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Universal regularization methods—varying

the power, the smoothness and the accuracy

Coralia Cartis1,2, Nicholas I. M. Gould3,4 and Philippe L. Toint5

ABSTRACT

Adaptive cubic regularization methods have emerged as a credible alternative to linesearch and

trust-region for smooth nonconvex optimization, with optimal complexity amongst second-order

methods. Here we consider a general/new class of adaptive regularization methods, that use first-

or higher-order local Taylor models of the objective regularized by a(ny) power of the step size and

applied to convexly-constrained optimization problems. We investigate the worst-case evaluation

complexity/global rate of convergence of these algorithms, when the level of sufficient smoothness

of the objective may be unknown or may even be absent. We find that the methods accurately

reflect in their complexity the degree of smoothness of the objective and satisfy increasingly better

bounds with improving accuracy of the models. The bounds vary continuously and robustly with

respect to the regularization power and accuracy of the model and the degree of smoothness of

the objective.
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1 Introduction

We consider the (possibly) convexly-constrained optimization problem

min
x∈F

f(x) (1.1)

where f : IRn −→ IR is a smooth, possibly nonconvex, objective and where the feasible set F ⊂

IRn is closed, convex and non-empty (for example, the set F could be described by simple bounds

and both polyhedral and more general convex constraints)1. Clearly, the case of unconstrained

optimization is covered here by letting F = IRn. We are interested in the case when f ∈

Cp,βp(F), namely, f is p−times continuously differentiable in F with the pth derivative being

Hölder continuous of (unknown) degree βp ∈ [0, 1]2. We consider adaptive regularization methods

applied to problem (1.1) that generate feasible iterates xk that are (possibly very) approximate

minimizers over F of local models of the form

mk(xk + s) = Tp(xk, s) +
σk

r
‖s‖r2,

where Tp(xk, s) is the pth order Taylor polynomial of f at xk and r > p ≥ 1. The parameter σk > 0

is adjusted to ensure sufficient decrease in f happens when the model value is decreased. In this

paper, we derive evaluation complexity bounds for finding first-order critical points of (1.1) using

higher-order adaptive regularization methods. Despite the higher order of the models, the model

minimization is performed only approximately, generalizing the approach in [3]. The proposed

methods also ensure that the steps are ‘sufficiently long’, in a new way, generalizing ideas in [11].

The ensuing complexity analysis shows the robust interplay of the regularization power r, the

model accuracy p and the degree of smoothness βp of the objective, with some surprising results.

In particular, we find that the degree of smoothness of the objective—which is often unknown

and is even allowed to be absent here—is accurately reflected in the complexity of the methods,

independently of the regularization power, provided the latter is sufficiently large. Furthermore,

for all possible powers r, the methods satisfy increasingly better bounds as the accuracy p of the

models and smoothness level βp are increased. All bounds vary continuously as a function of the

regularization power and smoothness level. Table 4.1 in Section 4 summarizes our complexity

bounds.

We now review existing literature in detail and further clarify our approach, motivation and

contributions. Cubic regularization for the (unconstrained) minimization of f(x) for x ∈ IRn was

proposed independently by [12,16,17], with [16] showing it has better global worst-case function

evaluation complexity than the method of steepest descent. Extending [16], we proposed some

practical variants – Adaptive Regularization with Cubics (ARC) [5] – that satisfy the same

complexity bound as the regularization methods in [16], namely at most O(ǫ−
3
2 ) evaluations are

needed to find a point x for which

‖∇xf(x)‖ ≤ ǫ, (1.2)

under milder requirements on the algorithm (specifically, inexact model minimization). We fur-

ther showed in [4, 6] that this complexity bound for ARC is sharp and optimal for a large class

1We are tacitly assuming that the cost of evaluating constraint functions and their derivatives is negligible.
2Note that if βp > 1, then the resulting class of objectives is restricted to multivariate polynomials of degree p.

If p = 1, we only allow β1 ∈ (0, 1], for reasons to be explained later in the paper.
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of second-order methods when applied to functions with globally Lipschitz-continuous second

derivatives. Quadratic regularization, namely, a first order accurate model of the objective regu-

larized by a quadratic term, has also been extensively studied, and shown to satisfy the complexity

bound of steepest descent, namely, O(ǫ−2) evaluations to obtain (1.2) [14]. It was also shown

in [5] that one can loosen the requirement that global Lipschitz continuity of the second derivative

holds, to just global Hölder continuity of the same derivative with exponent β2 ∈ (0, 1]. Then, if

one also regularizes the quadratic objective model by the power 2 + β2 of the step, involving the

(often unknown) Hölder exponent, the resulting method requires O(ǫ
−

2+β2
1+β2 ) evaluations, which

just as a function of ǫ, belongs to the interval
[

ǫ−
3
2 , ǫ−2

]

; these bounds are sharp and optimal for

objectives with corresponding level of smoothness of the Hessian [6]. Note that this bound also

holds if β2 = 0.

An important related question and extension was answered in [3]: if higher-order derivatives

are available, can one improve the complexity of regularization methods? It was shown in [3]

that if one considers approximately minimizing a (r − 1)th order Taylor model of the objective

regularized by the (weighted) rth power of the (Euclidean) norm of the step in each iteration (so

r = p+1), the complexity of the resulting adaptive regularization method is O(ǫ−
r

r−1 ) evaluations

to obtain (1.2), under the assumption that the (r − 1)th derivative tensor is globally Lipschitz

continuous. The method proposed in [3] measures progress of each iteration by comparing the

Taylor model decrease (without the regularization term) to that of the true function decrease

and only requiring mild approximate (local) minimization of the regularized model. Here, we

generalize these higher-order regularization methods from [3] to allow for an arbitrary local Taylor

model, an arbitrary regularization power of the step and varying levels of smoothness of the

highest-order derivative in the Taylor model.

The interest in considering relaxations of Lipschitz continuity to Hölder continuity of deriva-

tives comes not only from the needs of some engineering applications (such as flows in gas

pipelines [10, Section 17] and properties of nonlinear PDE problems [1]), but also in its own

right in optimization theory, as a bridging case between the smooth and non-smooth classes

of problems [13, 15]. In particular, a zero Hölder exponent for a Hölder continuous derivative

corresponds to a bounded derivative, an exponent in (0, 1) corresponds to a continuous but not

necessarily differentiable derivative, while an exponent of 1 corresponds to a Lipschitz continu-

ous derivative that can be differentiated again. For the case of function with Hölder-continuous

gradients, methods have already been devised, and their complexity analysed, both as a weaker

set of assumptions and as an attempt to have a ‘smooth’ transition between the smooth and

nonsmooth (convex) problem classes, without knowing a priori the level of smoothness of the

gradient (i.e., the Hölder exponent) [9, 15]; even lower complexity bounds are known [13]. In [7]

we considered regularization methods applied to nonconvex objectives with Hölder continuous

gradients (with unknown exponent β1 ∈ (0, 1]), that employ a first-order quadratic model of the

objective regularized by the rth power of the step. We showed that the worst-case complexity

of the resulting regularization methods varies depending on min{r, 1 + β1}. In particular, when

1 < r ≤ 1+β1, the methods take at most O
(

ǫ
− r

r−1

)

evaluations/iterations until termination, and

otherwise, at most O

(

ǫ
−

1+β1
β1

)

evaluations/iterations to achieve the same condition. The latter

complexity bound reflects the smoothness of the objective’s landscape, without prior knowledge

or use of it in the algorithm, and is independent of the regularization power. Here we generalize
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the approach in [7] to pth order Taylor models and find that similar bounds can be obtained.

Also, we are able to allow βp = 0 provided p ≥ 2.

Recently, [11] proposed a new cubic regularization scheme that yields a universal algorithm in

the sense that its complexity reflects the (possibly unknown or even absent) degree of sufficient

smoothness of the objective (for this, p = 2, r = 3 and β2 ∈ [0, 1]). Our ARp algorithm includes

a modification in a similar (but not identical) vein to that in [11]. In particular, our approach

checks/ensures that the length of the step is sufficiently large on all iterations on which the

objective is sufficiently decreased, while the technique in [11] uses a specific/new sufficient decrease

condition of the objective on each iteration. We generalize the approach in [11] and achieve

complexity bounds with similar universal properties for varying r, p and unknown βp ∈ [0, 1],

provided r ≥ p+ βp. We are also able to analyze ARp’s complexity in the regime p < r ≤ p+ βp

providing continuously varying results with r and βp.

Our algorithm can be applied to convexly-constrained optimization problems with nonconvex

objectives, where the constraint/feasibility evaluations are inexpensive, offering another general-

ization of proposals in [3] and [11] which are presented for the unconstrained case only; we also

extend [11] by allowing inexact subproblem solution.

The structure of the paper is as follows. Section 2 describes our main algorithmic framework,

ARp. Section 3 presents our complexity analysis while Section 4 concludes with a summary of

our complexity bounds (see Table 4.1) and a discussion of the results.

2 A universal adaptive regularization framework - ARp

Let f ∈ Cp(F), with p integer, p ≥ 1; let r ∈ IR, r > p ≥ 1. We measure optimality using a

suitable continuous first-order criticality measure for (1.1). We define this measure for a general

function h : IRn −→ IR on F : for an arbitrary x ∈ F , the criticality measure is given by

πh(x)
def
= ‖PF [x−∇xh(x)]− x‖, (2.1)

where PF denotes the orthogonal projection onto F and ‖ · ‖ the Euclidean norm. Letting

h(x) := f(x) in (2.1), it is known that x is a first-order critical point of problem (1.1) if and only

if πf (x) = 0. Also note that

πf (x) = ‖∇xf(x)‖ whenever F = IRn.

For more properties of this measure see [2, 8].

Our ARp algorithm generates feasible iterates xk that (possibly very) approximately minimize

the local model

mk(xk + s) = Tp(xk, s) +
σk

r
‖s‖r subject to xk + s ∈ F , (2.2)

which is a regularization of the pth order Taylor model of f around xk,

Tp(xk, s) = f(xk) +
p
∑

j=1

1

j!
∇j

xf(x
k)[s]j , (2.3)

where ∇j
xf(x

k)[s]j is the jth order tensor ∇j
xf(x

k) of f at xk applied to the vector s repeated j

times. Note that Tp(xk, 0) = f(xk). We will also use the measure (2.1) with h(s) := mk(xk + s)
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for terminating the approximate minimization of mk(xk + s), and for which we have again

πmk
(xk + s) = ‖∇smk(xk + s)‖ whenever F = IRn.

A summary of the main algorithmic framework is as follows.

Algorithm 2.1: A universal ARp variant.

Step 0: Initialization. An initial point x0 ∈ F and an initial regularization parameter

σ0 > 0 are given, as well as an accuracy level ǫ > 0. The constants η1, η2, γ1, γ2 and

γ3, θ, σmin and α, are also given and satisfy

θ > 0, σmin ∈ (0, σ0], 0 < η1 ≤ η2 < 1 and 0 < γ3 < 1 < γ1 < γ2 and α ∈

(

0,
1

3

]

.

(2.4)

Compute f(x0), ∇xf(x0) and set k = 0. If πf (x0) < ǫ, terminate. Else, for k ≥ 0, do:

Step 1: Model set-up. Compute derivatives of f of order 2 to p at xk.

Step 2: Step calculation. Compute the step sk by approximately minimizing the model

mk(xk + s) in (2.2) over xk + s ∈ F such that the following conditions hold,

xk + sk ∈ F , (2.5)

mk(xk + sk) < f(xk) (2.6)

and

πmk
(xk + sk) ≤ θ‖sk‖

r−1. (2.7)

Step 3: Test for termination. Compute ∇xf(xk + sk). If πf (xk + sk) < ǫ, terminate

with the approximate solution xǫ = xk + sk.

Step 4: Acceptance of the trial point. Compute f(xk + sk) and define

ρk =
f(xk)− f(xk + sk)

f(xk)− Tp(xk, sk)
. (2.8)

If ρk ≥ η1, check whether

σk‖sk‖
r−1 ≥ αǫ. (2.9)

If both ρk ≥ η1 and (2.9) hold, then define xk+1 = xk+sk; otherwise define xk+1 = xk.

Step 5: Regularization parameter update. Set

σk+1 ∈











[max(σmin, γ3σk), σk] if ρk ≥ η2 and (2.9) holds,

[σk, γ1σk] if ρk ∈ [η1, η2) and (2.9) holds,

[γ1σk, γ2σk] if ρk < η1 or (2.9) fails.

(2.10)

Increment k by one, and go to Step 1 if ρk ≥ η1 and (2.9) hold, and to Step 2 otherwise.
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Iterations for which ρk ≥ η1 and (2.9) hold (and so xk+1 = xk+sk) are called successful, those

for which ρk ≥ η2 and (2.9) hold are referred to as very successful, while the remaining ones are

unsuccessful. For a(ny) j ≥ 0, we denote the set of successful iterations up to j by Sj = {0 ≤ k ≤

j : ρk ≥ η1 and (2.9) holds} and the set of unsuccessful ones by Uj = {0, . . . , j} \ Sj . We have

the following simple lemma that relates the number of successful and unsuccessful iterations and

that is ensured by the mechanism of the Algorithm 2.1.

Lemma 2.1. [5, Theorem 2.1] For any fixed j ≥ 0 until termination, let σup > 0 be such

that σk ≤ σup for all k ≤ j in Algorithm 2.1. Then

|Uj | ≤
| log γ3|

log γ1
|Sj |+

1

log γ1
log

(

σup

σ0

)

, (2.11)

where | · | denotes the cardinality of the respective index set.

Proof. The proof of (2.11) follows identically to the given reference; note that the sets Sj

and Uj are not identical to the usual ARC ones in [5] but the mechanism for modifying σk

in ARp coincides with the one in ARC on these iterations and that is why the proof of this

lemma follows identically to [5, Theorem 2.1]. ✷

Now we comment on the construction of the ARp algorithm. Note that the model minimiza-

tion conditions (Step 2) and the definition of ρ in Step 4 are straightforward generalizations of

the approach in [3] to pth order Taylor models regularized by different powers r of the norm of

the step. However, there are two main differences to the by-now standard approaches to (cubic or

higher order) regularization methods. Firstly, we check whether the gradient goes below ǫ at each

trial points, and if so, terminate on possibly unsuccessful iterations (Step 3). Secondly, we check

whether the step sk is sufficiently long (in the sense of condition (2.9)) on every successful steps,

and only allow such sufficiently long steps to be taken by the algorithm; if the step is not suffi-

ciently long (or ρk ≤ η1), σk is increased. Note that though the length of the step sk decreases as

σk is increased, this is not the case for the expression σk‖sk‖
r−1 in (2.9), which increases with σk,

as Lemma 3.4 implies. These two additional ingredients—the gradient calculation at each trial

point and the step length condition (2.9)—are directly related to trying to achieve universality

of ARp, extending ideas from [11].3

Remarks. Instead of requiring (2.9) on each successful step, we could ask that each model

minimization step calculated in Step 2 satisfies (2.9); if (2.9) failed, σk would be increased at the

end of Step 2 and the model minimization step would be repeated. This approach may result in

an unnecessarily small step in practice. Similarly, following [11], one could replace (2.9) with a

different definition for ρk, namely, the denominator in ρk would be replaced by a rational function

in ǫ and σk to achieve the desired order of model/function decrease for universal complexity and

behaviour. We found the implicit way of controlling the length of the step to be less intuitive

but accept this is simply a matter of opinion. According to our calculations, qualitatively similar

3We note that without the condition (2.9) on the length of the step, or a similar measure of progress, the

complexity of ARp would dramatically worsen (according to our calculations) in the regime when r > p+ βp.
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complexity bounds would be obtained for these two ARp variants.

3 Worst-case complexity analysis of ARp

3.1 Some preliminary properties

We have the following simple consequence of (2.6).

Lemma 3.1. On each iteration of Algorithm 2.1, we have the decrease

f(xk)− Tq(xk, sk) ≥
σk

r
‖sk‖

r. (3.1)

Proof. Note that condition (2.6) and the definition of mk(s) in (2.2) immediately give (3.1).

✷

We have the following upper bound on sk.

Lemma 3.2. On each iteration of Algorithm 2.1, we have

‖sk‖ ≤ max
1≤j≤p

{

(

pr

j!σk
‖∇j

xf(xk)‖

)
1

r−j

}

. (3.2)

Proof. It follows from (2.6), (2.2) and (2.3) that

sTk∇xf(xk) +
1

2
∇2

xf(xk)[sk, sk] + . . . +
1

p!
∇p

xf(x
k)[sk, sk, . . . , sk] +

σk

r
‖sk‖

r < 0,

which from Cauchy-Schwarz and norm properties, further implies

−‖sk‖ · ‖∇xf(xk)‖ −
1

2
‖sk‖

2 · ‖∇2
xf(xk)‖ − . . .−

1

p!
‖sk‖

p · ‖∇p
xf(x

k)‖+
σk

r
‖sk‖

r < 0,

or equivalently,
p
∑

j=1

(

σk

pr
‖sk‖

r −
1

j!
‖sk‖

j · ‖∇j
xf(x

k)‖

)

< 0.

The last displayed equation cannot hold unless at least one of the terms on the left-hand side

is negative, which is equivalent to (3.2), using also that r > p ≥ 1. ✷

Let us assume that f ∈ Cp,βp, namely,

A.1 f ∈ Cp(F) and∇p
xf is Hölder continuous on the path of the iterates and trial points, namely,

‖∇p
xf(y)−∇p

xf(xk)‖T ≤ (p − 1)!Lp‖y − xk‖
βp
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holds for all y ∈ [xk, xk + sk], k ≥ 0 and some constants Lp ≥ 0 and βp ∈ [0, 1], where ‖ · ‖

is the Euclidean norm on IRn and ‖ · ‖T is recursively induced by this norm on the space of

the pth order tensors.

A simple consequence of A.1 is that

|f(xk + sk)− Tp(xk, sk)| ≤
Lp

p(βp + 1)
‖sk‖

p+βp , k ≥ 0, (3.3)

and

‖∇xf(xk + sk)−∇sTp(xk, sk)‖ ≤
Lp

βp + 1
‖sk‖

p+βp−1, k ≥ 0; (3.4)

see [2] for a proof of (3.3) and (3.4), with A.1 replacing Lipschitz continuity of the pth derivative.

Remark Note that throughout the paper we assume r > p ≥ 1, r ∈ IR and p ∈ IN; and that

either p ≥ 1 and βp ∈ (0, 1] or p ≥ 2 and βp ∈ [0, 1]. Thus in both cases p+ βp − 1 > 0. ✷

Two useful preliminary lemmas follow.

Lemma 3.3. Assume that A.1 holds. Then on each iteration of Algorithm 2.1, we have

πf (xk + sk) ≤
Lp

βp + 1
‖sk‖

p+βp−1 + (σk + θ)‖sk‖
r−1. (3.5)

Proof. We have that

∇smk(xk + s) = ∇sTp(xk, s) + σk‖s‖
r−1 s

‖s‖

and so

‖∇xf(xk + sk)−∇smk(xk + sk)‖ ≤ ‖∇xf(xk + sk)−∇sTp(xk, sk)‖+ σk‖sk‖
r−1

≤ Lp

βp+1‖sk‖
p+βp−1 + σk‖sk‖

r−1,
(3.6)

where we also used (3.4). Now using the contractive property of the projection operator PF

and triangle inequality, we have

πf (xk + sk) = ‖PF [xk + sk −∇xf(xk + sk)]− PF [xk + sk −∇smk(xk + sk)]

+ PF [xk + sk −∇smk(xk + sk)]− (xk + sk)‖

≤ ‖PF [xk + sk −∇xf(xk + sk)]− PF [xk + sk −∇smk(xk + sk)]‖ + πmk
(xk + sk)

≤ ‖∇xf(xk + sk)]−∇smk(xk + sk)‖+ θ‖sk‖
r−1,

where in the last inequality, we also employed the termination condition (2.7). Now (3.5)

follows from (3.6). ✷
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Lemma 3.4. Assume that A.1 holds and that Algorithm 2.1 has not terminated. Then, if

σk ≥ max
{

θ, κ2‖sk‖
p+βp−r

}

, (3.7)

where

κ2
def
=

rLp

p(1 + βp)(1− η2)
, (3.8)

both ρk ≥ η2 and (2.9) hold, and so iteration k is very successful.

Proof. Evaluating ρk in (2.8), we deduce

|ρk − 1| ≤
|f(xk + sk)− Tp(xk, sk)|

f(xk)− Tp(xk, sk)
≤

Lp

p(βp+1)‖sk‖
p+βp

σk

r
‖sk‖r

=
rLp

p(βp + 1)σk
‖sk‖

p+βp−r

where we also used (3.1) and (3.3). It follows from (2.8) that if |1−ρk| ≤ 1−η2, then ρk ≥ η2.

The former condition is satisfied if (3.7) holds.

It remains to show that while Algorithm 2.1 does not terminate, (3.7) also implies (2.9). It

follows from (3.5) and σk ≥ θ that

πf (xk + sk) ≤ ‖sk‖
p+βp−1

(

Lp

βp + 1
+ 2σk‖sk‖

r−p−βp

)

≤ ‖sk‖
p+βp−1

(

κ2 + 2σk‖sk‖
r−p−βp

)

,

where in the last inequality, we used the definition of κ2, r > p and η2 ∈ (0, 1). Using (3.7),

the last displayed inequality further becomes

πf (xk + sk) ≤ ‖sk‖
p+βp−1

(

3σk‖sk‖
r−p−βp

)

= 3σk‖sk‖
r−1.

Thus σk‖sk‖
r−1 ≥ 1

3πf (xk + sk), which in turn implies (2.9) since α ≤ 1
3 and πf (xk + sk) ≥ ǫ

as Algorithm 2.1 has not terminated. ✷

3.2 The case when r > p+ βp

Using Lemmas 3.3 and 3.4, we have the following result, which was inspired by and generalizes

the result in [11, Lemma 4].

Lemma 3.5. Let r > p+ βp and assume A.1. While Algorithm 2.1 has not terminated, if

σk ≥ max

{

θ, κ1ǫ
p+βp−r

p+βp−1

}

, (3.9)

where

κ1
def
=
(

3r−p−βpκr−1
2

)
1

p+βp−1 and κ2 is defined in (3.8), (3.10)

then (3.7) holds, and so iteration k is very successful.
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Proof. While Algorithm 2.1 does not terminate, we have πf (xk + sk) ≥ ǫ. Assume that

(3.7) does not hold on iteration k, and so

σk‖sk‖
r−p−βp < κ2. (3.11)

Then (3.5), σk ≥ θ and πf (xk + sk) ≥ ǫ imply

ǫ ≤
Lp

βp + 1
‖sk‖

p+βp−1 + 2σk‖sk‖
r−1 ≤ ‖sk‖

p+βp−1

(

Lp

βp + 1
+ 2σk‖sk‖

r−p−βp

)

,

and further using (3.11), r > p and η2 ∈ (0, 1), and that r > p+ βp > 1,

ǫ < ‖sk‖
p+βp−1

(

Lp

βp + 1
+ 2κ2

)

<

(

κ2

σk

)

p+βp−1

r−p−βp

(

Lp

βp + 1
+ 2κ2

)

<

(

κ2

σk

)

p+βp−1

r−p−βp

· (3κ2).

The latter inequality implies σk < κ1ǫ
p+βp−r

p+βp−1 , which contradicts (3.9). Thus (3.7) must hold

and Lemma 3.4 implies that ρk ≥ η2 and (2.9) hold, and so k is very successful. ✷

Lemma 3.6. Let r > p+βp and assume A.1. Then, while Algorithm 2.1 has not terminated,

we have

σk ≤ max

{

σ0, γ2θ, γ2κ1ǫ
p+βp−r

p+βp−1

}

, (3.12)

where κ1 is defined in (3.10).

Proof. Let the right-hand side of (3.9) be denoted by σ. It follows from Lemma 3.5 and the

mechanism of the algorithm that

σk ≥ σ =⇒ σk+1 ≤ σk. (3.13)

Thus, when σ0 ≤ γ2σ, it follows that σk ≤ γ2σ, where the factor γ2 is introduced for the case

when σk is less than σ and the iteration k is not very successful. Letting k = 0 in (3.13) gives

(3.12) when σ0 ≥ γ2σ since γ2 > 1. ✷

We are ready to establish an upper bound on the number of successful iterations until termi-

nation.
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Theorem 3.7. Let r > p+ βp, assume A.1 and that {f(xk)} is bounded below by flow and

ǫ ∈ (0, 1]. Then for all successful iterations k until the termination of Algorithm 2.1, we have

f(xk)− f(xk+1) ≥ κs,pǫ
p+βp

p+βp−1 , (3.14)

where

κs,p
def
=

η1

r

(

αr

σmax

)
1

r−1

, σmax
def
= max {σ0, γ2θ, γ2κ1} , (3.15)

and κ1 is defined in (3.10). Thus Algorithm 2.1 takes at most

⌊

f(xk)− flow

κs,p
ǫ
−

p+βp

p+βp−1

⌋

(3.16)

successful iterations/evaluations of derivatives of degree 2 and above of f until termination.

Proof. On every successful iteration k, we have ρk ≥ η1; this and Lemma 3.1 imply

f(xk)− f(xk+1) ≥ η1(f(xk)− Tp(xk, sk)) ≥ η1
σk

r
‖sk‖

r. (3.17)

On every successful iteration k we also have that (2.9) holds. Thus, applying the latter

inequality twice, we deduce

f(xk)− f(xk+1) ≥
η1

r
(σk‖sk‖

r−1)‖sk‖ ≥
η1

r
αǫ‖sk‖ ≥

η1

r
αǫ

(

αǫ

σk

)
1

r−1

=
η1

r

(αǫ)
r

r−1

σ
1

r−1

k

. (3.18)

We use that ǫ ∈ (0, 1] in (3.12) to deduce that

σk ≤ σmaxǫ
p+βp−r

p+βp−1 , (3.19)

where σmax is defined in (3.15). We combine this upper bound with (3.18) to see that

f(xk)− f(xk+1) ≥
η1

r
(αǫ)

r
r−1σ

− 1
r−1

max ǫ
r−p−βp

(p+βp−1)(r−1) =
η1

r

(

αr

σmax

)
1

r−1

· ǫ
p+βp

p+βp−1 ,

which gives (3.14). Using that f(xk) = f(xk+1) on unsuccessful iterations, and that f(xk) ≥

flow for all k, we can sum up over all successful iterations to deduce (3.16). ✷

We are left with counting the number of unsuccessul iterations until termination, and the

total iteration and evaluation upper bound.

Lemma 3.8. Let r > p + βp and ǫ ∈ (0, 1]. Then, for any fixed j ≥ 0 until termination,

Algorithm 2.1 satisfies

|Uj| ≤
| log γ3|

log γ1
|Sj|+

1

log γ1
log

σmax

σ0
+

r − p− βp

(p+ βp − 1) log γ1
| log ǫ|, (3.20)

where σmax is defined in (3.15).
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Proof. We apply Lemma 2.1. To prove (3.20), we use ǫ ∈ (0, 1] and the upper bound (3.19)

in place of σup in (2.11). ✷

Corollary 3.9. Let r > p+βp and assume A.1, that {f(xk)} is bounded below by flow and

ǫ ∈ (0, 1]. Then Algorithm 2.1 takes at most

⌊

f(xk)− flow

κs,p

(

1 +
| log γ3|

log γ1

)

ǫ
−

p+βp

p+βp−1 +
r − p− βp

(p + βp − 1) log γ1
| log ǫ|+

1

log γ1
log

σmax

σ0

⌋

(3.21)

iterations/evaluations of f and its derivatives until termination, where κs,p and σmax are

defined in (3.15).

Proof. The proof follows from Theorem 3.7 and (3.20), where we let j denote the first

iteration with πf (xj + sj) < ǫ (so the iteration where ARp terminates) and we use j =

|Sj|+ |Uj|. ✷

We note that the lower bound on σk, σk ≥ σmin > 0 for all k, imposed in (2.10), has not been

employed in the above proofs. It seems that in the case r ≥ p + βp, such a lower bound on σk

may follow implicitly from (2.9). However, the requirement involving σmin is needed for the case

r < p+ βp.

3.3 The case when p < r ≤ p+ βp

Note that p < r ≤ p+ βp imposes that βp > 0 in this case. Also, note that the proof of Lemma

3.5 fails to hold for r ≤ p + βp. Thus we need a different approach here to upper bounding σk.

In particular, we need the following additional assumption (for the case when r < p+ βp).

A.2 For j ∈ {1, . . . , p}, the derivative {∇jf(xk)} is uniformly bounded above with respect to k,

namely,

‖∇jf(xk)‖ ≤ Mj for all k ≥ 0, j ∈ {1, . . . , p}.

We let M
def
= max

1≤j≤p

{

(

rp

j!σmin
Mj

)
1

r−j

}

where σmin is defined in (2.10).

Lemma 3.10. Let r ≤ p + βp and assume A.1. If r < p + βp assume also A.2. While

Algorithm 2.1 has not terminated, if

σk ≥ max
{

θ, κ2M
p+βp−r

}

, (3.22)

where κ2 and M are defined in (3.8) and A.2, respectively, then (3.7) holds, and so iteration

k is very successful.
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Proof. If r = p+ βp, then (3.22) clearly implies (3.7) and so Lemma 3.4 applies.

If r < p+βp, then we upper bound ‖sk‖ by using A.2 in (3.2), as well as σk ≥ σmin, to deduce

that ‖sk‖ ≤ M where M is defined in A.2. Now (3.22) implies (3.7) and so Lemma 3.4 again

applies, yielding that iteration k is very successful. ✷

We are ready to bound σk from above for all iterations.

Lemma 3.11. Let r ≤ p + βp and assume A.1. If r < p + βp assume also A.2. While

Algorithm 2.1 has not terminated, we have

σk ≤ max
{

σ0, γ2θ, γ2κ2M
p+βp−r

}

def
= σup, (3.23)

where κ2 and M are defined in (3.8) and A.2, respectively.

Proof. The proof follows a similar argument to that of Lemma 3.6, with (3.9) replaced by

(3.22). ✷

We are now ready to upper bound the number of successful iterations of Algorithm 2.1 until

termination.

Theorem 3.12. Let r ≤ p + βp, assume A.1 and that {f(xk)} is bounded below by flow.

If r < p + βp assume also A.2. Then for all successful iterations k until the termination of

Algorithm 2.1, we have

f(xk)− f(xk+1) ≥ κs,rǫ
r

r−1 , (3.24)

where

κs,r
def
=

η1

r

(

αr

σup

)
1

r−1

, (3.25)

and σup is defined in (3.23). Thus Algorithm 2.1 takes at most

⌊

f(xk)− flow

κs,r
ǫ
− r

r−1

⌋

(3.26)

successful iterations/evaluations of derivatives of degree 2 and higher of f until termination.

Proof. Note that (3.17) and (3.18) continue to hold in this case (they only use general ARp

properties and the mechanism of the algorithm). Applying (3.23) in (3.18), we deduce

f(xk)− f(xk+1) ≥
η1

r
(αǫ)

r
r−1σ

− 1
r−1

up =
η1

r

(

αr

σup

)
1

r−1

· ǫ
r

r−1 , (3.27)

which gives (3.24).
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Algorithm p < r ≤ p+ βp p+ βp < r

ARp with p = 1 O
(

ǫ
− r

r−1

)

=

[

O

(

ǫ
−

1+β1
β1

)

,∞

)

O

(

ǫ
−

1+β1
β1

)

ARp with p = 2 O
(

ǫ
− r

r−1

)

=

[

O

(

ǫ
−

2+β2
1+β2

)

,O
(

ǫ−2
)

)

O

(

ǫ
−

2+β2
1+β2

)

ARp with p = 3 O
(

ǫ
− r

r−1

)

=

[

O

(

ǫ
−

3+β3
2+β3

)

,O
(

ǫ−
3
2

)

)

O

(

ǫ
−

3+β3
2+β3

)

. . . . . . . . .

ARp with p ≥ 2 O
(

ǫ
− r

r−1

)

=

[

O

(

ǫ
−

p+βp

p+βp−1

)

,O
(

ǫ
−

p

p−1

)

)

O

(

ǫ
−

p+βp

p+βp−1

)

Table 4.1: Summary of complexity bounds for regularization methods for ranges of r. Recall we

assumed that ǫ ∈ (0, 1], r > p ≥ 1, r ∈ IR and p ∈ IN; and that either p ≥ 1 and βp ∈ (0, 1], or

p ≥ 2 and βp ∈ [0, 1]. Also, the ranges in the second column are as a function of the dominating

terms in ǫ and varying r in the appropriate interval and they are plotting the changing bound

O(ǫ
r

r−1 ).

Using that f(xk) = f(xk+1) on unsuccessful iterations, and that f(xk) ≥ flow for all k, we

can sum up over all successful iterations to deduce (3.26). ✷

We are left with counting the number of total iterations and evaluations.

Corollary 3.13. Let r ≤ p + βp, assume A.1 and that {f(xk)} is bounded below by flow.

If r < p+ βp assume also A.2. Then Algorithm 2.1 takes at most

⌊

f(xk)− flow

κs,r

(

1 +
| log γ3|

log γ1

)

ǫ
− r

r−1 +
1

log γ1
log

σup

σ0

⌋

(3.28)

iterations/evaluations of f and its derivatives until termination, where κs,r and σup are

defined in (3.26) and (3.23), respectively.

Proof. We first upper bound the total number of unsuccessful iterations; for this, we apply

Lemma 2.1 to upper bound |Uj | with σup defined in (3.23). To prove (3.28), use (3.26) and

(2.11), where we let j denote the first iteration with πf (xj + sj) < ǫ (so the iteration where

ARp terminates), and we use j = |Sj |+ |Uj |. ✷

4 Discussion of complexity bounds

Table 4 gives a summary of our complexity bounds as a function of r and q.

Several remarks and comparisons are in order concerning these bounds.

• The first-order case. Note that the case p = 1 is also covered, with a more general
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quadratic model and using a Cauchy analysis, in [7]; the same complexity bounds ensue

(as a function of the accuracy) as in Table 4 for p = 1; the case β1 = 0 is also not covered

in [7].

• Sharpness. The bound for the case p = 1 and r ≥ 1 + β1 was shown to be sharp in [7].

Also, the bounds for ARp with p = 2 and 2 < r ≤ 2 + β2 are sharp and optimal for the

corresponding smoothness classes [6].

• Continuity. All bounds vary continuously with r and βp ∈ [0, 1]. In particular, when

r = p + βp, the complexity bounds in the second and third column match (for a given p

and βp).

• Universality [11, 13, 15]. For fixed p and βp, the best complexity bounds are obtained

when r ≥ p + βp. These bounds do not depend on the regularization power r, and even

though the smoothness parameter βp is (usually) unknown, its value is captured accurately

in the complexity, even for the case when βp = 0 and p ≥ 2. Note that the values of the

complexity bounds as a function of the accuracy indicate that one should choose r ≥ p+ 1

to achieve the best complexity when βp is unknown; and there seems to be little reason,

from an evaluation complexity point of view, to pick anything other than r = p+ 1.

• Complexity values in the order of the accuracy. Table 4 shows the increasingly good

complexity obtained as p grows and βp ∈ (0, 1], namely, the more derivatives are available

and the smoother these derivatives are. In particular, purely as a function of ǫ and as r

varies, we obtain the following ranges of complexity powers : [ǫ−2,∞) (p = 1); [ǫ−
3
2 , ǫ−2]

(p = 2); [ǫ−
4
3 , ǫ−

3
2 ] (p = 3); [ǫ−

5
4 , ǫ−

4
3 ] (p = 4); and so on.

• Loss of smoothness Note that for fixed p ≥ 2, βp = 0 corresponds to the case when the

objective has the highest level of non-smoothness compared to βp ∈ (0, 1]. Then ARp can

still be applied, and the good complexity bounds for the case r ≥ p+ βp ≥ 2 hold.

5 Conclusions

We have generalized and modified the regularization methods in [3] to allow for varying reg-

ularization power, accuracy of Taylor polynomials and different (Hölder) smoothness levels of

derivatives. Our results show the robustness of the evaluation complexity bounds with respect to

such perturbations. We found that complexity bounds of regularization methods improve with

growing accuracy of the Taylor models and increasing smoothness levels of the objective. Fur-

thermore, when the regularization power r is sufficiently large (say r ≥ p+1) our modification to

ARp in the spirit of [11] allows ARp’s worst-case behaviour to be independent of the regulariza-

tion power and to accurately reflect the (often unknown) smoothness level of the objective. We

have also generalized [3] and [11] to problems with convex constraints and inexact subproblem

solutions. The question as to whether the complexity bounds we obtained are sharp remains open

when r 6= p+βp and p ≥ 3. This question is particularly poignant in the case when p < r < p+βp:

could a suitable modification of ARp achieve an (improved) evaluation complexity bound that is

independent of the regularization power in this case as well?
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