k0 · u = −k0u cos θ = −β cos θ
√
ω2

0 − ω2
p (24)
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with β = u/c. Equation (20) becomes

ω = ω0γ
2
b

(
1 + β cos θ

√
1−

ω2
p

ω2
0

)
{1± ξ} (25)

For high frequency incident waves, such that ω2
0 � Q2

⊥c
2, ω2

p, the quantity ξ can be given by

the simple expression

ξ2 = 1− β2 + 2β cos θ

γ2
b (1 + β cos θ)2

(26)

This shows that, for large relativistic factors γb � 1 and for counter-propagation, such that

θ ∼ 0, we have very high frequencies for the scattered radiation. In contrast, the scattered

frequencies are lower for forward propagation of the incident wave, such that θ ∼ π. This

is illustrated in figure 1, where the upper frequency branch of the scattered photons is

represented. The lower branch is less sensitive to the change in the bubble gamma factor,

and background plasma frequency, and is not relevant to diagnostic purposes.

An interesting and somewhat surprising situation occurs when the incident wave propa-

gates at right angles with respect to the bubble velocity, θ ∼ ±π/2. In this case the scattered

frequency is approximately given by

ω ' ω0γ
2
b

[
1±

√
1− β2

γ2
b

]
(27)

For γb � 1 this leads to high and low frequency branches, or the order of ωhigh ' 2ω0γ
2
b , and

ωlow ' ω0/2, a sub-harmonic of the incident wave. It should however be noticed that high

frequency shifts, such that ω � ω0 imply that q± ∼ ω/u, and are usually associated with

low scattered intensities, because the efficiency decays exponentially for high values of q±,

as shown by equation (23). We can see that scattering is stronger for low frequencies, and

decays for ω � u/σ. However the situation changes if we have electron structures inside

the bubble, which we have neglected in our simple analysis but are known to occur in the

bubble regime of laser acceleration. Furthermore, the present model is based on the first

Born approximation, which implies that the incident wave is not strongly modified by the

existence of the bubble. A nonlinear scattering model will eventually lead to an increase of

efficiency for the high frequency scattered radiation.
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FIG. 1: Higher frequency part of the scattered spectrum, as a function of the angle between the

bubble velocity u and the incident wavevector k0, for γb = 10, and γb = 7 (dashed). We have used

ω2
p/ω

2
0 = 0.1.

IV. RELATIVISTIC PARTICLE BUNCH

It is useful to compare the previous case of a plasma density perturbation of the bubble

type, which can move at relativistic speed through a plasma without implying the relativistic

motion of the individual plasma particles, with that of a beam of charged particles which

are actually moving at relativistic speed in vacuum. It is known that the electrons inside a

wakefield are nearly at rest with respect to the laboratory frame, because they are mainly

pushed by the driving laser pulse towards to boundaries of the plasma density perturbation.

In a typical laser wakefield experiment, only a small fraction of the electron density popula-

tion is actually self-injected and accelerated [9, 17]. This means that, although the bubble

moves with relativistic velocity, the dominant part of the electron population stays at rest,

on the average. In contrast, if the perturbation is due to an electron beam, the entire bunch

of electrons moves with relativistic speed.

For a bunch of N electrons with velocity u and density profile F (r− ut), equation (1) is

replaced by

n = nbF (r− ut) , N =

∫
nb dr (28)

where nb is the beam density, and a background vacuum is assumed, n0 = 0. For a low

intensity incident wave, the electron energy can be approximately assumed as unperturbed

8



and equal to mγbc
2, and the scattering current is determined by

J = −e
2nb
mγb

AiF (r− ut) (29)

Repeating the above calculations to the present situation, we arrive at an expression for the

scattered frequencies, which takes the form[
1

u
(ω ∓ ω0)± k0x

]2

+ (q⊥ ± k0)
2 =

ω2

c2
(30)

Solving for the frequency, and using (24), we get a result which only differs from (25) because

the plasma frequency is zero, ω2
p = 0. On the other hand, the form factor for the scattered

energy becomes

S(ω, ω0) =
π2ω4

b

k2u2c4
|(e0 · eω)|2

γ2
b

|F (q⊥, q±)|2 (31)

where ωb is the beam plasma frequency. The main difference with respect to equation (23)

is the appearance of a factor γ2
b in the denominator. This is due to an increase of the

effective mass for the electrons in the beam, which strongly reduces the scattering current

and consequently the scattered energy, with respect to the case of a plasma bubble where the

electrons are at rest. It should be noticed that the two kinds of photon scattering processes

considered here, from a bubble or from an electron beam, can occur simultaneously in the

laser acceleration in the bubble regime, where a short electron pulse, with an internal width

much smaller than the laser waist and bubble width, is excited inside the plasma bubble. In

this case, the scattered fields and spectra associated with these two moving perturbations

will superpose.

V. CONCLUSIONS

We have shown here that photon acceleration can be seen as a particular case of inelastic

scattering process, where probe photons bounce back with increased energy from a moving

density perturbation. We have illustrated this idea by studying the interaction of a probe

photon beam with a relativistic bubble moving in a plasma, produced for instance by an in-

tense laser laser pulse used for laser acceleration studies [9, 14]. We have derived expressions

for the angular dependence of the scattered frequency, and for the corresponding scattered

intensities. We have also compared the relativistic bubble case with that of a bunch of

relativistic electrons moving in vacuum.
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It should be noticed that, in our model, inelastic scattering was only seen from the point

of view of the probe photons, and momentum conservation of the moving perturbation was

considered. This is valid when the total momentum carried by the relativistic bubble or

electron bunch is much larger than that of the probe photons. In plausible experimental

configurations, the relativistic bubble is excited by ultra-intense laser beams (in the range of

tens of Tera-Watt), whereas the probe beam intensity is a few orders of magnitude smaller

thus justifying the neglect of recoil effects on the relativistic bubble. The same is true for

the relativistic electron bunch, where the average electron momentum is much higher than

the probe photon momentum, because the inequality γb � λCk, where λC is the Compton

wavelength and k the incident photon wavenumber, is always satisfied.

We suggest that such an upshifting frequency scheme could be used to diagnose the

space-time structure of nonlinear perturbations moving in a plasma, in particular their

mean velocity and shape. This is of particular relevance to the project AWAKE, now being

implemented at CERN, which proposes to create plasma wakefields using high energy proton

beams [22].

Although with a lower efficiency, the same diagnostic technique could also be applied to

measure similar properties of particle bunches moving in vacuum. A similar approach could

be used to study photon scattering by nonlinear perturbations in a generic optical medium.

In particular, the photon acceleration process described here could eventually explain the

recent observations of a presumed classical analogue to Hawking radiation [23, 24]. In our

view, the observed radiation spectrum is simply due to side scattering of the incident laser

pulse by its own relativistic nonlinear perturbation.

In this work we have use a simple theoretical approach, based on the first Born approx-

imation. We expect that a more detailed nonlinear study will confirm the frequency shifts

of the scattered radiation derived here, and reveal increased scattering efficiencies in the

nonlinear regime. We have also neglected other photon acceleration processes which can

be associated with radiation trapped inside the bubble [15], or transmitted across it [16] .

The integrated influence of all these aspects will be studied with the help of pic and photon

kinetic code simulations in a future publication.

To our knowledge, photon scattering diagnostics of relativistic laser wakefield or electron

beams have not yet been developed. Our results, and in particular the two branches of

frequency upshifts given by eqs. (25) or (27), could be used to inspire new and innovative
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experiments in the field of laser-plasma interactions.
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