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Energy consumption of the Jacobi Test Code on the Blue

Gene/Q: does using single precision reduce energy consumption?

Thomas Byrne1, Mark Mawson2, Andrew D. Taylor2, Sue Thorne13

ABSTRACT

Power optimisation is one of the major requirements for the achievement of exascale systems. In this report,

we will compare the power and energy requirements of the Jacobi Test Code when run in single and double

precision on STFC Hartree Centre’s IBM Blue Gene/Q, Blue Joule. We will show that switching from

double to single precision can give significant energy consumption savings but only when the amount of

data movement is significant. As a result, algorithm/software developers should take this into account

when trying to reduce the amount of energy consumed by running their codes on computers with similar

underlying architectures.
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1 Background and motivation

Power optimisation is one of the major requirements for the achievement of exascale systems. Moving from

petascale to exascale computing, the number of floating point operations per second needs to increase by

a factor of 1000 but the power consumption of the required supercomputer is limited to just a factor of 10

increase [3].

In this report, we will compare the power and energy requirements of the Jacobi Test Code [2] when

run in single and double precision on STFC Hartree Centre’s IBM Blue Gene/Q, Blue Joule [1]. If we

discover significant savings by switching from double to single precision, algorithm/software developers

need to take this into account to try to reduce the amount of energy consumed when running their codes

on computers with similar underlying architectures. It is important to note that it is not uncommon for

codes to be run with double precision accuracy when the underlying problem is of much lower accuracy

and, hence, time and energy may have been wasted by computing a solution to many more significant

figures than necessary.

1.1 Jacobi Test Code

The Jacobi Test Code (JTC) provides several implementations of the Jacobi algorithm for solving a

fairly simple 3D partial differential equation (Poisson’s equation on a cuboid) [2]: we will concentrate on

the baseline-opt implementation and, in the rest of the paper, refer to this as JTC CORE. The baseline

implementation of the Jacobi algorithm consists of three nested loops: baseline-opt uses basic loop

optimisations and, in addition, the version used for the tests in this report uses an optimised form of

the inner loop to enable the compiler to vectorise the loop. The basic outline of the JTC is given in

Algorithm 1.

Algorithm 1 Jacobi Test Code outline

Set-up test problem and output initial starting vector v0
for k = 1, . . . , nruns do

for i = 1, . . . , niter do

vi = JTC CORE(vi−1)

end for

end for

Note that, within JTC CORE, each entry in vi is formed by averaging the values in vi−1 at neighbouring

grid points. In many application codes, the current value at a particular grid point is formed by looking

at values on neighbouring grid points and, hence, the JTC is a good representation of the work performed

in the kernel of many codes.

1.2 Blue Gene/Q

In this report, we are only comparing the differences in power and energy consumption when running

the JTC in single or double precision on Blue Joule, STFC Hartree Centre’s IBM Blue Gene/Q. The

Blue Gene/Q has a provided energy monitoring system called the EMON API. On each Blue Gene/Q

Node-board, which is a collection of 32 Blue Gene/Q nodes, contains an FPGQ that records instantaneous

power consumption with a sampling frequency of 0.25s. Each BG/Q node has 16 cores. To obtain the

information from the EMON API, we use EMONSimple, a simple energy monitoring library for the Blue

Gene/Q, which provides traces of power and energy consumption versus time. EMONSimple provides

energy/power consumption details for seven energy/power domains:

• A2 Node (CPU execution units, L1 prefetcher, crossbar, L2 DRAM)

1



• Main Memory and IO drivers

• Optical Modules 1

• Optical Modules 2

• High Speed Serial cores and drivers

• SRAM Array including L1 Cache

• Link Chip

In order to understand the results produced by EMONSimple, we also use the TAU profiler [4] to provide

us with further information, for example, the number of L1 and L2 cache misses. Unfortunately, the

overhead from running TAU means that some of the output, especially L2 cache misses, maybe distorted

but we hope that it will give us some further insights.

Note: all execution times are wall clock times.

2 Energy consumption of the JTC with OpenMP

In this section, we will concentrate our investigation on the OpenMP version of the JTC. We start by

considering what happens to the execution time and energy consumption as we change the problem size

and alter the number of OpenMP threads. Specifically, we will solve Poisson’s equation on a cube where

each side has g grid points, g = 32, 42, 52, . . . , 492, and use nthr = 1, 2, 4, 8, 16, where nthr is the number

of OpenMP threads. Additionally, we use niter = 50 and nruns = 10.
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Figure 1: The execution time for running the JTC in single precision with different numbers of grid points

and nthr.

In Figures 1 and 2, we compare the execution time and energy time, respectively, for the varying values

of nthr and number of grid points using the single precision version of the code. As we would expect,

increasing the number of threads decreases the execution time (with it being close to linear speed-up) and,
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Figure 2: The total energy consumption for running the JTC in single precision with different numbers of

grid points and nthr.
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Figure 3: The average power usage for running the JTC in single precision with different numbers of grid

points and nthr.

for large enough problem sizes, the execution time increases linearly with the problem size (note that the

problem size is equal to the cube of the number of grid points). If the energy consumption of JTC runs

were directly related to the execution time, then we would expect Figures 1 and 2 to look similar and
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they are very similar, but there are subtle differences. We compare the average power usage in Figure 3.

If the energy consumption was proportional to the execution time, then the average power usage would

be identical for all problems sizes and all the different numbers of threads. However, as the problem size

increases, the average power usage decreases and, for nthr > 1, increasing nthr increases the average

power consumption: this will be due to the increase in data movement. To understand this further, we

look at the number of L1 and L2 cache misses when using 500 grid points, niter = 50 and nruns = 10.

Within the set-up phase, the JTC initialises the vector v0. In Table 1, we report the minimum, mean and

maximum number of L1/L2 cache misses across the threads and also report the total number of cache

misses for doing this initialisation. In Table 2, we report the same information but for the main component

within JTC CORE. We first observe that, as we would expect due to the problem size versus the size of the

L1 data cache (16KB), the total number of L1 cache misses remains constant when both initialising v0

and performing the main component within JTC CORE. When initialising v0, the total number of L2 data

cache misses decreases due to data being shared out but it is important to note that the total number is

not inversely proportional to nthr. For the main component of JTC CORE, there is a significant increase

in L2 data cache misses when moving from nthr = 2 to nthr = 4, which corresponds to the increase in

data traffic between threads. Unfortunately, we do not have energy consumption information across the

different power domains for running the JTC with 500 grid points and Blue Joule is not currently available

for use. However, we do have these figures for the JTC with 492 grid points (we do not have cache data

for this size of problem). In Table 3, we compare where the energy is used by the node board and, whilst

the percentages do not vary much as the number of threads increases, it is possible to see that there is a

slight increase in the percentage of energy being used by the main memory, which also corresponds to the

increase in L2 data cache misses and, therefore, increased use of the main memory. However, the A2 node

is by far the largest consumer of energy.

L1 cache misses (1010) L2 cache misses (107)

nthr min mean max total min mean max total

1 1.3235 1.3235 1.3235 1.3235 9.5912 9.5912 9.5912 9.5912

2 0.5648 0.5752 0.5857 1.1504 2.7087 3.1862 3.6637 6.3724

4 0.2497 0.2744 0.3119 1.0977 1.0632 1.1640 1.3358 4.6560

8 0.1246 0.1426 0.1544 1.1406 0.4129 0.4323 0.4538 3.4580

16 0.0744 0.0811 0.0876 1.2971 0.1292 0.1353 0.1479 2.1642

Table 1: The minimum, mean and maximum number of L1/L2 cache misses across the threads and the

total number of cache misses for doing the initialisation of v0 with different values of nthr using single

precision and 500 grid points.

L1 cache misses (1010) L2 cache misses (109)

nthr min mean max total min mean max total

1 2.0061 2.0061 2.0061 2.0061 1.5172 1.5172 1.5172 1.5172

2 1.0035 1.0035 1.0035 2.0071 0.0003 0.7551 1.5099 1.5102

4 0.5018 0.5018 0.5018 2.0071 0.0121 0.5812 1.5019 2.3250

8 0.2508 0.2509 0.2509 2.0071 0.0003 0.3663 1.4818 2.9306

16 0.1255 0.1255 0.1255 2.0074 0.0005 0.1566 0.9186 2.5057

Table 2: The minimum, mean and maximum number of L1/L2 cache misses across the threads and the

total number of cache misses for main component within JTC CORE with different values of nthr using

single precision and 500 grid points.

In Figures 4 and 5, we compare the execution time and total energy consumption for running the JTC
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nthr A2 node main memory HSS SRAM

1 60.48 14.78 12.40 2.85

2 59.62 15.01 12.73 2.93

4 59.66 15.09 12.67 2.91

8 60.39 15.03 12.31 2.84

16 59.49 15.40 12.60 2.90

Table 3: Percentage of energy consumption by the A2 node, main memory and IO drivers, high speed

serial cores and drivers, and the SRAM array domains when running the JTC in single precision with 492

grid points and different values of nthr.
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Figure 4: The execution time for running the JTC in double precision with different numbers of grid points

and nthr.

in double precision with different numbers of threads, different numbers of grid points, niter = 50 and

nruns = 10. We observe that the execution time and total energy consumption behave similarly. However,

the trends in the figures are different to those when single precision is used. Most notably, when using

double precision, there is little difference in execution time and energy consumption between nthr = 8

and nthr = 16. Tables 4 and 5 contain the number of L1 and L2 cache misses when initialising v0 and

performing the main component within JTC CORE, respectively, using 500 grid points, niter = 50 and

nruns = 10. As for the single precision case, the total number of L1 cache misses remain almost constant

as we increase the number of threads and, for the initialisation of v0, the total number of L2 data cache

misses decreases as the number of threads increases. For nthr = 1 and nthr = 2, the total number of L2

data cache misses for the main component within JTC CORE is nearly identical. Increasing the number of

threads to four, increases the number of L2 data cache misses by a third and there is a slight drop by

further increasing to nthr = 8. Finally, nthr = 16 has over double the number of L2 data cache misses

compared to nthr = 8. This corresponds to the increasing amount of data traffic as we increase the number

of threads and, as a consequence, the execution times and energy consumption values are similar for these

two values of nthr.. In Table 6, we compare the percentage energy consumption by some of the power
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Figure 5: The total energy consumption for running the JTC in double precision with different numbers

of grid points and nthr.

domains on the node board. We observe that, as with the single precision version, increasing the number

of threads increases the proportion of the energy being consumed by the main memory. This is as we

expect because of the increased data movement and L2 data cache misses.

L1 cache misses (1010) L2 cache misses (108)

nthr min mean max total min mean max total

1 1.2444 1.2444 1.2444 1.2444 1.0084 1.0084 1.0084 1.0084

2 0.6119 0.6160 0.6201 1.2321 0.2829 0.3223 0.3618 0.6447

4 0.0018 0.2191 0.3287 0.8765 0.1142 0.1162 0.1189 0.4655

8 0.1328 0.1464 0.1566 1.1711 0.0420 0.0532 0.1176 0.4258

16 0.0736 0.0792 0.0858 1.2669 0.0131 0.0138 0.0151 0.2209

Table 4: The minimum, mean and maximum number of L1/L2 cache misses across the threads and the

total number of cache misses for doing the initialisation of v0 with different values of nthr using double

precision and 500 grid points.

In Figures 6 and 7, we provide the execution time and total energy consumption ratios for single

versus double precision, respectively, varying values of nthr and number of grid points. Note that, for

given number of grid points and nthr, the same number of floating point operations are performed on each

thread. Start by observing that when nthr = 1, it is faster to run the same code in double precision instead

of single precision as well as being more energy efficient, which goes against the normal assumption that

single precision operations will run at twice the speed of double precision operations. In fact, the Blue

Gene/Q uses Quad-Process eXtension, which means that single precision arithmetic is actually performed

in double precision and the result converted back to single precision. Therefore, each single precision

operation takes longer than a double precision operation and requires more energy but data movement

between threads should be faster for single precision reals compared to double precision reals. Additionally,
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L1 cache misses (1010) L2 cache misses (109)

nthr min mean max total min mean max total

1 3.1248 3.1248 3.1248 3.1248 2.8332 2.8332 2.8332 2.8332

2 1.5711 1.5712 1.5712 3.1424 0.0139 1.4123 2.8108 2.8246

4 0.7856 0.7856 0.7856 3.1423 0.1128 1.0459 2.3328 4.1835

8 0.3907 0.3926 0.3929 3.1406 0.0013 0.4842 3.7982 3.8739

16 0.1964 0.1965 0.1965 3.1436 0.0025 0.5113 4.6825 8.1807

Table 5: The minimum, mean and maximum number of L1/L2 cache misses across the threads and the

total number of cache misses for main component within JTC CORE with different values of nthr using

double precision and 500 grid points.

nthr A2 node main memory HSS SRAM

1 60.38 15.10 12.29 2.83

2 60.28 15.16 12.31 2.83

4 60.31 15.06 12.35 2.84

8 60.13 15.42 12.26 2.82

16 60.09 15.66 12.15 2.80

Table 6: Percentage of energy consumption by the node board, A2 node, main memory and IO drivers, high

speed serial cores and drivers, and the SRAM array domains when running the JTC in double precision

with 492 grid points and different values of nthr.
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Figure 6: Ratio of execution time for running the JTC in single versus double precision with different

numbers of grid points and nthr.

we will expect the number of cache misses to be substantially lower for the single precision variant because

more values can be stored within the L1 and L2 caches.

For the case nthr = 1, the only data movement will be due to cache misses and, for the JTC, the time
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Figure 7: Ratio of total energy consumption for running the JTC in single versus double precision with

different numbers of grid points and nthr.

spent doing floating point operations dominates the time spent moving data around. Thus, the execution

time and energy consumption are, respectively, up to 40% and 35% greater for the single precision version

compared to the double precision version when nthr = 1. For the data movement costs to start to dominate

the floating point operation costs, we need to increase in the number of threads. As nthr is increased, we

will expect the data movement due to the need for threads to communicate to increase. In addition, the

floating point operations on each thread will approximately half each time the number of threads doubles.

For nthr = 2 and 4, the ratios for execution time are very similar to those of nthr = 1. However,

increasing the number of threads reduces the ratio in terms of energy consumption. If we compare the

number of L1 cache misses for the core component of JTC CORE with 500 grid points, we observe that there

are approximately 50% more misses for the double precision version; for the L2 data cache misses, there

are 80-90% more misses for nthr = 1, 2 and 4. In addition, increasing the number of threads results in

the data movement becoming more dominant when running the JTC and, hence, we obtain the decrease

in ratios.

For nthr = 8 and less than 380 grid points, the double precision version is preferable in terms of

execution time and energy consumption. Increase the number of threads beyond 380 and the single

precision version becomes preferable. We expect that this is due to the problem size resulting in a lot

more cache misses. Unfortunately, we had not collected the cache data required to support this hypothesis

before Blue Joule became unavailable.

Setting nthr = 16 and using less than 132 grid points, the execution time is generally between 15 and

35% larger when using single precision instead of double precision but the energy consumption is decreased

by 4%. However, the interesting cases are for the larger numbers of grid points. Here, the single precision

version provides about a 45% reduction in execution time and energy consumption. For 500 grid points,

we note that there is a 226% increase in L2 data cache misses in the main component of JTC CORE when

using double precision instead of single precision and it is these large differences in cache misses that make

the single precision variants preferable.

In the above tests, we set nruns = 10 and altered the number of grid points. Suppose that we fix the
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number of grid points to 452 and alter nruns. We can express the wall clock time, ttot, and total energy

consumption, etot, as

ttot(nruns) ≈ tsetup + nruns× tJacobi

and

etot(nruns) ≈ esetup + nruns× eJacobi,

where tsetup and esetup are the time and energy consumed setting-up the test problem, respectively, and

tJacobi and eJacobi are the time and energy consumed when performing the inner loop of Algorithm 1 with

niter = 50, respectively, Using nruns = 5, 10, . . . , 50, we can compute tsetup, tJacobi, esetup and eJacobi by

minimizing
10∑

i=1

(ttot(5i)− tsetup − nruns× tJacobi)
2

(1)

and
10∑

i=1

(etot(5i)− esetup − nruns× eJacobi)
2
. (2)

In Tables 7 and 8, we provide the computed values of tsetup and tJacobi, and esetup and eJacobi, respectively,

for both single and double precision. We observe that it takes slightly less time to set-up the problem

in double precision compared to single precision. For nthr = 1, the Jacobi iterations take 20% longer to

execute in single precision compared to double. As the value of nthr increases, the time difference between

the single and double precision versions for performing the Jacobi iterations reduces and, for nthr = 8,

the single precision version is 15% faster than the double precision version. For nthr = 16, the time to

perform the Jacobi iterations in single precision is half the time for the double precision version. The

ratios differ when we consider the energy consumption, which, again, shows that the energy consumption

is not proportional to the execution time. For nthr = 1, 22% more energy is required to set up the

problem in single precision compared to double precision: this is due to the overhead in performing single

precision operations compared to double precision ones. The energy consumed when performing 50 Jacobi

iterations is 16% higher in the single precision case. For nthr = 2 and 4, the energy consumed by running

50 Jacobi iterations is 15% higher for the single precision version. However, the ratio decreases as we move

to 8 threads, with the set-up phase using 17% less energy when using single precision instead of double

precision. For nthr = 16, the energy consumed by the 50 Jacobi iterations in the single precision version

is just 54% of that for the double precision. It is important to note that these ratios can vary a lot for

other numbers of grid points because of cache behaviour. Note that 452 grid points was chosen because

it exhibited some of the worst cases with respect to single precision’s energy consumption over the larger

problems.

single double ratio (single/double)

nthr tsetup tJacobi tsetup tJacobi tsetup tJacobi

1 42.17 36.77 41.71 30.51 1.011 1.205

2 22.12 18.43 21.78 15.82 1.016 1.165

4 11.21 9.22 11.01 7.94 1.018 1.161

8 5.83 4.62 5.67 5.44 1.029 0.850

16 3.11 2.79 2.92 5.47 1.067 0.510

Table 7: Computed values of tsetup and tJacobi for single and double precision version of JTC with 452

grid points and different values of nthr, and the ratio of single/double.

We can conclude that, using OpenMP on a Blue Gene/Q, we will only start to get benefits from using

single precision over double precision, in execution times and energy consumption, if the costs of data

movement outweigh the additional costs of performing the floating point operations. However, we also
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single double ratio (single/double)

nthr esetup eJacobi esetup eJacobi esetup eJacobi

1 0.1253 0.0598 0.1025 0.0517 1.222 1.157

2 0.0133 0.0300 0.0103 0.0259 1.291 1.158

4 0.0106 0.0152 0.0112 0.0131 0.946 1.160

8 0.0099 0.0080 0.0119 0.0090 0.832 0.889

16 0.0109 0.0049 0.0116 0.0091 0.940 0.538

Table 8: Computed values of esetup and eJacobi for single and double precision version of JTC with 452

grid points and different values of nthr.

observe that, whilst the execution time is a clear factor in determining the energy consumption when data

movement is at a minimum, the cost of data movement, often associated with cache misses, is a significant

factor when the amount of data movement becomes large.

3 Energy consumption of the JTC with MPI

As well as there being an OpenMP version of the JTC, there is also a MPI version. Within the MPI

version, the cuboid domain is divided up into equal-sized cuboids: the user decides how this division is

done by specifying px, py and pz, which specify how many regions to split each of the x, y and z axis,

respectively, into. Note that the total number of MPI processes, p, satisfies p = pxpypz.

In this section, we will investigate the energy consumption of the JTC when running with different

numbers of MPI processes and different configurations of px, py and pz.

We start by considering the single precision version of the JTC and let p = 2i, i = 0, . . . , 5. For each

value of p, we choose px, py and pz to be powers of 2 such that px ≥ py ≥ pz and px ≤ 2pz. In Figures 8

and 9, we note that, as expected, increasing the number of MPI processes gives a drop in execution times

and there is also a drop in energy consumption. Interestingly, the switch between p = 8 and p = 16 gives

a much smaller drop in energy consumption than any of the other times that p is doubled.

In Figures 10 and 11, we consider the double precision version of the JTC. As with the single precision

case, we observe significant drops in the execution time and energy consumption when moving between

p = 1, 2, 4 and 8, but the execution time and energy consumption for p = 8 and p = 16 are almost

identical. There is then a drop in energy consumption when moving from p = 16 to p = 32. Increasing the

value of p, increases the amount of communication required between processes and, hence, the amount of

data movement increases. From our results, we can conclude that the energy running the CPU execution

units dominates the energy requirements for data movement when p < 16. Thus, doubling the number of

processes approximately halves the number of floating point operations being performed on a single CPU,

hence, the time spent operating the CPU approximately halves. At the same time, the amount of data

movement will increase, meaning that the total energy consumption is not inversely proportional to the

number of processes.

We compare the use of single and double precision in terms of execution time and energy consumption

in Figures 12 and 13, respectively. As with the OpenMP version of the JTC, for large problems, the double

precision version is preferable when the the level of data movement is low compared to the floating point

operations (p ≤ 8). For p = 16, the execution time and energy consumption are roughly the same but,

by setting p = 32, the single precision version gives a 17-18% reduction in execution time and a 15-17%

reduction in energy consumption.

As in Section 2, we can fix the number of grid points and alter nruns to determine the execution time

and energy consumption of the set-up phase and 50 Jacobi iterations. Again, we will use 452 grid points

and data from nruns = 5, 10, . . . , 50 to compute tsetup, tJacobi, esetup and eJacobi by solving Equations 1

and 2. In Tables 9 and 10, we give the computed values of tsetup, tJacobi, esetup and eJacobi for different
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Figure 8: The execution time for running the JTC in single precision with different numbers of grid points

and p.
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Figure 9: The total energy consumption for running the JTC in single precision with different numbers of

grid points and p.

values of p. We start by observing that there is little difference in the set-up time for a given value of

p when comparing single and double precision. However, for p > 1, the amount of energy consumed by

the set-up stage is much lower for the single precision case: just 10% of the double precision’s energy
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Figure 10: The execution time for running the JTC in double precision with different numbers of grid

points and p.
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Figure 11: The total energy consumption for running the JTC in double precision with different numbers

of grid points and p.

consumption for p = 8 and p = 16. For the Jacobi iteration phase, when p = 1, 2, 4, 8, the execution time

of the single precision variant is between 17 and 35% larger than the double precision variant whilst the

energy consumption is increased by between 15 and 36%. For p = 16, the increased data movement results
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Figure 12: Ratio of execution time for running the JTC in single versus double precision with different

numbers of grid points and p.
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Figure 13: Ratio of total energy consumption for running the JTC in single versus double precision with

different numbers of grid points and p.

in the execution time and energy consumption being nearly identical for the Jacobi iteration within the

single and double precision versions. Finally, when p = 32, the data movement costs are now high enough
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that we see the advantage of using single precision over double precision. Here, for the Jacobi iteration

phase, the execution time is reduced by 18% and the energy consumption by 12%.

single double ratio (single/double)

p tsetup tJacobi tsetup tJacobi tsetup tJacobi

1 42.23 36.77 41.82 31.48 1.010 1.168

2 22.30 24.79 21.73 18.32 1.026 1.353

4 11.42 12.98 11.30 10.26 1.011 1.265

8 5.94 6.70 5.89 5.40 1.009 1.242

16 3.04 5.38 3.01 5.44 1.010 0.988

32 1.68 3.77 1.62 4.62 1.041 0.816

Table 9: Computed values of tsetup and tJacobi for single and double precision version of JTC with 452

grid points and different values of p, and the ratio of single/double.

single double ratio (single/double)

p esetup eJacobi esetup eJacobi esetup eJacobi

1 0.0787 0.0600 0.0672 0.0523 1.171 1.147

2 0.0975 0.0409 0.0580 0.0301 1.680 1.359

4 0.0282 0.0212 0.0353 0.0169 0.794 1.254

8 0.0028 0.0120 0.0257 0.0089 0.109 1.356

16 0.0016 0.0097 0.0155 0.0090 0.103 1.074

32 0.0031 0.0068 0.0131 0.0076 0.242 0.883

Table 10: Computed values of esetup and eJacobi for single and double precision version of JTC with 452

grid points and different values of p, and the ratio of single/double.

We conclude that, as with the OpenMP version, the advantages of using single precision over double

precision only becomes apparent when the data movement costs start to be significant. The advantage of

using single precision within the JTC is less pronounced than the OpenMP case.

4 Energy consumption of the JTC with OpenMP and MPI

We have seen that the OpenMP and MPI versions of the JTC give a reduction in energy consumption as

we increase the number of threads/processes. In this section, we consider the mixed OpenMP-MPI version

of the JTC.

We start by considering what happens when the number of MPI processes is fixed (p = 4) and the

number of OpenMP threads is altered (nthr = 1, 2, 4, 8, 16). Each node has 16 cores and, hence, for

nthr > 4 we will be running the JTC across different nodes. In Figures 14 and 15, we compare the

execution time and energy time, respectively, for the varying values of nthr and grid points using the

single precision version of the code. For nthr = 1, 2 and 4, we observe that doubling the number of

threads does not halve the execution time but there is a substantial decrease. In comparison, in the pure

OpenMP version, the execution time does halve. As we move to using two and then four nodes (nthr = 8

and 16), there is little to be gained in execution time over using the combination p = 4 and nthr = 4. For

the pure OpenMP version, doubling the number of threads roughly halved the total energy consumption.

Here, moving from nthr = 2 to nthr = 4 decreases the total energy consumption by roughly a third. There

is no gain to be had in terms of total energy consumption by switching from nthr = 4 to nthr = 8, and,

contrary to the execution time, switching to nthr = 16 increases the total energy consumption: for large
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numbers of grid points, the energy consumption is similar to that with nthr = 2. this is due to the extra

energy required to move data between nodes.
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Figure 14: The execution time for running the JTC in single precision with p = 4 and different numbers

of grid points and nthr.
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Figure 15: The total energy consumption for running the JTC in single precision with p = 4 and different

numbers of grid points and nthr.
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For the double precision version with p = 4, see Figures 16 and 17, we move even further away from

the behaviour of the pure OpenMP version as we alter nthr. In terms of both the execution time and

total energy consumption, nthr = 4 is favourable: the extra cost of moving double precision data between

nodes completely outweighs any gains from parallelism of the floating point operations.
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Figure 16: The execution time for running the JTC in double precision with p = 4 and different numbers

of grid points and nthr.

In Figures 18, 19 and 20, we compare the execution times, energy consumption and average power

usage for the single and double precision versions of the JTC with four MPI processes, varying the number

of grid points and the values of nthr. As expected, for very small problems (less than 75 grid points), the

single precision version reduces the execution time by up to 8% but we see more modest reductions in

energy consumption. Note that the average power usage is greater for the single precision version but the

drop in execution time is enough to give a small drop in energy consumption. For grid points between

80 and 130, the average power usage is generally lower for the single precision version than the double

precision version. The biggest drop in power usage is for nthr = 1 where there is up to an 8% decrease.

Increasing the number of threads brings the average power usage closer for the two different precisions. For

this range of grid points, the single precision execution times are larger than those of the double precision

version and, as a consequence, the total energy consumption is comparable. As the number of grid points

increases, there are suddenly huge gains to be had in execution time when using the single precision version

instead of double precision: this is due to the cache behaviour and the double precision version having to

move a lot of data between caches and main memory but the single precision version is still mainly able to

store its data in the caches. For nthr = 16 and approximately 150 grid points, the execution time of the

single precision version is 40% lower than that of the double precision version. This difference in execution

time decreases as the number of threads increases. The increase in data movement in the double precision

version slows down the rate at which floating point operations are executed and, hence, the overall power

usage is much lower for the double precision version. However, the overall energy consumption is lower for

the single precision version.

If we continue to increase the number of grid points, the amount of data traffic for the single precision

version ramps up as the caches fill-up. For greater than 200 grid points, the size of problems are such
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Figure 17: The total energy consumption for running the JTC in double precision with p = 4 and different

numbers of grid points and nthr.

that the costs of data movement start to dominate for both the single and double precision variants.

Where the data movement levels are still modest compared to floating point operations, as expected,

the double precision version has lower execution times and, although the average power usage is slightly

lower for the single precision version, the double precision variant uses the smaller amount of energy.

In particular, for nthr = 1, the single precision version consumes approximately 20% more energy; for

nthr = 2, approximately 15% more energy is consumed by the single precision version. For nthr = 4,

the increase in data traffic over nthr = 1 or nthr = 2 results in the average power usage being similar

but the execution time for for single precision version is between 3 and 10% lower than that of the double

precision version. Hence, we see similar gains in energy consumption. As expected, as the data movement

increases further with more data having to flow between nodes, the advantages of using single precision

increase even more. In particular, for nthr = 8 and greater than 380 grid points, the single precision

version reduces the execution time by 33% and energy consumption by 31%. For nthr = 16 and greater

than 400 grid points, the execution time and total energy consumption are reduced by at least 35% and

at least 33%, respectively.

Whilst fixing the value of p and varying nthr is of interest (or fixing nthr and varying p), we normally

have a maximum number of cores available for us to use but we can use different combinations of nthr

and p such that we use the maximum number of cores. Thus, we wish to know which combination is

best for a specific precision and which combination gives the best gain when comparing the single and

double precision version. In the following set of results, we set nthr and p such that nthr × p = 64, that

is, we assume that we have four nodes available. In Figures 21 and 22, we compare the execution time

and total energy consumption for running the JTC in single and double precision with different numbers

of grid points, niter = 50 and nruns = 10.. We start by noting that the level of data traffic is such

that all of the single precision variants are faster than the double precision variants with p ≤ 16 and use

less energy. For both the double and single precision versions, p = 32 and nthr = 2 gives the lowest

execution times and energy consumption. Additionally, p = 4 and nthr = 16 is always the worse in terms

of both execution time and total energy consumption. It is not true that doubling p and halving nthr
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Figure 18: Ratio of execution time for running the JTC in single versus double precision with p = 4 and

different numbers of grid points and nthr.
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Figure 19: Ratio of total energy consumption for running the JTC in single versus double precision with

p = 4 and different numbers of grid points and nthr.

always decreases execution time and total energy consumption: in fact, for large number of grid points,

p = 16 and nthr = 4 outperforms p = 8 and nthr = 8. We therefore conclude that different combinations

of OpenMP threads and MPI processes can have profound effects on the total energy consumption and,
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Figure 20: Ratio of total energy consumption for running the JTC in single versus double precision with

p = 4 and different numbers of grid points and nthr.

whilst the results from Sections 2 and 3 might lead us to assume that it is better to focus on more threads,

this assumption is not true.
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Figure 21: The execution time for running the JTC in single and double precision with p×nthr = 64 and

different values of size.
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Figure 22: The total energy consumption for running the JTC in single and double precision with p×nthr =

64 and different values of size.

5 Conclusions

We conclude that the advantages of using single precision instead of double precision within the JTC

only become apparent on the BG/Q when the costs of data movement becomes significant. This can be

achieved by using large enough problem sizes with a large enough number of OpenMP threads and/or MPI

processes. Increasing the number of threads in the pure OpenMP version gave more significant reductions

in energy consumption than increasing the number of processes in the pure MPI version. If we wish to

try to reduce energy consumption by altering the number of threads and processes in the mixed version

without altering the precision, then we found that it was better to use a smaller number of threads with

a larger number of processes.

The JTC benchmark does not allow the user to specify the level of accuracy that the Poisson problem

should be solved to. If we were able to do this, then we would expect the double precision version to reach

a given level of accuracy in fewer iterations than the single precision version. Hence, we will not expect

the practical gains in using single precision to be so impressive for the larger number of threads/processes.

Future work includes the running of similar JTC experiments on other architectures so that we can

compare their individual energy consumption characteristics.
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