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ABSTRACT
This paper provides a comprehensive study and comparison of two state-of-the-art

direct solvers for large sparse sets of linear equations on large-scale distributed-memory
computers. One is a multifrontal solver called MUMPS, the other is a supernodal solver called
SuperLU.
We describe the main algorithmic features of the two solvers and compare

their performance characteristics with respect to uniprocessor speed, interprocessor
communication, and memory requirements. For both solvers, preorderings for numerical
stability and sparsity play an important role in achieving high parallel e�ciency.

We analyse the results with various ordering algorithms. Our performance analysis is
based on data obtained from runs on a 512-processor Cray T3E using a set of matrices
from real applications. We also use regular 3D grid problems to study the scalability of
the two solvers.
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1 Introduction

We consider the direct solution of sparse linear equations on distributedmemory computers
where communication is by message passing, normally using MPI. We study in detail two

state-of-the-art solvers, MUMPS (Amestoy, Du�, L'Excellent and Koster 1999, Amestoy, Du�
and L'Excellent 2000) and SuperLU (Li and Demmel 1999). The �rst uses a multifrontal
approach with dynamic pivoting for stability while the second is based on a supernodal

technique with static pivoting and iterative re�nement. We discuss the detailed algorithms
used in these two codes in Section 3.

Two very important factors a�ecting the performance of both codes are the use of
preprocessing to preorder the matrix so that the diagonal entries are large relative to the

o�-diagonals and the strategy used to compute an ordering for the rows and columns of
the matrix to preserve sparsity. We discuss these aspects in detail in Section 4.

We compare the performance of the two codes in Section 5, where we show that such

a comparison can be fraught with di�culties even though the authors of both codes are
involved in the study. In Section 6, regular grids problems are used to further illustrate
and analyse the di�erence between the two approaches. We had originally planned a
comparison of more sparse codes but, given the di�culties we have found in assessing

codes that we know well, we have for the moment shelved this more ambitious project.
However, we feel that the lessons that we have learned in this present exercise are both
invaluable to us in our future wider study and have given us some insight into the behaviour

of sparse direct codes which we feel is useful to share with a wider audience at this

stage. In addition to valuable information on the comparative merits of multifrontal versus
supernodal approaches, we have examined the parameter space for such a comparison
exercise and have identi�ed several key parameters that inuence to a di�ering degree the

two approaches.

2 Test environment

Throughout this paper, we will use a set of test problems to evaluate the performance
of our algorithms. Our test matrices come from the forthcoming Rutherford-Boeing
Sparse Matrix Collection (Du�, Grimes and Lewis 1997) 1, the industrial partners of the

PARASOL Project2, Tim Davis' collection3, SPARSEKIT24 and the EECS Department of
UC Berkeley5. The PARASOL test matrices are available from Parallab, Bergen, Norway6.
Two smaller matrices (garon2 and lnsp3937) are included in our set of matrices but will
be used only in Section 4.1 to illustrate di�erences in the numerical behaviour of the two

solvers.
Note that, for most of our experiments, we do not consider symmetric matrices in

our test set because SuperLU cannot exploit the symmetry and is unable to produce an
LDLT factorization. However, since our test examples in Section 6 are symmetric, we do

1Web page http://www.cse.clrc.ac.uk/Activity/SparseMatrices/
2EU ESPRIT IV LTR Project 20160
3Web page http://www.cise.ufl.edu/�davis/sparse/
4Web page http://math.nist.gov/MatrixMarket/data/SPARSKIT/
5Matrix ecl32 is included in the Rutherford-Boeing Collection
6Web page http://www.parallab.uib.no/parasol/
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Real Unsymmetric Assembled (rua)
Matrix name Order No. of entries StrSym(�) Origin
bbmat 38744 1771722 0.54 Rutherford-Boeing (CFD)
ecl32 51993 380415 0.93 EECS Department of UC Berkeley
invextr1 30412 1793881 0.97 PARASOL (Polyow S.A.)
fidapm11 22294 623554 1.00 SPARSKIT2 (CFD)
garon2 13535 390607 1.00 Davis collection (CFD)
lhr71c 70304 1528092 0.00 Davis collection (Chem Eng)
lnsp3937 3937 25407 0.87 Rutherford-Boeing (CFD)
mixtank 29957 1995041 1.00 PARASOL (Polyow S.A.)
rma10 46835 2374001 1.00 Davis collection (CFD)
twotone 120750 1224224 0.28 Rutherford-Boeing (circuit sim)
wang4 26068 177196 1.00 Rutherford-Boeing (semiconductor)

Table 2.1: Test matrices. (�) StrSym is the number of nonzeros matched by nonzeros
in symmetric locations divided by the total number of entries (so that a structurally

symmetric matrix has value 1.0).

show results with both the symmetric and unsymmetric factorization versions of MUMPS.
Matrices mixtank and invextr1 have been modi�ed because of out-of-range (underow)
values in matrix �les. To keep the same sparsity pattern, we did not want to replace those

underow values by zeros. Instead, we have replaced all entries with an exponent smaller
than -300 to numbers with the same mantissa but with an exponent of -300. For each
linear system, the right-hand side vector is generated so that the true solution is a vector
of all ones.

All results presented in this paper have been obtained on the Cray T3E-900 (512
DEC EV-5 processors, 256 Mbytes of memory per processor, 900 peak Megaop rate per
processor) from NERSC at Lawrence Berkeley National Laboratory. We will also refer
to experiments on a 35 processor IBM SP2 (66.5 MHertz processor with 128 Mbytes

of physical memory and 512 Mbytes of virtual memory and 266 peak Megaop rate
per processor) at GMD in Bonn, Germany, used during the PARASOL Project. The
performance characteristics of the two machines are listed in Table 2.2.

Computer CRAY T3E-900 IBM SP2

Frequency of the processor 450 MHertz 66 MHertz
Peak uniproc. performance 900 Mops 264 Mops
E�ective uniproc. performance 340 Mops 150 Mops

Peak communication bandwidth 300 Mbytes/sec 36 Mbytes/sec
Latency 4 �sec 40 �sec

Bandwidth/E�ective performance 0.88 0.24

Table 2.2: Characteristics of the CRAY T3E-900 and the IBM SP2. The factorization of

matrix wang4 using MUMPS was used to estimate the e�ective uniprocessor performance of
the computers.
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3 Description of the algorithms used

In this section, we briey describe the main characteristics of the algorithms used in the
solvers and highlight the major di�erences between them. For a complete description of the

algorithms, the reader should consult previous papers by the authors of these algorithms
(Amestoy et al. 1999, Amestoy et al. 2000, Li and Demmel 1998, Li and Demmel 1999).

Both algorithms can be described by a computational tree whose nodes represent

computations and whose edges represent transfer of data. In the case of the multifrontal
method, MUMPS, some steps of Gaussian elimination are performed on a dense frontal matrix
at each node and the Schur complement (or contribution block) that remains is passed for
assembly at the parent node. In the case of the supernodal code, SuperLU, the distributed

memory version uses a right-looking formulation which, having computed the factorization
of a block of columns corresponding to a node of the tree, then immediately sends the
data to update the block columns corresponding to ancestors in the tree.

Both codes can accept any pivotal ordering and both have a built-in capability
to generate an ordering based on an analysis of the pattern of A + AT , where the
summation is performed symbolically. However, for the present version of MUMPS, the
symbolic factorization is markedly less e�cient if an input ordering is given since di�erent

logic is used in this case. The default ordering used by MUMPS is approximate minimum
degree (AMD) (Amestoy, Davis and Du� 1996a) while the default for SuperLU is multiple
minimum degree (MMD) (Liu 1985). However, in our experiments using a minimum

degree ordering, we considered only the AMD ordering since both codes can generate this

using the subroutine MC47 from HSL (2000). It is usually far quicker than MMD and
produces a symbolic factorization close to that produced by MMD. We also use nested
dissection orderings (ND). Sometimes we use the ON-MeTiS ordering from MeTiS (Karypis

and Kumar 1998), and sometimes the nested dissection/haloamd ordering from SCOTCH

(Pellegrini, Roman and Amestoy 1999) depending on which performs better on each
particular problem. In addition, it is sometimes very bene�cial to precede the ordering
by performing an unsymmetric permutation to place large entries on the diagonal and

then scaling the matrix so that the diagonals are all of modulus one and the o�-diagonals
have modulus less than or equal to one. We use the MC64 code of HSL to perform this
preordering and scaling (Du� and Koster 1999) and indicate clearly when this is done.
The e�ect of using this preordering of the matrix is discussed in detail in Section 4.1.

Finally, when MC64 is not used, our matrices are always scaled.
In both approaches, a pivot order is de�ned by the analysis and symbolic factorization

stages. In MUMPS, the modulus of the prospective pivot is compared with the largest

modulus of an entry in the row and is only accepted if this is greater than a threshold
value, typically between 0.001 and 0.1 (our default value is 0.01). Note that, although
MUMPS can choose pivots from o� the diagonal, the largest entry in the column might
be unavailable for pivoting at this stage if all entries in its row are not fully summed.

This threshold pivoting strategy is common in sparse Gaussian elimination and helps
to avoid excessive growth in the size of entries during the matrix factorization and so
directly reduces the bound on the backward error. If a prospective pivot fails the test,
all that happens is that it is kept in the Schur complement and is passed to the parent

node. Eventually all rows with entries in the column will be available for pivoting, at the
root if not before, so that a pivot can be chosen from the column. Thus the numerical
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factorization can respect the threshold criterion but at the cost of increasing the size of
the frontal matrices and causing more work and �ll-in than were forecast. For the SuperLU
approach, a static pivoting strategy is used and we keep to the pivotal sequence chosen in

the analysis. The magnitude of the potential pivot is tested against a threshold of �1=2jjAjj,
where � is the machine precision and jjAjj is the norm of A. If it is less than this value
it is immediately set to this value (with the same sign) and the modi�ed entry is used as

pivot. This corresponds to a half-precision perturbation to the original matrix entry. The
result is that the factorization is not exact and iterative re�nement may be needed. Note
that, after iterative re�nement, we obtained an accurate solution in all the cases that we
tested. If problems were still to occur then extended precision BLAS (Li, Demmel, Bailey,

Henry, Hida, Iskandar, Kahan, Kapur, Martin, Tung and Yoo 2000) could be used.

3.1 MUMPS main parallel features

The parallelism within MUMPS is at two levels. The �rst uses the structure of the assembly

tree, exploiting the fact that computations at nodes that are not ancestors or descendents
are independent. The initial parallelism from this source (tree parallelism) is the number
of leaf nodes but this reduces to one at the root. The second level is in the subdivision
of the elimination operations through blocking of the frontal matrix. This blocking gives

rise to node parallelism and is either by rows (referred to as 1D-node parallelism) or by
rows and columns (at the root and referred to as 2D-node parallelism). Node parallelism
depends on the size of the frontal matrix which, because of delayed pivots, is only known

at factorization time. Therefore, this is determined dynamically. Each tree node is
assigned a processor a priori, but the subassignment of blocks of the frontal matrix is
done dynamically.

Most of the machine dependent parameters in MUMPS that control the e�ciency of

the code are designed to take into account both the uniprocessor and multiprocessor
characteristics of the computers. Because of the dynamic distributed scheduling approach,

we do not need as precise a description of the performance characteristics of the computer
as for approaches based on static scheduling such as PaStiX (Henon, Ramet and Roman

1999). Most of the machine dependent parameters in MUMPS are associated with the block
sizes involved in the parallel blocked factorization algorithms of the dense frontal matrices.
Our main objective is to maintain a minimum granularity to e�ciently exploit the potential

of the processor while providing su�cient tasks to exploit the available parallelism. Our
target machines di�er in several respects. The most important ones are illustrated in
Table 2.2. We found that smaller granularity tasks could be used on the CRAY T3E
than on the IBM SP2 because of the relatively faster rate of communication to Megaop

rate on the CRAY T3E than on the IBM SP2 (see Table 2.2). That is to say that the
communication is relatively more e�cient on the CRAY T3E.

Dynamic scheduling is a major and original feature of the approach used in MUMPS.

A critical part of this algorithm is when a process associated with a tree node decides

to reassign some of its work, corresponding to a partitioning of the rows, to a set of so-
called worker processes. We call such a node a one-dimensional parallel node. In earlier
versions of MUMPS, a �xed block size is used to partition the rows and work is distributed

to processes starting with the least loaded process. (The load of a process is determined
by the amount of work (number of operations) allocated to it and not yet processed,
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which can be determined very cheaply.) Since the block size is �xed, it is possible for a
process in charge of a one-dimensional parallel node to give additional work to processes
that are already more loaded than itself. This can happen near the leaf nodes of the tree

where sparsity provides enough parallelism to keep all processes busy. On the other hand,
insu�cient tasks might be created to provide work to all idle processes. This situation is
more likely to occur close to the root of the tree.

In the new algorithm (available since Version 4.1 of MUMPS), the block size for the one-
dimensional partitioning can be dynamically adjusted by the process in charge of the node.
Early in the processing of the tree (that is, near the leaves) this gives a relatively bigger
block size so reducing the number of worker processes; whereas close to the root of the

tree the block size will be automatically reduced to compensate for the lack of parallelism
in the assembly tree. We bound the block size for partitioning a one-dimensional parallel
node by an interval. The lower bound is needed to maintain a minimum task granularity
and control the volume of messages. The upper bound of the interval is less critical (it is

by default chosen to be about eight times the lower bound) but it is used in estimating
the maximum size of the communication bu�ers and of the factors and so should not be
too large.

This \all dynamic" strategy of both partitioning and distributing work onto the
processors could cause some trouble on a large number of processors (more than 128).
In that case, it can be quite bene�cial to take into account some \global" information to
help the local decisions. For example one could restrict the choice of worker processes to a

set of candidate processors determined statically during the analysis phase. This notion,
commonly used in the design of static scheduling algorithms such as that in Henon et
al. (1999), could reduce the overhead of the dynamic scheduling algorithm, reduce the
increase in the communication volume when increasing the number of processors, and

improve the local decision. The tuning of the parameters controlling the block size for
1D partitioning would then be easier and the estimation of the memory required during
factorization would be more accurate. On a large number of processors, both performance

and software improvements could thus be expected. This feature is not available in the
current Version 4.1 of MUMPS but will be implemented in a future release. We will see that
by adding this feature, one could address some of the current limitations of the MUMPS

approach, see Section 5.2.

The solution phase is also performed in parallel and uses asynchronous communications
both for the forward elimination and the back substitution. In the case of the forward
elimination, the tree is processed from the leaves to the root, in a similar way to the
factorization, while the back substitution requires a di�erent algorithm that processes the

tree from the root to the leaves. A pool of ready-to-be-activated tasks is used. We do not
change the distribution of the factors as generated in the factorization phase. Hence, type
2 and 3 node parallelism are also used in the solution phase.

3.2 SUPERLU main parallel features

SuperLU also uses two levels of parallelism although more advantage is taken of the

node parallelism through blocking of the supernodes. Because the pivotal order is fully

determined at the analysis phase, the assignment of blocks to processors can be done
statically a priori before the factorization commences. A 2D block-cyclic layout is used
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and the execution can be pipelined since the sequence is predetermined. The matrix
partitioning is based on the notion of an unsymmetric supernode introduced in Demmel,
Eisenstat, Gilbert, Li and Liu (1999). The supernode is de�ned over the matrix factor L.

A supernode is a range (r : s) of columns of L with the triangular block just below the
diagonal being full, and the same nonzero structure elsewhere (this is either full or zero).
This supernode partition is used as the block partition in both row and column dimensions,

that is the diagonal blocks are square. If there areN supernodes in an n-by-n matrix, there
will be N2 blocks of non-uniform size. Figure 3.1 illustrates such a block partition. The
o�-diagonal blocks may be rectangular and need not be full. Furthermore, the columns in
a block of U do not necessarily have the same row structure. We call a dense subvector

in a block of U a segment. The P processes are also arranged as a 2D mesh of dimension
Pr�Pc = P . By block-cyclic layout, we mean block (I; J) (of L or U) is mapped onto the
process at coordinate ((I � 1) mod Pr, (J � 1) mod Pc) of the process mesh. During the
factorization, block L(I; J) is only needed by the processes on the process row ((I � 1)

mod Pr). Similarly, block U(I; J) is only needed by the processes on the process column
((J � 1) mod Pc). This partitioning and mapping can be controlled by the user. First,
the user can set the maximum block size parameter. The symbolic factorization algorithm

identi�es supernodes, and chops the large supernodes into smaller ones if their sizes exceed
this parameter. The supernodes may be smaller than this parameter due to sparsity and
the blocks are then de�ned by the supernode boundaries. (That is, supernodes can be
smaller than the maximum block size but never larger.) Our experience has shown that a

good value for this parameter on the IBM SP2 is around 40, while on the Cray T3E it is
around 24. Second, the user can set the shape of the process grid, such as 2� 3 or 3� 2.
The more square the grid, the better the performance expected. This rule of thumb was
used on the Cray T3E to de�ne the grid shapes.
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Figure 3.1: The 2D block-cyclic layout used in SuperLU.

In this 2D mapping, each block column of L resides on more than one process, namely,

a column of processes. For example in Figure 3.1, the second block column of L resides
on the column processes f1, 4g. Process 1 only owns two nonzero blocks, which are not
contiguous in the global matrix.

The main numerical kernel involved during numerical factorization is a block update
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corresponding to the rank-k update to the Schur complement:

A(I; J) A(I; J)� L(I;K)� U(K;J) ;

see Figure 3.2. In the earlier versions of SuperLU, this computation was based on Level
2.5 BLAS. That is, we call the Level 2 BLAS routine GEMV (matrix-vector product) but

with multiple vectors (segments), and the matrix L(I;K) is kept in cache across these
multiple calls. This to some extent mimics the Level 3 BLAS GEMM (matrix-matrix
product) performance. However, the di�erence between Level 2.5 and Level 3 is still quite
large on many machines, e.g. the IBM SP2. This motivated us to modify the kernel in

the following way in order to use Level 3 BLAS. For best performance, we distinguish two
cases corresponding to the two shapes of a U(K;J) block.

� The segments in U(K;J) are of same height, as shown in Figure 3.2 (a).
Since the nonzero segments are stored contiguously in memory, we can call GEMM
directly, without performing operations on any zeros.

� The segments in U(K;J) are of di�erent heights, as shown in Figure 3.2 (b).
In this case, we �rst copy the segments into a temporary working array T , with
some leading zeros padded if necessary. We then call GEMM using L(I;K) and
T (instead of U(K;J)). We perform some extra oating-point operations for those

padding zeros. The copying itself does not incur a run time cost, because the data
must be loaded in the cache anyway. The working storage T is bounded by the
maximum block size, which is a tunable parameter. For example, we usually use

40� 40 on the IBM SP2 and 24� 24 on the Cray T3E.

Depending on the matrix, this Level 3 BLAS kernel improved the uniprocessor
factorization time by about 20% to 40% on the IBM SP2. A performance gain was
also observed on the Cray T3E. It is clear that the extra operations are well o�set by the
bene�t of the more e�cient Level 3 BLAS routines.

(b)  U(K, J)  = 
COPY

A(I, J) L(I, K) U(K, J)

− x

(a)  U(K, J)  = 

=  T

Figure 3.2: Illustration of the numerical kernels used in SuperLU.

The current factorization algorithm has two limitations to parallelism. Here we explain,

by examples, what the problems are and speculate how the algorithm may be improved
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in the future. In the following matrix notation, the zero blocks are left blank. For each
nonzero block we mark in box the process which owns the block.

� Parallelism from the sparsity.
Consider a matrix with 4-by-4 blocks mapped onto a 2-by-2 process mesh

2
6664

0 1 0 1

3 2 3

0 1 0

3 3

3
7775 :

Although node 2 is the parent of node 1 in the elimination tree (associated with
AT +A), not all processes in column 2 depend on column 1. Only process 1 depends
on the L block on process 0. Process 3 could start factorizing column 2 at the
same time as process 0 is factorizing column 1, before process 1 starts factorizing

column 2. But the current algorithm requires all the column processes to factorize
the column synchronously, thereby introducing idle time for process 3. We can relax
this constraint by allowing the diagonal process (3 in this case) to factorize the

diagonal block and then send the factored block down to the o�-diagonal processes
(using mpi isend), even before the o�-diagonal processes are ready for this column.
This would eliminate some arti�cial interprocess dependencies and potentially reduce

the length of the critical path.

Note that this kind of independence comes from not only the sparsity but also the 2D
process-to-matrix mapping. An even more interesting study would be to formalize
these 2D task dependencies into a task graph, and perform some optimal scheduling

on it.

� Parallelism from the directed acyclic elimination graphs (Gilbert and Liu 1993) often

referred to as elimination dags or edags.

Consider another matrix with 6-by-6 blocks mapped onto a 2-by-3 process mesh

2
666666664

0 1 0 2

4 3

2 0 2

4 3 5

0 1 2

3 5 5

3
777777775
:

Columns 1 and 3 are independent in the elimination dags. The column process sets

f0, 3g and f2, 5g could start factorizing columns 1 and 3 simultaneously. However,
since process 2 is also involved in the update task of block (5; 6) associated with
Step 1 and our algorithm gives precedence to all the tasks in Step 1 over any task

in Step 3, process 2 does not factorize column 3 immediately. We may change this
task precedence by giving the factorization task of a later step higher priority than
the update tasks of the previous steps, because the former is more likely to be on
the critical path. This would exploit better the task independence coming from the

elimination dags.
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We expect the above improvements will have a large impact for very sparse and/or
very unsymmetric matrices, and for the orderings that give wide and bushy elimination
trees, such as nested dissection.

The triangular solution algorithm is also designed around the same distributed 2D
data structure. The forward substitution proceeds from the bottom of the elimination
tree to the root, whereas the back substitution proceeds from the root to the bottom.

The algorithm is based on a sequential variant called \inner product" formulation.
The execution of the program is completely message-driven. Each process is in a self-
scheduling loop, performing appropriate local computation depending on the type of the
message received. The entirely asynchronous approach enables large overlap between

communication and computation and helps to overcome the much higher communication
to computation ratio in this phase.

3.3 First comments on the algorithmic di�erences

Both approaches use Level 3 BLAS to perform the elimination operations. However, in
MUMPS the frontal matrices are always square. It is possible that there are zeros in the
frontal matrix especially if there are delayed pivots or the matrix structure is markedly
asymmetric but the present implementation takes no advantage of this sparsity and all the

counts measured assume the frontal matrix is dense. It is shown in Amestoy and Puglisi
(2000) that one can detect and exploit the structural asymmetry of the frontal matrices.
With this new algorithm, signi�cant gains both in memory and in time to perform the

factorization can be obtained. For example, using MUMPS with the new algorithm, the
number of operations to factorize matrices lhr71c and twotone would be reduced by
30% and 37%, respectively. The approach, tested on a shared memory multifrontal code

MA41 (Amestoy and Du� 1993) from HSL (2000), is however not yet available in the current

version of MUMPS. In SuperLU, advantage is taken of sparsity in the blocks and usually the
dense matrix blocks are smaller than those used in MUMPS. In addition, SuperLU uses a

more sophisticated data structure to keep track of the irregularity in sparsity. Thus, the
uniprocessor Megaop rate of SuperLU is much worse than that of MUMPS. This performance

penalty is to some extent alleviated by the reduction in oating-point operations because
of the better exploitation of sparsity. As a rule of thumb, MUMPS will tend to perform
particularly well when the matrix structure is close to symmetric while SuperLU can better

exploit asymmetry. We note that, even if the same ordering is input to the two codes,
the computational tree generated in each case will be di�erent. In the case of MUMPS, the
assembly tree generated by MC47 is used to drive the MUMPS factorization phase, while, for
SuperLU, the directed acyclic computational graphs (dags) are built implicitly.

In Figures 3.3 and 3.4, we use a vampir trace (Nagel, Arnold, Weber, Hoppe and
Solchenbach 1996) to illustrate the typical parallel behaviour of both approaches. These
traces correspond to a zoom in the middle of the factorization phase of matrix bbmat on

8 processors of the CRAY T3E. Black areas correspond to time spent in communications

and related MPI calls. Each line between two processes corresponds to one message
transfer. From the plots we can see that SuperLU has distinct phases for local computation
and interprocess communication, whereas for MUMPS, it is hard to distinguish when the

process performs computation and when it transfers a message. This is due to the
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asynchronous scheduling algorithm used in MUMPS which may have a better chance of
overlapping communication with computation.

4 Impact of preprocessing and numerical issues

In this section, we �rst study the impact on both solvers of the preprocessing of the matrix.

In this preprocessing, we �rst use row or column permutations to permute large entries
onto the diagonal. In Section 4.1, we report and compare both the structural and the
numerical impact of this preprocessing phase on the performance and accuracy of our

solvers. After this phase, a symmetric ordering (minimum degree or nested dissection)
is used and we study the relative inuence of these orderings on the performance of the
solvers in Section 4.2. We also comment on the relative cost of the analysis phase of the
two solvers.

4.1 Use of a preordering to place large entries onto the diagonal and

the cost of the analysis phase

Du� and Koster (1999) developed an algorithm for permuting a sparse matrix so that the
diagonal entries are large relative to the o�-diagonal entries. They have also written a
computer code, MC64 (available from HSL (2000)), to implement this algorithm. Here, we
use option 5 of MC64 which maximizes the product of the modulus of the diagonal entries

and then scales the permuted matrix so that it has diagonal entries of modulus one and
all o�-diagonals of modulus less than or equal to one.

The importance of this preordering and scaling is clear. For MUMPS it should limit the
amount of numerical pivoting during the factorization, which increases the overall cost of

the factorization. For SuperLU, we expect such a permutation to be even more crucial,
reducing the amount of small pivots that are modi�ed and set to "1=2jjAjj.

The MC64 code of Du� and Koster (1999) is quite e�cient and so should normally

require little time relative to the matrix factorization even if the latter is executed on many
processors while MC64 runs on only one processor. Results in this section will show that it
is not always the case. Moreover, matrices which are unsymmetric but have a symmetric
or nearly symmetric structure are a very common problem class. The problem with these

is that MC64 performs an unsymmetric permutation and will tend to destroy the symmetry
of the pattern. Since both codes use a symmetrized pattern for the sparsity ordering (see
Section 4.2) and MUMPS uses one also for the symbolic and numerical factorization, the

overheads in having a markedly unsymmetric pattern can be high. Conversely, when the

initial matrix is very unsymmetric (as for example lhr71c) the unsymmetric permutation
may actually help to increase structural symmetry thus giving a second bene�t to the
subsequent matrix factorization.

We show the e�ects of using MC64 on some examples in Table 4.1. In Table 4.4, we
illustrate the relative cost of the main steps of the analysis phase when MC64 is used to
preprocess the matrix.

We see in Table 4.1 that, for very unsymmetric matrices (lhr71c and twotone), MC64

is really needed by MUMPS and SuperLU to factorize these matrices e�ciently. Both matrices
have zeros on the diagonal. Because of the static pivoting approach used by SuperLU, unless
these zeros are made nonzero by �ll-in and are then large enough, they will be perturbed
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Process 0 4 4 5 MPI_Wait 5 5 5 5 5 5 5 Facto_L1 4 5 5 5 5 5 5 5 5 5

Process 1 4 108 5 108 5 5 5 5 5 5 5 Facto_L1 4 108 5 5 5 5 5 5 5 5 5

Process 2 4 108 5 108 108 5 5 5 5 5 5 5 108 5 108 5 108 5 5 5 5 5 5 5 4

Process 3 4 108 5 5 4 108 5 5 5 5 5 5 4 108 5 108 5 5 5 5 5 5 5 5 5

Process 4 5 5 4 108 5 5 5 5 5 5 5 108 5 5 5 5 5 5 5 5

Process 5 4 108 5 5 5 5 5 5 5 5 2 2 2 2 2 2 2 2 2

Process 6 108 108 5 108 5 5 5 5 5 5 5 108 108 5 108 5 4 108 5 5 5 5 5 5 5

Process 7 108 2 2 2 2 2 2 2 2 108 108 4 108 5 108 5 5 5 5 5 5 5 5 5

MPI
Application

9.05s9.0s8.95s8.9s

Figure 3.3: Illustration of the asynchronous behaviour of the MUMPS factorization phase.

Process 0

Process 1 80 80 80 80 80 80 80 80 80

Process 2 80 80 80 80 80 80 80 80 80 80 80

Process 3

Process 4

Process 5 80 80 80 80 80 80 80 80 80 80

Process 6 80 80 80 80 80 80 80 80 80 80 80

Process 7

MPI
VT_API
Comm

9.32s9.3s9.28s

Figure 3.4: Illustration of the relatively more synchronous behaviour of the SuperLU

factorization phase.
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Matrix Solver Ordering StrSym Nonzeros Flops
in factors
(�106) (�109)

bbmat MUMPS AMD 0.54 46.1 41.5
| MC64+AMD 0.50 44.3 36.9
SuperLU AMD 0.54 41.2 34.0
| MC64+AMD 0.50 40.2 31.2

ecl32 MUMPS AMD 0.93 42.9 64.6
| MC64+AMD 0.93 42.9 64.6
SuperLU AMD 0.93 42.4 68.3
| MC64+AMD 0.93 42.7 68.4

invextr1 MUMPS AMD 0.97 31.2 35.8
| MC64+AMD 0.86 33.6 38.6
SuperLU AMD 0.97 24.8 22.6
| MC64+AMD 0.86 28.4 28.0

fidapm11 MUMPS AMD 1.00 16.1 9.7
| MC64+AMD 0.46 29.4 28.5
SuperLU AMD 1.00 14.0 8.9
| MC64+AMD 0.46 24.8 22.0

garon2 MUMPS AMD 1.00 2.4 0.3
| MC64+AMD 0.83 2.7 0.4
SuperLU AMD 1.00 2.1 0.3
| MC64+AMD 0.83 2.5 0.4

lhr71c MUMPS AMD(�) 0.00 285.8 1431.0
| MC64+AMD 0.21 11.8 1.4

SuperLU AMD(�) 0.00 222.5 |
| MC64+AMD 0.21 7.6 0.5

lnsp3937 MUMPS AMD 0.87 0.3 0.02
| MC64+AMD 0.55 0.4 0.03
SuperLU AMD 0.87 0.2 0.02
| MC64+AMD 0.55 0.3 0.03

mixtank MUMPS AMD 1.00 39.1 64.4
| MC64+AMD 0.91 45.7 81.5
SuperLU AMD 1.00 38.4 64.1
| MC64+AMD 0.91 41.2 64.6

rma10 MUMPS AMD 1.00 8.9 1.4
| MC64+AMD 0.90 9.7 1.6
SuperLU AMD 1.00 8.9 1.5
| MC64+AMD 0.90 9.3 1.5

twotone MUMPS AMD 0.28 235.0 1221.1
| MC64+AMD 0.43 22.1 29.3
SuperLU AMD 0.28 65.3 159.0
| MC64+AMD 0.43 11.9 8.0

wang4 MUMPS AMD 1.00 11.6 10.5
| MC64+AMD 1.00 11.6 10.5
SuperLU AMD 1.00 10.7 9.1
| MC64+AMD 1.00 10.7 9.1

Table 4.1: Impact of permuting large entries onto the diagonal (using MC64) on the size
of the factors and the number of operations. (�) estimation given by the analysis (not

enough memory to perform factorization). StrSym denotes the structural symmetry after
ordering.
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during factorization and a factorization of a nearby matrix is obtained. In the case of
MUMPS, the dramatically higher �ll-in obtained without MC64 makes it also necessary to use
MC64. For MUMPS, the main bene�t from using MC64 is more structural than numerical. The

permuted matrix has in fact a larger structural symmetry (see column 4 of Table 4.1)
so that a symmetric permutation can be obtained on the permuted matrix that is more
e�cient in preserving sparsity. SuperLU bene�ts in a similar way from symmetrization

because the computation of the symmetric permutation is based on the same assumption
even if SuperLU preserves better the asymmetric structure of the factors by performing a
symbolic analysis on a directed acyclic graph and exploiting asymmetry in the factorization
phase (compare, for example, results with MUMPS and SuperLU on matrices lhr71c, mixtank

and twotone).

SuperLU MUMPS

Matrix Iter. No MC64 MC64 No MC64 MC64

bbmat Err=2.1e-03 Err=5.6e-01 Err= 1.3e-06 Err=6.5e-08
0 Berr=4.0e-09 1.3e-05 Berr=7.4e-11 1.2e-11
1 Berr=7.7e-16 4.6e-11 Berr=3.2e-16 3.2e-16
2 Berr=5.2e-16 9.7e-15 Berr=3.2e-16 2.7e-16
3 Berr= 4.7e-16
4 Berr= 5.0e-16

Err= 2.5e-09 Err=2.4e-09 Err= 3.0e-09 Err=3.5e-09
lnsp3937 Err=1.6e-01 Err=2.7e-11 Err=9.2e-07 Err=3.6e-11

0 Berr=1.6e-07 3.5e-12 Berr=4.3e-08 1.5e-12
1 Berr=1.5e-08 2.2e-16 Berr=4.7e-16 2.4e-16
2 Berr=5.7e-10 2.5e-16 Berr=2.1e-16 2.0e-16
3 Berr=1.6e-11
4 Berr=4.2e-13
5 Berr=1.1e-14
6 Berr=3.2e-16
7 Berr=3.2e-16

Err=1.0e-11 Err=2.2e-11 Err=6.3e-12 Err=6.4e-12
garon2 Err=9.2e-07 Err=3.7e-12 Err=1.7e-11 3.4e-12

0 Berr=2.5e-10 2.4e-15 1.6e-15 2.1e-15
1 Berr=3.4e-16 3.8e-16 2.2e-16 2.3e-16
2 Berr=3.4e-16 3.4e-16 2.0e-16 1.8e-16

Err=2.9e-12 Err=3.3e-12 Err=1.6e-12 Err=1.3e-12

Table 4.2: Illustration of the convergence of iterative re�nement.

The use of MC64 can also improve the quality of the factors and the numerical behaviour
of the factorization phase, and can reduce the number of steps of iterative re�nement

required to reduce the backward error to machine precision. This is illustrated in
Table 4.2 where we show the number of steps of iterative re�nement required to reduce
the componentwise relative backward error, Berr = maxi

jrji
(jAj�jxj+jbj)i

(Arioli, Demmel

and Du� 1989), to machine precision (" � 2:2 � 10�16 on the CRAY T3E). Iterative
re�nement will stop when either the required accuracy is reached or the convergence rate
is too slow (Berr does not decrease by at least a factor of two). The true error is reported

as Err = jjxtrue�xjj
jjxtrue jj

. This table illustrates the impact of the use of MC64 on the quality of
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WITHOUT MC64
Matrix Solver WITHOUT Iter. Ref. WITH Iterative Re�nement

Berr Err Nb Berr Err

bbmat MUMPS 7.4e-11 1.3e-06 2 3.2e-16 3.0e-09
SuperLU 4.0e-09 2.1e-03 2 5.2e-16 2.5e-09

ecl32 MUMPS 3.6e-13 3.0e-11 2 3.1e-16 1.4e-11
SuperLU 2.4e-14 2.6e-11 2 2.9e-16 7.0e-11

invextr1 MUMPS 4.4e-08 8.9e-01 2 8.3e-06 2.8e-05
SuperLU 1.7e-07 1.0e-01 3 8.0e-16 1.3e-05

fidapm11 MUMPS 3.6e-11 1.7e-09 2 2.8e-16 1.2e-12
SuperLU 1.7e-06 1.9e-04 4 3.1e-16 1.8e-12

garon2 MUMPS 1.6e-15 1.7e-11 2 2.0e-16 1.6e-12
SuperLU 2.5e-10 9.2e-07 2 3.4e-16 2.9e-12

lhr71c MUMPS Not enough memory
SuperLU Not enough memory

lnsp3937 MUMPS 4.3e-08 9.2e-07 3 2.1e-16 6.3e-12
SuperLU 1.6e-07 1.6e-01 7 3.2e-16 1.0e-11

mixtank MUMPS 1.9e-12 4.8e-09 2 5.9e-16 1.4e-11
SuperLU 3.6e-09 4.4e-04 3 4.8e-16 2.8e-11

rma10 MUMPS 1.2e-13 8.3e-13 2 5.0e-16 1.2e-12
SuperLU 2.2e-06 3.8e-05 3 4.2e-16 9.2e-13

twotone MUMPS 5.0e-07 1.3e-05 3 1.3e-15 2.1e-11
SuperLU 1.0e+00 6.6e+126 1 1.0e+00 2.6e+220

WITH MC64
Matrix Solver WITHOUT Iter. Ref. WITH Iterative Re�nement

Berr Err Nb Berr Err

bbmat MUMPS 1.2e-11 6.5e-08 2 2.7e-16 3.5e-09
SuperLU 1.3e-05 5.6e-01 4 5.0e-16 2.4e-09

ecl32 MUMPS 5.6e-12 5.6e-10 2 3.0e-16 1.6e-11
SuperLU 2.9e-14 1.3e-11 2 3.5e-16 1.7e-11

invextr1 MUMPS 6.7e-16 1.6e-05 2 6.3e-16 5.6e-06
SuperLU 1.0e-05 9.8e-01 3 6.8e-16 1.2e-05

fidapm11 MUMPS 4.4e-12 2.3e-10 2 3.6e-16 6.8e-13
SuperLU 1.3e-01 7.8e-01 12 3.5e-16 1.1e-12

garon2 MUMPS 2.1e-15 3.4e-12 2 1.8e-16 1.3e-12
SuperLU 2.4e-15 3.7e-12 2 3.4e-16 3.3e-12

lhr71c MUMPS 1.1e-05 9.9e+00 3 3.2e-13 1.0e+00
SuperLU 7.1e-04 3.9e+06 2 8.9e-07 4.2e+07

lnsp3937 MUMPS 1.5e-12 3.6e-11 2 2.0e-16 6.4e-12
SuperLU 3.5e-12 2.7e-11 2 2.5e-16 2.2e-11

mixtank MUMPS 4.8e-12 2.3e-08 2 4.2e-16 4.0e-11
SuperLU 8.2e-03 8.7e-01 5 5.1e-16 3.1e-11

rma10 MUMPS 2.1e-12 3.4e-11 2 5.0e-16 1.0e-12
SuperLU 1.3e-06 3.9e-05 3 4.9e-16 1.1e-12

twotone MUMPS 3.2e-13 1.6e-10 2 1.6e-15 2.3e-11
SuperLU 1.0e-06 9.0e-03 4 6.1e-16 1.6e-11

Table 4.3: Comparison of the numerical behaviour, backward error (Berr) and forward

error (Err), of the solvers. Nb indicates the number of steps of iterative re�nement.
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the initial solution obtained with both solvers prior to iterative re�nement. Additionally, it
shows that, thanks to numerical partial pivoting, the initial solution is almost always more
accurate with MUMPS than with SuperLU and is usually markedly so. These observations are

further con�rmed on a larger number of test matrices in Table 4.3. The same stopping
criterion was applied for these runs as for the runs in Table 4.2. In the case of MUMPS, MC64
can also result in a reduction in the number of o�-diagonal pivots and in the number of

delayed pivots. For example on the matrix invextr1 the number of o�-diagonal pivots
drops from 1520 to 109 and the number of delayed pivots drops from 2555 to 42. One
can also see in Table 4.2 (e.g., bbmat) that MC64 does not always improve the numerical
accuracy of the solution obtained with SuperLU.

As expected, we see that, for matrices with a fairly symmetric pattern (e.g., matrix
fidapm11 in Table 4.1), the use of MC64 leads to a signi�cant decrease in symmetry which,
for both solvers, results in a signi�cant increase in the number of operations during
factorization. We additionally recollect that the time spent in MC64 can dominate the

analysis time of either solver (see Table 4.4), even for matrices such as fidapm11 and
invextr1 for which it does not provide any gain for the subsequent steps. Thus, for both
solvers, the default should be to not use MC64 on fairly symmetric matrices. In practice,

the default option of the MUMPS package is such that MC64 is automatically invoked when
the structural symmetry is found to be less than 0:5. For SuperLU, zeros on the diagonal
and numerical issues must also be considered so that an automatic decision during the
analysis phase is more di�cult.

We �nally compare, in Figure 4.1, the time spent by the two solvers during the analysis
phase when reordering is based only on AMD (MC64 is not invoked). Since the time spent

 bbmat   ecl32  invextr1 fidapm11  mixtank   rma10   wang4 
0

2

4
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Figure 4.1: Time comparison of the analysis phases of MUMPS and SuperLU. MC64

preprocessing is NOT used and AMD ordering is used.

in AMD is very similar in both cases, this gives a good estimation of the cost di�erence
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Matrix Solver Preprocess. Total MC64 AMD

bbmat MUMPS AMD 4.7 | 3.0
| MC64+AMD 7.2 2.1 3.1
SuperLU AMD 11.3 | 2.8
| MC64+AMD 11.8 2.0 2.9

ecl32 MUMPS AMD 3.9 | 2.3
| MC64+AMD 4.5 0.5 2.3
SuperLU AMD 9.0 | 2.1
| MC64+AMD 14.1 0.6 2.1

invextr1 MUMPS AMD 2.9 | 1.2
| MC64+AMD 47.2 42.6 1.5
SuperLU AMD 7.1 | 1.2
| MC64+AMD 45.8 36.8 1.5

fidapm11 MUMPS AMD 1.7 | 0.6
| MC64+AMD 13.1 10.4 1.6
SuperLU AMD 2.7 | 0.5
| MC64+AMD 14.1 9.1 1.4

garon2 MUMPS AMD 0.4 | 0.1
| MC64+AMD 0.8 0.4 0.1
SuperLU AMD 0.8 | 0.1
| MC64+AMD 1.2 0.4 0.1

lhr71c MUMPS AMD 47.5 | 39.4
| MC64+AMD 34.0 31.0 2.0
SuperLU AMD 120.6 | 35.0
| MC64+AMD 32.0 26.9 1.8

lnsp3937 MUMPS AMD 0.1 | 0.1
| MC64+AMD 0.2 0.1 0.1
SuperLU AMD 0.1 | 0.1
| MC64+AMD 0.3 0.1 0.1

mixtank MUMPS AMD 3.2 | 0.8
| MC64+AMD 5.8 2.2 0.9
SuperLU AMD 8.4 | 0.8
| MC64+AMD 11.0 2.2 0.9

rma10 MUMPS AMD 2.3 | 0.4
| MC64+AMD 4.6 2.3 0.5
SuperLU AMD 3.6 | 0.5
| MC64+AMD 6.1 2.3 0.6

twotone MUMPS AMD 12.7 | 8.7
| MC64+AMD 8.8 1.7 4.8
SuperLU AMD 21.4 | 7.9
| MC64+AMD 12.0 1.7 4.4

wang4 MUMPS AMD 1.7 | 0.8
| MC64+AMD 2.0 0.2 0.8
SuperLU AMD 2.4 | 0.7
| MC64+AMD 2.6 0.2 0.7

Table 4.4: Inuence of permuting large entries onto the diagonal (using MC64) on the time

(in seconds) for the analysis phase of MUMPS and SuperLU.
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of the analysis phase of the two solvers. Note that SuperLU is not currently tied to any
speci�c ordering code and does not take advantage of all the information available from
an ordering algorithm. A tighter coupling with an ordering, as is the case with MUMPS and

AMD, should reduce the analysis time for SuperLU. However, during the analysis phase of
SuperLU, all the asymmetric structures needed for the factorization are computed and the
directed acyclic graph (Gilbert and Liu 1993) of the unsymmetric matrix must be built

and mapped onto the processors. With MUMPS, the main data structure handled during
analysis is the assembly tree which is produced directly as a by-product of the ordering
phase. No further data structures are introduced during this phase. Dynamic scheduling
will be used during factorization so that only a simple massage of the tree and a partial

mapping of the computational tasks onto the processors are performed during analysis.

4.2 Use of orderings to preserve sparsity

On matrices for which MC64 is not used we show, in Table 4.5, the impact of the choice of

the symmetric permutation on the �ll-in and oating-point operations for the factorization.
As was observed in Amestoy et al. (1999), the use of nested dissection can signi�cantly
improve the performance of MUMPS. We see here that SuperLU will also, although to a lesser
extent, bene�t from the use of a nested dissection ordering. We examine the inuence

of the ordering on the performance further in Section 5. We also notice that, for both
orderings, SuperLU exploits the asymmetry of the matrix somewhat better than MUMPS (see
bbmat with structural symmetry 0:53). We expect the asymmetry of the problem to be

better exploited by MUMPS when the approach described in Amestoy and Puglisi (2000) is
implemented.

Matrix Ordering Solver NZ in LU Flops
�106 �109

bbmat AMD MUMPS 46.1 41.5
SuperLU 41.2 34.0

ND MUMPS 35.8 25.7
SuperLU 33.9 23.5

ecl32 AMD MUMPS 42.9 64.6
SuperLU 42.4 68.3

ND MUMPS 24.8 20.9
SuperLU 24.3 20.7

invextr1 AMD MUMPS 31.2 35.9
SuperLU 24.2 21.3

ND MUMPS 16.2 8.1
SuperLU 13.3 5.9

mixtank AMD MUMPS 39.1 64.4
SuperLU 38.2 64.4

ND MUMPS 19.6 13.2
SuperLU 18.6 12.9

Table 4.5: Inuence of the symmetric sparsity orderings on the �ll-in and oating-point
operations on the factorization of unsymmetric matrices. (MC64 is not used.)
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5 Performance analysis on general matrices

5.1 Performance of the numerical phases

In this section, we compare the performance and study the behaviour of the numerical
phases (factorization and solve) of the two solvers.

For the sake of clarity, we will only report results with the best (in terms of factorization

time) sparsity ordering for each approach. When the best ordering for MUMPS is di�erent
from that for SuperLU, results with both orderings will be provided. This means that results
with both nested dissection and minimum degree orderings are given that illustrate the
di�erent sensitivity of the codes to the choice of the ordering. We note that, even when the

same ordering is given to each solver, they will not usually perform the same number of
operations. In general, SuperLU performs fewer operations than MUMPS because it exploits
better the asymmetry of the matrix although the execution time is less for MUMPS because

of the Level 3 BLAS e�ect.
Although results are very often matrix dependent, we will try, as much as possible, to

identify some general properties of the two solvers. We should point out that the maximum
dimension of our unsymmetric test matrices is only 120750 (see Table 2.1).

5.1.1 Study of the factorization phase

We show in Table 5.1 the factorization time of both solvers. On the smaller matrices, we
only report in Table 5.2 results with up to 64 processors.

We observe that MUMPS is usually faster than SuperLU and is signi�cantly so on a small

number of processors. We believe there are two reasons. First, MUMPS handles symmetric
and more regular data structures better than SuperLU, because MUMPS uses Level 3 BLAS
kernels on bigger blocks than those used within SuperLU. As a result, the Megaop rate of

MUMPS on one processor is on average about twice that of the SuperLU factorization. This
is also evident in the results on smaller test problems in Table 5.2 and from the results
on 3D grid problems in Section 6. Note that, even on the matrix twotone, for which
SuperLU performs three times fewer operations than MUMPS, MUMPS is over 2.5 times faster

than SuperLU on four processors. On a small number of processors, we also notice that
SuperLU does not always fully bene�t from the reduction in the number of operations due
to the use of a nested dissection ordering (see bbmat with SuperLU using 4 processors).

Furthermore, one should notice that, with matrices that are structurally very

asymmetric, SuperLU can be much less scalable than MUMPS. For example, on matrix lhr71c
in Table 5.2, speedups of 2.5 and 8.3 are obtained with SuperLU and MUMPS, respectively.
This is due to the two parallel limitations of the current SuperLU algorithm described in

Section 3.2. First, SuperLU does not fully exploit the parallelism of the elimination dags.
Second, the pipelining mechanism does not fully bene�t from the sparsity of the factors
(a blocked column factorization should be implemented). This also explains why SuperLU

does not fully bene�t, as in the case for MUMPS, from the better balanced tree generated by

a nested dissection ordering.
We see that the ordering very signi�cantly inuences the performance of the codes (see

results with matrices bbmat and ecl32) and, in particular, MUMPS generally outperforms
SuperLU, even on a large number of processors, when a nested dissection ordering is used.

On the other hand, if we use the minimum degree ordering, SuperLU can be faster than
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MUMPS on a large number of processors. We also see that, on most of our unsymmetric
problems, neither solver provides enough parallelism to bene�t from using more than 128
processors. The only exception is matrix ecl32 using the AMD ordering (requiring 64�109
ops for the factorization), for which only SuperLU continues to decrease the factorization
time up to 512 processors. Our lack of other large unsymmetric systems gives us few data
points in this regime but one might expect that, independently of the ordering, the 2D

distribution used in SuperLU should provide better scalability (and hence eventually better
performance) on a large number of processors than the mixed 1D and 2D distribution used
in MUMPS. To further analyse the scalability of our solvers, we consider three dimensional
regular grid problems in Section 6.

Matrix Ord. Solver Number of processors
1 4 8 16 32 64 128 256 512

bbmat AMD MUMPS | 45.7 24.0 16.5 13.7 11.9 11.2 9.1 12.6
SuperLU | 66.1 38.1 22.8 14.6 11.2 8.9 9.9 9.1

ND MUMPS | 39.4 22.8 13.2 11.9 9.9 9.2 9.4 11.6
SuperLU | 137.8 74.9 41.2 25.2 17.3 12.4 14.3 14.7

ecl32 AMD MUMPS | 54.6 32.0 23.8 17.6 15.6 15.1 16.0 16.5
SuperLU | 107.4 58.4 35.8 20.6 14.9 11.1 10.9 8.9

ND MUMPS | 24.7 14.1 9.7 7.7 6.9 7.0 7.0 8.9
SuperLU | 49.0 28.2 16.7 12.0 9.9 8.8 9.9 9.5

invextr1 ND MUMPS 31.8 13.2 6.5 4.5 3.9 3.8 4.4 5.4 6.3
SuperLU 68.2 23.1 13.3 9.1 6.7 5.7 4.7 6.1 5.8

mixtank ND MUMPS 40.8 13.0 7.8 5.6 4.4 3.9 4.2 4.2 5.4
SuperLU 88.1 28.8 14.6 10.1 7.0 5.3 4.5 5.6 5.5

twotone MC64 MUMPS | 40.3 22.6 18.6 14.7 14.4 14.3 14.0 14.3
+AMD SuperLU | 106.2 61.8 32.7 25.7 21.0 16.2 21.2 18.5

Table 5.1: Factorization time (in seconds) of large test matrices on the CRAY T3E. \|"
indicates not enough memory.

Matrix Ordering Solver Number of processors
1 4 8 16 32 64

fidapm11 AMD MUMPS 31.6 11.7 8.4 6.5 5.7 5.7
SuperLU 58.6 14.3 9.7 6.0 4.5 4.4

lhr71c MC64+AMD MUMPS 13.3 4.3 2.9 1.7 1.5 1.6
SuperLU 34.7 17.8 13.0 12.5 11.5 14.0

rma10 AMD MUMPS 8.1 3.1 2.2 2.1 2.0 2.1
SuperLU 11.6 5.1 3.7 3.6 3.1 3.8

wang4 AMD MUMPS 30.6 11.1 7.0 5.2 4.3 3.9
SuperLU 56.3 19.4 13.9 7.9 5.8 5.6

Table 5.2: Factorization time (in seconds) of small test matrices on the CRAY T3E. \|"
indicates not enough memory.

To better understand the performance di�erences observed in Tables 5.1 and 5.2 and

to identify the main characteristics of our solvers we show, in Table 5.3, the average
communication volume. The speed of communication can depend very much on the
number and the size of the messages and we also indicate the maximum size of the messages
and the average number of messages. To overlap communication by computation, MUMPS

uses fully asynchronous communications (during both sends and receives). The use of
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non-blocking sends during the more synchronous scheduled approach used by SuperLU also
enables overlapping between communication and computation.

Matrix Ord Solver Number of processors
4 16 64

Max Vol. #Mess Max Vol. #Mess Max Vol. #Mess

bbmat AMD MUMPS 4.9 44 3240 3.3 63 1700 2.9 20 2257
SuperLU 0.18 81 23412 0.09 61 34176 0.05 35 35035

ND MUMPS 2.2 7 2214 2.8 43 1441 1.5 48 3228
SuperLU 0.17 82 30698 0.09 62 45598 0.04 36 50925

ecl32 AMD MUMPS 9.7 91 5451 3.7 117 2585 2.9 54 2743
SuperLU 0.32 90 27437 0.16 67 37486 0.09 39 34981

ND MUMPS 8.5 37 3663 2.5 60 1981 1.5 29 2679
SuperLU 0.25 56 28966 0.13 42 41172 0.07 24 41271

invextr1 ND MUMPS 2.2 13 2320 1.1 18 1314 1.5 7 1550
SuperLU 0.15 31 17774 0.08 23 25824 0.05 13 27123

fidapm11 AMD MUMPS 2.5 28 3000 2.4 22 1471 2.4 6 1323
SuperLU 0.15 27 14768 0.08 20 19114 0.04 12 15621

lhr71c MC64 MUMPS 1.0 1 96 1.1 1 342 1.1 1 377
+AMD SuperLU 0.04 21 72932 0.03 15 95653 0.02 8 91640

mixtank ND MUMPS 3.5 30 3138 1.7 33 1650 1.2 11 1616
SuperLU 0.19 40 13667 0.11 30 19635 0.05 18 19064

rma10 AMD MUMPS 0.7 3 114 0.7 2 302 0.7 1 337
SuperLU 0.06 18 11346 0.03 13 14124 0.02 7 10883

twotone MC64 MUMPS 8.8 61 5076 2.9 139 4144 2.1 49 2762
+AMD SuperLU 0.26 27 120006 0.15 20 153995 0.05 11 104906

wang4 AMD MUMPS 3.9 16 3483 1.5 27 1682 1.5 8 1215
SuperLU 0.19 24 27728 0.10 18 34495 0.05 10 27561

Table 5.3: Maximum size of the messages (Max in Mbytes), average volume of
communication (Vol. in Mbytes) and number of messages per processor (#Mess) for

large matrices during factorization.

From the results in Table 5.3, it is di�cult to make any de�nitive comment on the
average volume of communication. Overall it is broadly comparable with sometimes
MUMPS and sometimes SuperLU having lower volume, occasionally by a signi�cant amount.

However, although the average volume of messages with 64 processors can be comparable
with both solvers, there is between one and two orders of magnitude di�erence in the
average number of messages and therefore in the average size of the messages. This is due
to the much larger number of messages involved in a fan-out approach (SuperLU) compared

to a multifrontal approach (MUMPS). Note that, with MUMPS, the number of messages includes
the messages (one integer) required by the dynamic scheduling algorithm to update the
load on the processes.

The average volume of communication per processor of each solver depends very much
on the number of processors. While, with SuperLU, increasing the number of processors will

generally decrease the communication volume per processor it is not always the case with
MUMPS. Note that adding some global information to the local dynamic scheduling algorithm

of MUMPS will help to increase the granularity of the level 2 node subtasks without losing
parallelism (see Section 3.1) and thus can result in a decrease in the average volume of
communication on a large number of processors.
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5.1.2 Study of the solve phase

We already discussed in Section 4.1 the di�erence in the numerical behaviour of the two

solvers, showing that, in general, SuperLU will involve more steps of iterative re�nement
than MUMPS to obtain the same accuracy in the solution.

In this section, we focus on the time spent to obtain the solution. We apply enough
steps of iterative re�nement to ensure that the componentwise relative backward error

(Berr) is less than
p
" = 1:48 � 10�8. Each step of iterative re�nement involves not

only a forward and a backward solve but also a matrix-vector product with the original
matrix. With MUMPS, the user can provide the input matrix in a very general distributed

format (Amestoy et al. 1999). This functionality was used to parallelize the matrix-
vector products. With SuperLU, the parallelization of the matrix-vector product was easier
because the input matrix is duplicated on all the processors.

In Table 5.4, we report both the time to perform one solution step (using the factorized

matrix to solve Ax = b) and when necessary (Berr greater than
p
") the time to improve

the solution using iterative re�nement (lines with \+ IR"). With SuperLU, except on ecl32

and mixtank which did not require any iterative re�nement, one step of iterative re�nement
was required and was always enough to reduce the backward error to

p
". With MUMPS,

iterative re�nement was only required on the matrix invextr1 and the backward error was

already so close to
p
" (on one processor Berr = 3:06�10�8) that on 4 and 8 processors no

step of iterative re�nement was required (Berr for the initial solution was already equal to

1:17�10�8). In this case, the time reported in the row \+ IR" corresponds to the time to
perform the computation of the backward error. We �rst observe (compare, for example,
Tables 5.1 and 5.4) that, on a small number of processors (less than 8), the solve phase
is almost two orders of magnitude less costly than the factorization. On a large number

of processors, because our solve phases are relatively less scalable than the factorization
phases, the di�erence drops to one order of magnitude. On applications for which a large
number of solves might be required per factorization this could become critical for the
performance and might have to be addressed in the future. We show solution times for

our smaller matrices in Table 5.5 where we have not run iterative re�nement.
The performance reported in Tables 5.4 and 5.5 would appear to suggest that the

regularity in the structure of the matrix factors generated by the factorization phase of

MUMPS is responsible for a faster solve phase than that of SuperLU for up to 256 processors.
On 512 processors, the solve phase of SuperLU is sometimes faster than that of MUMPS

although in all cases the fastest solve time is recorded by MUMPS usually on a fewer number of

processors. The cost of iterative re�nement can signi�cantly increase the cost of obtaining a

solution. With SuperLU, because of static pivoting, it is more likely that iterative re�nement
will be required to obtain an accurate solution on numerically di�cult matrices (see bbmat,
invextr1 and twotone). With MUMPS, the use of partial pivoting during the factorization
will reduce the number of matrices for which iterative re�nement is required. (In our

set, only invextr1 requires iterative re�nement.) For both solvers, the use of MC64 to
preprocess the matrix can also be considered to reduce the number of steps of iterative
re�nement and even avoid the need to use it in some cases (see Section 4.1).
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Matrix Order. Solver Number of processors
1 4 8 16 32 64 128 256 512

bbmat AMD MUMPS | 0.53 0.38 0.31 0.32 0.32 0.36 0.40 0.56
SuperLU | 1.77 1.59 1.05 1.00 0.80 0.70 0.70 0.66
| + (IR) | 3.38 2.10 1.60 1.27 1.05 0.90 0.89 0.79

ND MUMPS | 0.38 0.37 0.26 0.29 0.31 0.35 0.37 0.54
SuperLU | 2.12 1.74 1.28 1.12 0.99 0.82 0.85 0.68
| + (IR) | 4.91 2.69 2.41 1.47 1.32 1.04 1.04 0.87

ecl32 AMD MUMPS | 0.80 0.50 0.40 0.41 0.40 0.45 0.52 0.83
SuperLU | 2.09 1.99 1.54 1.46 1.10 0.98 0.73 0.57

ND MUMPS | 0.53 0.35 0.30 0.28 0.28 0.43 0.39 0.48
SuperLU | 1.76 1.96 1.38 1.41 1.05 0.93 0.68 0.53

invextr1 ND MUMPS 0.59 0.31 0.20 0.18 0.18 0.18 0.25 0.26 0.37
| + (IR) 1.52 0.16 0.11 0.31 0.30 0.29 0.32 0.39 0.55
SuperLU 1.45 0.77 0.73 0.55 0.51 0.46 0.36 0.34 0.28
| + (IR) 2.69 1.58 1.11 0.90 0.74 0.67 0.54 0.52 0.44

mixtank ND MUMPS 0.67 0.27 0.19 0.16 0.16 0.15 0.19 0.24 0.35
SuperLU 1.47 0.90 0.82 0.65 0.58 0.49 0.33 0.30 0.24

twotone MC64 MUMPS | 1.03 0.92 0.97 0.98 0.98 1.03 1.13 1.41
+AMD SuperLU | 3.26 3.02 2.52 2.24 1.84 1.56 1.38 1.21

| + (IR) | 25.84 11.13 12.63 4.18 3.64 2.27 1.84 1.55

Table 5.4: Solve time (in seconds) for large matrices on the CRAY T3E. \ | + (IR)
" shows the time spent improving the initial solution using iterative re�nement. \|"

indicates not enough memory.

Matrix Ord. Solver Number of processors
1 4 8 16 32 64

fidapm11 AMD MUMPS 0.48 0.25 0.24 0.21 0.20 0.20
SuperLU 1.14 0.70 0.55 0.52 0.50 0.40

lhr71c MC64+AMD MUMPS 0.92 0.56 0.32 0.24 0.23 0.22
SuperLU 2.39 2.48 2.76 2.19 2.02 1.83

rma10 AMD MUMPS 0.43 0.23 0.22 0.21 0.22 0.23
SuperLU 0.79 0.66 0.54 0.52 0.37 0.31

wang4 AMD MUMPS 0.57 0.29 0.21 0.19 0.17 0.16
SuperLU 1.01 1.01 0.77 0.88 0.85 0.65

Table 5.5: Solve time (in seconds) for small matrices on the CRAY T3E.
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5.2 Memory usage

In this section, we study the memory used during factorization as a function of both the

solver used and the number of processors, see Table 5.6.
We want �rst to point out that, because of the dynamic scheduling approach and the

threshold pivoting used in MUMPS, the analysis phase cannot fully predict the space that
will be required on each processor and an upper bound is therefore used for the memory

allocation. With the static task mapping approach used in SuperLU, the memory used
can be predicted during the analysis phase. In this section, we only compare the memory
actually used by the solvers during the factorization phase. This includes reals, integers

and communication bu�ers. Storage for the initial matrix is, however, not included but
we have seen, in Amestoy et al. (1999), that the input matrix can also be provided in a
general distributed format and can be handled very e�ciently by the solver. This option is
available in MUMPS. In SuperLU the initial matrix is currently duplicated on all processors7.

Matrix Ordering Solver Number of processors
4 16 64

Avg. Max. Avg. Max. Avg. Max.
bbmat AMD MUMPS 147 176 52 65 32 40

SuperLU 113 114 50 51 33 34
ND MUMPS 114 118 44 53 28 35

SuperLU 124 128 60 61 43 44
ecl32 AMD MUMPS 190 212 55 64 32 41

SuperLU 113 115 42 44 24 25
ND MUMPS 132 139 39 44 25 28

SuperLU 79 81 33 34 21 22
invextr1 ND MUMPS 65 85 23 28 17 22

SuperLU 47 48 22 22 15 16
fidapm11 AMD MUMPS 65 67 25 30 16 19

SuperLU 38 39 16 16 10 10
lhr71c MC64 MUMPS 54 48 22 25 16 20

+AMD SuperLU 49 51 27 29 21 21
mixtank ND MUMPS 84 87 29 31 19 21

SuperLU 55 56 23 23 14 15
rma10 AMD MUMPS 39 42 17 25 11 21

SuperLU 32 33 15 16 10 11
twotone MC64 MUMPS 167 180 57 67 42 60

+AMD SuperLU 66 80 35 41 24 24
wang4 AMD MUMPS 69 82 22 23 15 20

SuperLU 33 34 14 14 8 9

Table 5.6: Memory used during factorization (in Megabytes, per processor).

We notice, in Table 5.6, a signi�cant reduction in the memory required when increasing

the number of processors. We also see that, in general, SuperLU usually requires less
memory than MUMPS although this is less apparent when many processors are used showing
the better memory scalability of MUMPS. One can observe that there is little di�erence

7For MUMPS, note that the storage reported still includes another internal copy of the initial matrix in
a distributed arrowhead form, necessary for the assembly operations during the multifrontal algorithm.

23



between the average and maximum memory usage showing both algorithms are well
balanced, with SuperLU the better of the two.

Note that memory scalability can be critical on globally addressable platforms where

parallelism increases the total memory used. On purely distributed machines such as the
T3E, the main factor remains the memory used per processor which should allow large
problems to be solved when enough processors are available.

6 Performance analysis on 3-D grid problems

To further analyse and understand the scalability of our solvers, we report in this section
on results obtained for the 11-point discretization of the Laplacian operator on three-

dimensional (NX, NY, NZ) grid problems.
We consider a set of 3D cubic (NX=NY=NZ) and rectangular (NX, NX/4, NX/8)

grids on which a nested dissection ordering is used. The size of the grids used, the number
of operations and the timings are reported in Table 6.1. When increasing the number of

processors, we have tried as much as possible to maintain a constant number of operations
per processor while keeping as much as possible the same shape of grids. It was not
possible to satisfy all these constraints, thus the number of operations per processor is not

completely constant.

Nprocs Grid size LDL
T factorization LU factorization

NX NY NZ MUMPS-SYM MUMPS-UNS SuperLU
ops time ops time ops time
�109 �109 �109

Cubic grids (nested dissection)
1 29 3.6 18.8 7.2 24.0 7.2 57.0
2 33 8.0 20.8 16.0 29.5 15.9 62.3
4 36 13.4 19.9 26.8 28.1 26.8 53.3
8 41 30.1 18.5 60.1 33.9 60.0 61.5
16 46 59.1 20.7 118.1 34.4 117.9 62.7
32 51 112.7 24.3 225.3 46.3 224.9 65.7
64 57 222.7 30.3 445.1 67.3 444.7 76.1
128 64 444.2 51.6 887.8 113.9 886.4 80.7

Rectangular grids (nested dissection)
1 96 24 12 2.2 13.2 4.5 16.6 4.5 31.1
2 110 28 13 4.8 13.1 9.5 17.5 9.6 36.6
4 120 30 15 9.0 12.0 17.9 17.0 17.9 35.4
8 136 34 17 18.4 13.8 36.8 19.5 36.6 33.0
16 152 38 19 36.5 13.3 72.8 24.6 72.7 42.2
32 168 42 21 67.8 14.9 135.5 27.5 135.3 43.7
64 184 46 23 118.2 19.3 236.2 35.8 236.0 51.3
128 208 52 26 243.1 27.4 485.8 53.6 485.6 60.7

Table 6.1: Factorization time (in seconds) on Cray T3E. LU factorization is performed
for MUMPS-UNS and SuperLU, LDLT for MUMPS-SYM.

Since all our test matrices are symmetric, we can use MUMPS to compute either an LDLT

factorization, referred to as MUMPS-SYM, or an LU factorization, referred to as MUMPS-UNS.
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SuperLU will compute an LU factorization. Note that, for a given matrix, the unsymmetric
solvers (SuperLU and MUMPS-UNS) perform roughly twice as many operations as MUMPS-SYM.

To overcome the problem of the number of operations per processor being non-constant,

we �rst report in Figures 6.1 and 6.2 the Megaop rate per processor for our three
approaches on cubic and rectangular grids, respectively. In our context, the Megaop
rate is meaningful because on those grid problems the number of operations is almost

identical for MUMPS-UNS and SuperLU (see Table 6.1), thus it corresponds to the absolute
performance of the approach used for a given problem. We �rst notice that on up to
8 processors, and independently of the grid shape, MUMPS-UNS is about twice as fast as
SuperLU and also has a much higher Megaop rate than MUMPS-SYM. On 128 processors

on both rectangular and cubic grids, all three solvers have similar Megaop rates per
processor.

In Figures 6.3 and 6.4, we show the parallel e�ciency on cubic and rectangular grids
respectively. The e�ciency of a solver on p processors is computed as the ratio of its

Megaop rate per processor on p processors over its Megaop rate on 1 processor.
In terms of e�ciency, SuperLU is generally more e�cient on cubic grids than MUMPS-UNS

even on a relatively small number of processors. MUMPS-SYM is relatively more e�cient than

MUMPS-UNS and the MUMPS-SYM e�ciency is very comparable to that of SuperLU. On a large
number of processors SuperLU is signi�cantly more e�cient than MUMPS-UNS. The peak ratio
between the methods is reached on cubic grids (128 processors) for which SuperLU is about
three and two times more e�cient than MUMPS-UNS and MUMPS-SYM, respectively.

Finally, we report in Table 6.2 a quantitative evaluation of the overhead due to
parallelism on cubic grids, using the analysis tool vampir (Nagel et al. 1996). In the rows
\computation", we report the percentage of the time spent doing numerical factorization.
MPI calls and idle time due to communications or synchronization are reported in rows

\overhead" of the table.

Nprocs Grid size MUMPS-SYM MUMPS-UNS SuperLU

4
(NX=36)
computation 69% 76% 87%
overhead 31% 24% 13%

16
(NX=46)
computation 67% 69% 75%
overhead 33% 31% 25%

64
(NX=57)
computation 50% 36% 56%
overhead 50% 64% 44%

Table 6.2: Percentage of the factorization time (cubic grids) spent in computation and in
overhead due to communication and synchronization.

Table 6.2 shows that SuperLU has less overhead than either version of MUMPS. We also
observe a better parallel behaviour of MUMPS-SYM with respect to MUMPS-UNS, as analysed in
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Figure 6.1: Megaop rate per processor (cubic grids, nested dissection).
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Figure 6.2: Megaop rate per processor (rectangular grids, nested dissection).
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Figure 6.3: Parallel e�ciency (cubic grids, nested dissection).
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Figure 6.4: Parallel e�ciency (rectangular grids, nested dissection).
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Amestoy et al. (2000), which is mainly due to the fact that node level parallelism provides
relatively more parallelism in a symmetric context.

7 Concluding remarks

In this paper, we have presented a detailed analysis and comparison of two state-of-the-
art parallel sparse direct solvers|a multifrontal solver MUMPS and a supernodal solver

SuperLU. Our analysis is based on experiments using a massively parallel distributed-
memory machine|the Cray T3E, and a dozen matrices from di�erent applications. Our
analysis addresses the e�ciency of the solvers in many respects, including the role of

preordering steps and their costs, the accuracy of the solution, sparsity preservation,
the total memory required, the amount of interprocessor communication, the times for
factorization and triangular solves, and scalability. We found that both solvers have
strengths and weaknesses. We summarize our observations as follows.

� Both solvers can bene�t from a numerical preordering scheme implemented in MC64,
although SuperLU bene�ts to a greater extent than MUMPS. For MUMPS, this helps reduce
the number of o�-diagonal pivots and the number of delayed pivots. For SuperLU, this

may reduce the need for small diagonal perturbations and the number of iterative
re�nements. However, since this permutation is asymmetric, it may destroy the
structural symmetry of the original matrix, and cause more �ll-in and operations.
This tends to introduce a greater performance penalty for MUMPS than for SuperLU

although recent work by Amestoy and Puglisi (2000) might a�ect this conclusion.
This is why by default, MUMPS does not use MC64 on fairly symmetric matrices.

� MUMPS usually provides a better initial solution; this is due to the e�ect of dynamic

versus static pivoting. With one step of iterative re�nement, SuperLU usually obtains
a solution with about the same level of accuracy.

� Both solvers can accept as input any �ll-in reducing ordering, which is applied

symmetrically to both the rows and columns. MUMPS performs better with nested
dissection than minimum degree, because it can exploit the better tree parallelism
provided by a nested dissection ordering, whereas SuperLU does not exploit this level
of parallelism and its parallel e�ciency is less sensitive to di�erent orderings.

� Given the same ordering, SuperLU preserves the sparsity and the asymmetry of the L
and U factors better. SuperLU usually requires less memory than MUMPS, and more so
with smaller numbers of processors. On 64 processors, MUMPS requires 25{30% more

memory on average.

� Although the total volume of communication is comparable for both solvers. MUMPS

requires many fewer messages, especially with large numbers of processors. The
di�erence can be up to two orders of magnitude. This is partly intrinsic to the

algorithms (multifrontal versus fan-out), and partly due to the 1D (MUMPS) versus
2D (SuperLU) matrix partitioning.

� MUMPS is usually faster in both factorization and solve phases. The speed penalty for

SuperLU partly comes from the code complexity in order to preserve the irregular
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sparsity pattern, and is partly due to more communication messages. With more
processors, SuperLU shows better scalability, because its 2D partitioning scheme does
a better job in keeping all the processors busy despite the fact that it introduces more

messages.

As we said in the introduction, we started this exercise with the intention of comparing

a wider range of sparse codes. However, as we have demonstrated in the preceding sections,
the task of conducting such a comparison is very complex. We do feel though that the
experience we have gained in this task will be useful in extending the comparisons in the

future.
In the following tables, we summarize the major characteristics of the parallel sparse

direct codes of which we are aware. A clear description of the terms used in the tables is
given by Heath, Ng and Peyton (1991).

Code Technique Scope Availability Reference

CAPSS Multifrontal SPD www.netlib.org/scalapack (Heath and Raghavan 1997)
MUMPS Multifrontal SYM/UNS www.enseeiht.fr/apo/MUMPS (Amestoy et al. 1999)

PaStiX Fan-in SPD see captionx (Henon et al. 1999)
PSPASES Multifrontal SPD www.cs.umn.edu/�mjoshi/pspases (Gupta, Karypis and Kumar 1997)
SPOOLES Fan-in SYM/UNS www.netlib.org/linalg/spooles (Ashcraft and Grimes 1999)
SuperLU Fan-out UNS www.nersc.gov/�xiaoye/SuperLU (Li and Demmel 1999)

S+ Fan-outy UNS www.cs.ucsb.edu/research/S+ (Fu, Jiao and Yang 1998)

WSMPz Multifrontal SYM IBM product (Gupta 2000)

Table 7.1: Distributed memory codes.
x www.dept-info.labri.u-bordeaux.fr/�ramet/pastix
y Uses QR storage to statically accommodate any LU �ll-in

z Only object code for IBM is available. No numerical pivoting performed.

Code Technique Scope Availability Reference

GSPAR Interpretative UNS Grund (Borchardt, Grund and Horn 1997)
MA41 Multifrontal UNS www.cse.clrc.ac.uk/Activity/HSL (Amestoy and Du� 1993)
MA49 Multifrontal QR RECT www.cse.clrc.ac.uk/Activity/HSL (Amestoy, Du� and Puglisi 1996b)
PanelLLT Left-looking SPD Ng (Ng and Peyton 1993)
PARDISO Left-right looking UNS Schenk (Schenk, G�artner and Fichtner 2000)

PSLDLTy Left-looking SPD SGI product (Rothberg 1994)

PSLDUy Left-looking UNS SGI product (Rothberg 1994)
SuperLU Left-looking UNS www.nersc.gov/�xiaoye/SuperLU (Demmel et al. 1999)

Table 7.2: Shared memory codes
y Only object code for SGI is available

29



Acknowledgments
We want to thank James Demmel, Jacko Koster and Rich Vuduc for very helpful
discussions. We are grateful to Chiara Puglisi for her comments on an early version

of this article and her help with the presentation. We also want to thank John Reid for
his comments on the �rst version of this paper.

References

Amestoy, P. R. and Du�, I. S. (1993), `Memory management issues in sparse multifrontal

methods on multiprocessors', Int. J. Supercomputer Applics 7, 64{82.

Amestoy, P. R. and Puglisi, C. (2000), An unsymmetrized multifrontal LU factorization,
Technical Report RT/APO/00/3, ENSEEIHT-IRIT. Also Lawrence Berkeley
National Laboratory Report LBNL-46474.

Amestoy, P. R., Davis, T. A. and Du�, I. S. (1996a), `An approximate minimum degree

ordering algorithm', SIAM J. Matrix Analysis and Applications 17(4), 886{905.

Amestoy, P. R., Du�, I. S. and L'Excellent, J.-Y. (2000), `Multifrontal parallel distributed
symmetric and unsymmetric solvers', Comput. Methods in Appl. Mech. Engrg.

184, 501{520.

Amestoy, P. R., Du�, I. S. and Puglisi, C. (1996b), `Multifrontal QR factorization in a

multiprocessor environment', Numerical Linear Algebra with Applications 3(4), 275{
300.

Amestoy, P. R., Du�, I. S., L'Excellent, J.-Y. and Koster, J. (1999), A fully asynchronous
multifrontal solver using distributed dynamic scheduling, Technical Report RAL-TR-
1999-059, Rutherford Appleton Laboratory.

Arioli, M., Demmel, J. W. and Du�, I. S. (1989), `Solving sparse linear systems with sparse
backward error', SIAM J. Matrix Analysis and Applications 10, 165{190.

Ashcraft, C. and Grimes, R. (1999), SPOOLES: An object-oriented sparse matrix
library, in `Proceedings of the Ninth SIAM Conference on Parallel Processing'. See
http://www.netlib.org/linalg/spooles.

Borchardt, J., Grund, F. and Horn, D. (1997), Parallel numerical methods for large systems
of di�erential-algebraic equations in industrial applications, Technical Report 382,
Weierstra�-Institut f�ur Angewandte Analysis und Stochastik, Berlin.

Demmel, J. W., Eisenstat, S. C., Gilbert, J. R., Li, X. S. and Liu, J. W. H. (1999),
`A supernodal approach to sparse partial pivoting', SIAM J. Matrix Analysis and

Applications 20, 720{755.

Du�, I. S. and Koster, J. (1999), On algorithms for permuting large entries to the diagonal
of a sparse matrix, Technical Report RAL-TR-1999-030, Rutherford Appleton

Laboratory. Also appeared as Report TR/PA/99/13, CERFACS, Toulouse, France.

To appear in SIAM Journal on Matrix Analysis and Applications.

30



Du�, I. S., Grimes, R. G. and Lewis, J. G. (1997), The Rutherford-Boeing Sparse Matrix
Collection, Technical Report RAL-TR-97-031, Rutherford Appleton Laboratory. Also
Technical Report ISSTECH-97-017 from Boeing Information & Support Services,

Seattle and Report TR/PA/97/36 from CERFACS, Toulouse.

Fu, C., Jiao, X. and Yang, T. (1998), `E�cient sparse LU factorization with partial pivoting

on distributed memory architectures', IEEE Trans. Parallel and Distributed Systems

9(2), 109{125.

Gilbert, J. R. and Liu, J. W. H. (1993), `Elimination structures for unsymmetric sparse

LU factors', SIAM J. Matrix Analysis and Applications 14, 334{354.

Gupta, A. (2000), WSMP: Watson Sparse Matrix Package Part I { direct
solution of symmetric sparse systems Version 1.0.0�, Technical Report TR RC-

21886, IBM research division, T.J. Watson Research Center, Yorktown Heights.
http://www.cs.umn.edu/�agupta/wsmp.html.

Gupta, A., Karypis, G. and Kumar, V. (1997), `Highly scalable parallel algorithms for
sparse matrix factorization', IEEE Trans. Parallel and Distributed Systems 8(5), 502{

520.

Heath, M. T. and Raghavan, P. (1997), `Performance of a fully parallel sparse solver', Int.
J. Supercomputer Applications 11(1), 49{64.

Heath, M. T., Ng, E. G. Y. and Peyton, B. W. (1991), `Parallel algorithms for sparse

linear systems', SIAM Review 33, 420{460.

Henon, P., Ramet, P. and Roman, J. (1999), A mapping and scheduling algorithm for

parallel sparse fan-in numerical factorization, in `EuroPar'99 Parallel Processing',
Lecture Notes in Computer Science, No. 1685, Springer-Verlag, Berlin, Heidelberg,
New York, pp. 1059{1067.

HSL (2000), `A collection of Fortran codes for large scale scienti�c computation'.
http://www.cse.clrc.ac.uk/Activity/HSL.

Karypis, G. and Kumar, V. (1998), MeTiS { A Software Package for Partitioning

Unstructured Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings

of Sparse Matrices { Version 4.0, University of Minnesota.

Li, X. S. and Demmel, J. W. (1998), Making sparse Gaussian elimination scalable by static
pivoting, in `Proceedings of Supercomputing', Orlando, Florida.

Li, X. S. and Demmel, J. W. (1999), A scalable sparse direct solver using static pivoting,

in `Proceedings of the Ninth SIAM Conference on Parallel Processing for Scienti�c
Computing', San Antonio, Texas.

Li, X. S., Demmel, J. W., Bailey, D. H., Henry, G., Hida, Y., Iskandar, J., Kahan, W.,
Kapur, A., Martin, M. C., Tung, T. and Yoo, D. J. (2000), Design, Implementation
and Testing of Extended and Mixed Precision BLAS, Tech. Rep. LBNL-45991,
Lawrence Berkeley National Laboratory, Berkeley. (also LAPACK Working Note

#149). Submitted to ACM Transactions on Mathematical Software.

31



Liu, J. W. H. (1985), `Modi�cation of the minimum degree algorithm by multiple
elimination', ACM Trans. Math. Softw. 11(2), 141{153.

Nagel, W. E., Arnold, A., Weber, M., Hoppe, H.-C. and Solchenbach, K. (1996), `VAMPIR:

Visualization and Analysis of MPI Resources', Supercomputer 12(1), 69{80.

Ng, E. G. and Peyton, B. W. (1993), `Block sparse Cholesky algorithms on advanced
uniprocessor computers', SIAM J. Scienti�c Computing 14, 1034{1056.

Pellegrini, F., Roman, J. and Amestoy, P. (1999), Hybridizing nested dissection and halo
approximate minimum degree for e�cient sparse matrix ordering, in `Proceedings of

Irregular'99, San Juan', Lecture Notes in Computer Science 1586, Springer-Verlag,
pp. 986{995.

Rothberg, E. (1994), E�cient sparse Cholesky factorization on distributed-memory
multiprocessors, in J. G. Lewis, ed., `Proceedings 5th SIAM Conference on Linear
Algebra', SIAM Press, Philadelphia, p. 141.

Schenk, O., G�artner, K. and Fichtner, W. (2000), `E�cient sparse lu factorization with
left{right looking strategy on shared memory multiprocessors', BIT 40(1), 158{176.

32


	ABSTRACT
	Contents
	1 Introduction
	2 Test environment
	3 Description of the algorithms used
	3.1 MUMPS main parallel features
	3.2 SUPERLU main parallel features
	3.3 First comments on the algorithmic di erences
	4 Impact of preprocessing and numerical issues
	4.1 Use of a preordering to place large entries onto the diagonal and
	4.2 Use of orderings to preserve sparsity
	5 Performance analysis on general matrices
	5.1 Performance of the numerical phases
	5.1.1 Study of the factorization phase
	5.1.2 Study of the solve phase
	5.2 Memory usage
	6 Performance analysis on 3-D grid problems
	7 Concluding remarks
	Acknowledgments
	References

