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SOLVING MIXED SPARSE-DENSE LINEAR LEAST SQUARES BY

PRECONDITIONED ITERATIVE METHODS

JENNIFER SCOTT∗ AND MIROSLAV TŮMA†

Abstract. The efficient solution of large linear least squares problems in which the system matrix A contains rows with

very different densities is challenging. Previous work has focused on direct methods for problems in which A has a few rows

that have a relatively large number of entries. These dense rows are initially ignored, a factorization of the sparse part is

computed using a sparse direct solver and then the solution updated to take account of the omitted dense rows. In some

practical applications the number of dense rows can be significant. In this paper, we propose processing such rows separately

within a conjugate gradient method using an incomplete factorization preconditioner and the factorization of a dense matrix

of size equal to the number of rows identified as dense. Numerical experiments on large-scale problems from real applications

are used to illustrate the effectiveness of our approach.

Key words. sparse matrices, least squares problems, dense rows, conjugate gradients, preconditioning, incomplete

factorizations.

AMS subject classifications. Primary, 65F08, 65F20, 65F50; Secondary, 15A06, 15A23.

1. Introduction. Linear least squares problems occur in a wide variety of practical applications,

arising both in their own right and as subproblems of nonlinear least squares problems. In this paper, we

consider the unconstrained linear least squares (LS) problem in the following form

min
x
‖Ax− b‖2, (1.1)

where A ∈ Rm×n (m ≥ n) is a large sparse matrix and b ∈ Rm is given. Solving (1.1) is mathematically

equivalent to solving the n× n normal equations

Cx = AT b, C = ATA, (1.2)

where, if A has full column rank, the normal matrix C is symmetric and positive definite. In many cases,

the number of entries in the rows of A can vary considerably. That is, some of the rows may be highly

sparse while others contain a significant number of entries. The former are referred to as the sparse

rows and the latter as the dense rows (although they may contain far fewer than n entries). If a sparse

Cholesky or sparse QR factorization of the normal matrix is computed, the resulting fill in the factors is

catastrophic. Consequently, for large problems, a direct solver may fail because of insufficient memory and

if an incomplete factorization of C is employed as a preconditioner for an iterative solver, the error in the

factorization can be so large as to prohibit its effectiveness as a preconditioner.

We assume that the rows of the (permuted) system matrix A are split into two parts with a conformal

splitting of the right-hand side vector b as follows

A =

(
As
Ad

)
, As ∈ Rms×n, Ad ∈ Rmd×n, b =

(
bs
bd

)
, bs ∈ Rms , bd ∈ Rmd , (1.3)

with m = ms +md, ms ≥ n, and md ≥ 1 (in general, ms � md). Problem (1.1) then becomes

min
x

∥∥∥∥(AsAd
)
x−

(
bs
bd

)∥∥∥∥
2

. (1.4)

We define Cs = ATs As to be the reduced normal matrix.
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Besides splitting A to reflect the differences in the densities of its rows, there are other possible

motivations for such a splitting. For example, a set of additional rows, that are not necessarily dense,

is obtained by repeatedly adding new data into the least squares estimation of parameters in a linear

model, see, for example, the early papers [5, 6], but the history dates back to Gauss [17] (see also the

historical overview in [15], Section 10.5). Nowadays, there exist important applications based on this

motivation related to Kalman filtering or solving recursive least squares, see the seminal paper [34] or for a

comprehensive introduction [13, 42]. Furthermore, additional constraints for the least squares represented

by Ad and bd naturally arise when solving rank-deficient least squares problems (for instance, [7, 8, 36]).

Note also that a similar problem arises in the solution of underdetermined systems with dense columns

representing a set of constraints in interior point methods [23]. In this case, a sequence of matrices of the

form AD2AT has to be formed in which the diagonal matrix D2 changes at each step [35, 50]; see also the

transformation to the positive-definite system in [37] that is effected by both dense rows and columns.

We observe that the need to process additional rows separately from the rest of the matrix is closely

related to a number of other numerical linear algebra problems. These include finding sparsity-preserving

orderings for a sparse QR decomposition [18]. Another related problem is that of separately processing a

set of dense rows when the sparsity structure of ATA is used to obtain an upper bound on the fill in an

LU factorization of A with partial pivoting [20, 21].

Over the last thirty-five years or more, a number of papers have addressed the problem of the system

matrix A having a small number of dense rows. In [18], George and Heath propose temporarily discarding

such rows to avoid severe fill-in in their Givens rotation-based orthogonal factorization scheme of As.

They then employ an updating scheme to incorporate the effect of the dense rows (the solution but

not the factorization is updated). No numerical results are given in [18] but a procedure based on this

was included in the package SPARSPAK-B [19]. In [30] Heath considers several other cases, including

updating a sparse unconstrained problem of full rank when both equations and constraints are added. A

completely general updating algorithm for the constrained least squares problem based on the use of the

QR decomposition and direct elimination is given by Björck [8], but without experimental results (see also

[9, 45, 46]). Another possibility is to use an implicit transformation of the dense constraints as proposed

in [33]. Other approaches to handling dense rows are based on the Schur-complement method, see for

example, [4, 22, 40].

The application of C−1 can directly combine the inverse of Cs with an additional update based on

Ad. A standard tool for this is the Woodbury formula (see [28, 48, 49] and the comprehensive discussion

in [29]). This formula enables the inverse C−1 to be written in the form

C−1 = (Cs +ATdAd)
−1 = C−1s − C−1s ATd (Imd

+AdC
−1
s ATd )AdC

−1
s . (1.5)

The least squares solution may then be explicitly expressed as

x = xs + C−1s ATd (Imd
+AdC

−1
s ATd )(bd −Adxs) with xs = (AsA

T
s )−1ATs bs. (1.6)

Note that here and elsewhere, for k ≥ 1, Ik denotes the identity matrix of order k.

While this requires a factorization of Cs to be computed explicitly, the Peters-Wilkinson algorithm [39]

avoids this. Peters-Wilkinson considers an LU factorization of A with pivoting so that L is well-conditioned;

a factorization of CL = LTL is then computed. The original paper was solely for dense A and was

designed to overcome the problem that the normal matrix can be highly ill conditioned; Björck and

Duff [10] subsequently extended the idea to the sparse case and also proposed a general updating scheme

for modifying the solution after the addition of a few extra (possibly dense) rows. As this approach is

dependent upon the computation of an LU factorization of A and also needs a factorization of CL (which

can be as dense or denser than the normal matrix C), it is generally more expensive than working directly

with the normal equations. Sautter [41] observed for a slightly overdetermined system (m − n < n) an

algebraic reformulation that splits the trapezoidal L into a triangular part and a rectangular part can be

advantageous in terms of the resulting flop count; see [9, Subsection 2.5.1].
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An alternative approach for dealing with a small number of dense rows uses the idea of stretching.

Stretching aims to split the rows of Ad to obtain a matrix Aδ that has extra rows such that the

corresponding least squares problem has the same solution but the associated normal matrix is not dense.

Matrix stretching was originally developed by Grcar [27] (see also [3, 14, 47]). The use of matrix stretching

combined with a direct QR decomposition-based solver for least squares problems is described by Adlers

and Björck [2] (see also Adlers [1]).

In this paper, our focus is on using an iterative solver. We propose a preconditioner that is based an

incomplete Cholesky (IC) factorization of Cs and incorporates the effect of Ad using the factorization of

a dense matrix of order md. The computational scheme is incorporated within the preconditioned CGLS

method that was described in the seminal paper by Hestenes and Stiefel [31] (see also the CGLS1 variant

from [11]). CGLS is an extension of the conjugate gradient method (CG) to least squares problems and is

mathematically equivalent to applying CG to the normal equations, but avoids actually forming them.

The rest of the paper is organised as follows. Section 2 introduces our new approach to preconditioning

within CGLS that exploits the row splitting (1.3) of A and combines an IC factorization of Cs with a

factorization based on Ad. In Section 3, numerical experiments using large-scale problems from practical

applications demonstrate the efficiency and robustness of the new approach. Section 4 discusses dealing

with the case that often occurs in practice of As having null columns. Finally, Section 5 presents some

concluding remarks and possible future directions.

2. Iterative solution of the least squares based on sparse-dense splitting.

2.1. The use of sparse-dense splitting. We start our discussion of solving the linear least squares

problem using the splitting (1.3) with a slight extension of the result from Sautter [41] (see also [8, 9]).

Lemma 2.1. Assume A and As have full column rank. Then with Cs = ATs As and Cd = ATdAd, the

following identity holds

(Cs + Cd)
−1ATd = C−1s ATd (Imd

+AdC
−1
s ATd )−1.

Proof. From (1.5)

(Cs + Cd)
−1ATd = [C−1s − C−1s ATd (Imd

+AdC
−1
s ATd )−1AdC

−1
s ]ATd

= C−1s ATd − C−1s ATd (Imd
+AdC

−1
s ATd )−1AdC

−1
s ATd

= [C−1s ATd (Imd
+AdC

−1
s ATd )−1(Imd

+AdC
−1
s ATd )− C−1s ATd (Imd

+AdC
−1
s ATd )−1AdC

−1
s ATd

= C−1s ATd (Imd
+AdC

−1
s ATd )−1.

As discussed in the Introduction, a standard strategy is to use a direct solver to compute a factorization

of Cs to solve the problem

min
xs

‖Asxs − bs‖2, (2.1)

and to then incorporate the effect of Ad using an updating scheme. For large problems, or if Cs is not

sufficiently sparse, this may not be practical. Instead, we may only have only an approximate solution ξ

of (2.1). Let us consider the solution x to (1.4) as the sum of an approximate solution ξ to (2.1) and a

correction Γ. The following theorem shows the form of the correction.

Theorem 2.2. Assume that ξ is an approximate solution to (2.1). Define rs = bs − Asξ and

rd = bd −Adξ. Then the least squares solution of (1.4) is equal to x = ξ + Γ, where

Γ = C−1s ATs rs + C−1s ATd (Imd
+AdC

−1
s ATd )−1(rd −AdC−1s ATs rs) (2.2)
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Proof. The proof follows from straightforward verification with an application Lemma 2.1.

C−1AT
(
rTs rTd

)T
= (Cs + Cd)

−1(ATs rs +ATd rd)

= (Cs + Cd)
−1((Cs + Cd)C

−1
s ATs rs − CdC−1s ATs rs +ATd rd)

= C−1s ATs rs + (Cs + Cd)
−1ATd (rd −AdC−1s ATs rs)

= C−1s ATs rs + C−1s ATd (Imd
+AdC

−1
s ATd )−1(rd −AdC−1s ATs rs).

Adding the last formula to the approximation ξ we get the result.

To employ Theorem 2.2, a factorization of the reduced normal matrix

Cs = LsL
T
s (2.3)

needs to be available (so that C−1s can be applied by solving with the factors Ls and LTs ). We can use the

factors to consider the following problem

min
z

∥∥∥∥(BsBd
)
z −

(
bs
bd

)∥∥∥∥
2

, (2.4)

for Bs = AsL
−T
s , Bd = AdL

−T
s and z = LTs Γ.

The following lemma shows that Theorem 2.2 can be simplified provided the factorization (2.3) is

available and we have the exact solution of the scaled least squares problem ‖Bsz− bs‖2, as is assumed in

the description of update strategies [8].

Lemma 2.3. If Cs = LsL
T
s , the least squares solution of problem (2.4) can be written as z = ξ1 + Γ1,

where ξ1 is an approximate solution to (2.4), ρs = bs −Bsξ1 and ρd = bd −Bdξ1 and

Γ1 = BTs ρs +BTd (Imd
+BdB

T
d )−1(ρd −BdBTs ρs). (2.5)

Proof. (2.5) directly follows from Theorem 2.2 using BTs Bs = In.

The formula (2.5) in Lemma 2.3 offers a way to compute an approximate solution to (2.4). But there

is one problem: in general, Bs = AsL
−T
s is dense and so if ms is large, it is not normally possible to

store Bs explicitly. Thus if (2.5) is used, t = BTs ρs should be computed by solving the triangular system

Lst = ATs ρs. To derive a practical procedure from (2.5) that we can use as a preconditioner we need to

consider two important points. First, there is the issue of obtaining an initial approximate solution ξ1;

this is discussed in the following remark.

Remark 2.1. Theorem 2.2 and Lemma 2.3 depend on a given approximate solution ξ1 to problem

(2.4). There are two basic possibilities for choosing ξ1. If the sparse part of (2.4) is important for

the solution and Bd represents only a few dense rows or a problem update, ξ1 can be estimated as an

approximate solution of the problem

min
ξ
‖Bsξ − bs‖2, (2.6)

which (assuming As is overdetermined and of full rank) is given by

ξ1 ≈ (BTs Bs)
−1BTs bs = L−1s ATs AsL

−T
s L−1s ATs bs = L−1s ATs bs. (2.7)

However, if Bd represents a significant part of the problem and its effect dominates that of the sparse part,

ξ1 can be estimated as an approximate solution to

min
ξ
‖Bdξ − bd‖2.
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If we make no assumptions on the dimensions and the rank of Bd, the approximate solution can be expressed

using the pseudo inverse as ξ ≈ B†dbd. In our numerical experiments, we use only the approximation based

on (2.6).

The second important point is the cost of the preconditioner that directly relates to the problem of

the choice of ξ1 and a motivation for this choice is formulated in the following Lemma 2.4.

Lemma 2.4. If Cs = LsL
T
s , the least squares solution of problem (2.4) can be written as z = ξ1 + Γ1,

where ξ1 minimizes ‖Bsz − bs‖2 exactly, ρs = bs −Bsξ1 and ρd = bd −Bdξ1 and

Γ1 = BTd (Imd
+BdB

T
d )−1ρd. (2.8)

Proof. If ξ1 minimizes ‖Bsz − bs‖2, then BTs ρs = 0 and (2.5) reduces to (2.8).

Clearly, evaluating (2.8) is significantly more efficient than evaluating (2.5). Both involve applying

BTd (Imd
+BdB

T
d )−1 to a vector g, where for (2.5) g = ρd−BdBTs ρs and for (2.8) g = ρd. This is equivalent

to finding the first n components of the minimum norm solution h of the “fat” system

Fh = g, F =
(
Bd Imd

)
∈ Rmd×(n+md).

There are a number of ways to perform this. One possibility is to compute the Cholesky factorization

Imd
+BdB

T
d = LdL

T
d (2.9)

and then obtain the result of

BTd (Imd
+BdB

T
d )−1g (2.10)

as the first n components of FT (LdL
T
d )−1g. An alternative is to use an LQ factorization

F =
(
Ld 0md

)
QTd . (2.11)

Then (2.10) can be evaluated using the LQ decomposition as Qd(1 : n, 1 : md)L
−1
d g.

For large problems, it may not be possible to compute a complete factorization of the reduced normal

matrix; instead, only an IC factorization of the form

Cs ≈ L̃sL̃Ts

may be available. Similarly, (2.9) and (2.11) may be replaced by incomplete factorizations

Imd
+BdB

T
d ≈ L̃dL̃Td and F ≈

(
L̃d 0md

)
Q̃Td .

2.2. Preconditioned iterative method. We now propose a new iterative approach for solving

mixed sparse-dense systems (1.4) preconditioned by a combination of an IC factorization of the reduced

normal matrix Cs and of the transformed Ad. The split nature of the preconditioner is embedded into the

preconditioned CGLS. In our algorithm outline, the preconditioning is formulated using the notation Bd,

L̃d introduced in the previous section. We use a conformal splitting of each of the vectors of length m that

are used in CGLS because our preconditioners exploit this splitting. In particular, the preconditioning

procedure is able to avoid recomputing ws = ATs rs and it explicitly uses the splitting of the residual into

rs and rd.

Algorithm 2.1. Preconditioned CGLS algorithm

Input: A ∈ Rm×n with m ≥ n and of full column rank with its rows split into two parts As and Ad
with As ∈ Rms×n with ms ≥ n and of full column rank; an incomplete factorization ATs As ≈ L̃sL̃

T
s ; a

right-hand side vector b ∈ Rm split into bs and bd conformally with the splitting of A; the initial solution
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x(0) ∈ Rn; preconditioning operation (z = M−1s) given in Algorithm 2.2; the maximum number of

iterations nmax.

Output: The computed solution x.

0. Initialization: r
(0)
s = bs −Asx(0), r(0)d = bd −Adx(0), w(0)

s = ATs r
(0)
s , w

(0)
d = ATd r

(0)
d ,

z(0) = M−1(w
(0)
s + w

(0)
d ), p(0) = z(0)

1. for i = 1 : nmax do

2. q
(i−1)
s = Asp

(i−1), q
(i−1)
d = Adp

(i−1)

3. α =
(w

(i−1)
s + w

(i−1)
d , z(i−1))

(q
(i−1)
s , q

(i−1)
s ) + (q

(i−1)
d , q

(i−1)
d )

4. x(i) = x(i−1) + αp(i−1)

5. r
(i)
s = r

(i−1)
s − αq(i−1)s , r

(i)
d = r

(i−1)
d − αq(i−1)d

6. evaluate the stopping criterion; terminate if satisfied with x = x(i) or if n = nmax, with a warning

7. w
(i)
s = ATs r

(i)
s , w

(i)
d = ATd r

(i)
d

8. z(i) = M−1(w
(i)
s + w

(i)
d )

9. β =
(w

(i)
s + w

(i)
d , z(i))

(w
(i−1)
s + w

(i−1)
d , z(i−1))

10. p(i) = z(i) + βp(i−1)

11. end do

Algorithm 2.2 presents the preconditioning algorithm. Note that the preconditioner is applied to the

residual parts rs and rd that play the role of the right-hand sides bs and bd in the formulae explained in

the previous section. In addition, we use ws = ATs rs computed at step 7 of Algorithm 2.1. We present

two possible modes: the mode Cholesky corresponds to (2.8) and mode LQ uses an approximate LQ

factorization based on (2.11).

Algorithm 2.2. Preconditioning procedure

Input: Residual vector components rs, rd, transformed residual component w, an incomplete factorization

Cs ≈ L̃sL̃
T
s , and Bd = ATd L̃

−T
s , chosen mode (Cholesky or LQ). The Cholesky mode needs a (possibly

incomplete) Cholesky factorization Imd
+ BdB

T
d ≈ L̃dL̃

T
d , the LQ mode needs a possibly incomplete

factorization
(
Bd Imd

)
≈

(
L̃d 0md

)
Q̃Td .

Output: Computed z = M−1w

1. Solve L̃sξ1 = w for ξ1

2. ρd = rd −Bdξ1

3. if mode == Cholesky then

4. u = BTd (L̃dL̃
T
d )−1ρd

5. else if mode == LQ then

6. ρs = rs −AsL̃−Ts ξ1

7. u = L̃−1s ATs ρs + Q̃d(1 : n, 1 : md) ∗ L̃−1d ∗ (ρd −BdL̃−1s ATs ρs)
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8. end if

9. Solve L̃Ts z = (ξ1 + u) for z

3. Numerical experiments. In this section, we present numerical results to illustrate the potential

of our proposed approach for handling dense rows of A. We use Algorithm 2.1 with the Cholesky mode

employed in the preconditioning step (Algorithm 2.2). Any sparsity in the dense part Ad is ignored and the

Cholesky factorization of Imd
+BdB

T
d uses the LAPACK routine potrf. To perform the IC factorization

ATs As ≈ L̃sL̃
T
s , we use the package HSL MI35 that is available as part of the HSL mathematical software

library [32]. HSL MI35 implements a limited memory IC algorithm (see [43, 44] for details). Note that it

handles ordering for sparsity and scaling. In our tests, we use default settings. HSL MI35 requires the user

to set the parameters lsize and rsize that respectively control the number of entries in each column of the

IC factor and the memory required to compute the factorization. In general, increasing these parameters

improves the quality of the preconditioner (so that the number of iterations of the preconditioned iterative

solver is reduced) at the cost of more time and memory to compute the factorization. In our experiments,

unless stated otherwise, we use lsize = rsize = 5 so that the number of entries in L̃s is at most 5n.

3.1. Test environment. Our test set is described in Table 3.1. With the exception of PDE1, all the

examples are part of the University of Florida Sparse Matrix Collection [12]. Problem PDE1 is taken from

the CUTEst linear programming set [24]. Note that the University of Florida examples used here can also

be found in the CUTEst set, but with slightly different identifiers. All the test problems were included in

the study by Gould and Scott [25, 26].

Table 3.1

Statistics for our test set. m, n and nnz(A) are the row and column counts and the number of entries in A. nnz(C)

is the number of entries in the lower triangle of C = ATA and density(C) is the ratio of the number of entries in C to n2.

Identifier m n nnz(A) nnz(C) density(C)

Meszaros/aircraft 7,517 3,754 20,267 1.4× 106 0.200

Meszaros/lp fit2p 13,525 3,000 50,284 4.5× 106 1.000

Meszaros/scrs8-2r 27,691 14,364 58,439 6.2× 106 0.143

Meszaros/sctap1-2b 33,858 15,390 99,454 2.6× 106 0.050

Meszaros/scsd8-2r 60,550 8,650 190,210 2.0× 106 0.100

Meszaros/scagr7-2r 62,423 35,213 123,239 2.2× 107 0.036

Meszaros/sc205-2r 62,423 35,213 123,239 6.5× 106 0.010

Meszaros/sctap1-2r 63,426 28,830 186,366 9.1× 106 0.050

Meszaros/scfxm1-2r 65,943 37,980 221,388 8.3× 105 0.014

Mittelmann/neos1 133,743 131,581 599,590 1.7× 108 0.027

Mittelmann/neos2 134,128 132,568 685,087 2.3× 108 0.033

Meszaros/stormg2-125 172,431 66,185 433,256 1.0× 106 0.002

PDE1 270,595 271,792 990,587 1.6× 1010 0.670

Mittelmann/neos 515,905 479,119 1,526,794 5.3× 108 0.034

Mittelmann/stormg2 1000 1,377,306 528,185 3,459,881 4.2× 107 0.002

Mittelmann/cont1 l 1,921,596 1,918,399 7,031,999 8.2× 1011 0.667

We prescale A so that the entries of the scaled A are small relative to 1. Thus we scale A by normalising

each column by its 2-norm. That is, we replace A by AD, where D is the diagonal matrix with entries

Dii satisfying D2
ii = 1/‖Aei‖2 (ei denotes the i-th unit vector). The entries of AD are all less than one in

absolute value.

In our experiments, we define a row of A to be dense if the number of entries in the row either exceeds

100 times the average number of entries in a row or is more than 4 times greater than the number of

entries in any row in the sparse part As. For most of our test cases, this choice is not critical, although

for the Mittelmann/neos examples, we found the results can be improved by relaxing these conditions so

that fewer rows are classified as dense. Removing dense rows can leave As rank deficient. In Section 4, we
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discuss how we can develop a practical procedure to deal with this case. However, here for simplicity we

modify the problem by removing any columns of A that correspond to null columns of As.

To terminate the preconditioned CGLS algorithm, we employ the following stopping rules that are

taken from [26]:

C1: Stop if ‖r‖2 < δ1
C2: Stop if

‖AT r‖2
‖r‖2

<
‖AT r0‖2
‖r0‖2

∗ δ2,

where r = Ax − b is the residual, r0 is the initial residual and δ1 and δ2 are convergence tolerances that

we set to 10−8 and 10−6, respectively. In all our experiments, b is taken to be the vector of all 1’s and we

take the initial solution guess to be x0 = 0 so that C2 reduces to

‖AT r‖2
‖r‖2

<
‖AT b‖2
‖b‖2

∗ δ2.

Our experiments are performed on an Intel(R) Core(TM) i5-4590 CPU running at 3.30 GHz with 12 GB

of internal memory. All software is written in Fortran and the Visual Fortran Intel(R) 64 XE compiler

(version 14.0.3.202) was used. Reported timings are elapsed times in seconds.

3.2. Summary results for our test set. In Table 3.2, we summarize our findings for the complete

test set. We present results with and without exploiting dense rows. For the former, we are unable to solve

many of the largest problems, either because the IC factorization time exceeds 1000 seconds or because

convergence is not achieved within 2000 CGLS iterations. As well as the storage for the incomplete factors,

when dense rows are exploited, we need store the md × n entries of Ad together with the md(md + 1)/2

entries of the dense Cholesky factor of Imd
+BdB

T
d . We see that our preconditioning strategy that exploits

Table 3.2

Results with and without exploiting dense rows. size p and size ps denote the number of entries in the incomplete factors

L̃ and L̃s of C and Cs, respectively. Its is the number of CGLS iterations; T p and T its denote the times (in seconds)

to compute the preconditioner and for convergence of CGLS, respectively. † indicates time to compute the preconditioner

exceeds 1000 seconds; ‡ denotes convergence of CGLS not achieved.

Dense rows not exploited Dense rows exploited

Identifier size p T p Its T its md size ps T p Its T its

Meszaros/aircraft 22,509 0.09 44 0.02 17 3,750 0.01 1 0.01

Meszaros/lp fit2p 17,985 0.26 ‡ ‡ 25 4,940 0.09 1 0.01

Meszaros/scrs8-2r 86,169 0.94 380 0.50 22 36,385 0.01 1 0.02

Meszaros/sctap1-2b 92,325 0.39 639 0.69 34 68,644 0.01 1 0.01

Meszaros/scsd8-2r 51,885 0.25 90 0.11 50 51,855 0.05 7 0.02

Meszaros/scagr7-2r 197,067 3,34 244 0.53 7 152,977 0.06 1 0.01

Meszaros/sc205-2r 211,257 1.56 72 0.19 8 104,022 0.08 1 0.01

Meszaros/sctap1-2r 172,965 1.47 673 1.90 34 127,712 0.03 1 0.01

Meszaros/scfxm1-2r 227,835 0.59 187 0.51 58 227,823 0.14 33 0.23

Mittelmann/neos1 789,471 † † † 74 789,471 5.27 132 3.71

Mittelmann/neos2 † † † † 90 795,323 5.46 157 4.84

Meszaros/stormg2-125 395,595 0.27 ‡ ‡ 121 7,978,135 0.22 16 0.29

PDE1 † † † † 1 1,623,531 12.7 696 1.28

Mittelmann/neos † † † † 20 2,874,699 4.93 232 15.0

Mittelmann/stormg2 1000 3,157,095 19.1 ‡ ‡ 121 3,125,987 19.1 18 2.92

Mittelmann/cont1 l † † † † 1 11,510,370 4.82 1 0.33

dense rows significantly reduces the iteration count and computation times. Furthermore, it is able to solve

problems that HSL MI35 applied to the whole of A did not solve. A more detailed look at the behavior of

our strategy on some of our test problems is now presented.

8



3.3. Results for Meszaros/scsd8-2r. In the following, we look at (i) the number nnz(Cs) of entries

in the reduced normal matrix (lower triangle only), (ii) the CGLS iteration counts, and (iii) the ratio ratios
of the number of entries in the matrices that are factorized to the number of entries in the preconditioner,

that is,

ratios = (nnz(Cs) +md(md+ 1)/2) / (size ps+md(md+ 1)/2) .
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Fig. 3.1. The number of entries in Cs for problem Meszaros/scsd8-2r as the number of dense rows that are removed

from A increases.
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ratio normal equations size / preconditioner size

Fig. 3.2. Problem Meszaros/scsd8-2r. Iteration counts (left), and ratios (right) as the number of dense rows that are

removed from A increases.

The first example that we consider is problem Meszaros/scsd8-2r. Figure 3.1 illustrates the size of the

reduced normal matrix Cs as the number of rows that are classified as dense increases. Then in Figures 3.2

and 3.3, we present the CGLS iteration counts, ratios, and the times to compute the preconditioner and

run CGLS. As expected, increasing the number md of rows that are classified as dense from 0 to the

value 50 that was specified in Table 3.2 significantly reduces the size of Cs; ratios also decreases. We

also see that the iteration counts can decrease before md reaches 50. This demonstrates that dense rows

not only lead to high memory demands but their presence can reduce the IC factorization quality. The

timings reflect the same general dependence on md. The fluctuations in the times needed to compute the

preconditioner given in the left hand plot of Figure 3.3 are a result of the IC factorization code performing

a number of restarts. If the IC factorization breaks down (which happens if a zero or negative pivot is

encountered), HSL MI35 introduces a positive shift α and restarts the factorization with Cs replaced by

Cs+αI. Since an appropriate choice of α is not known a priori, the factorization may need to restart more
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Fig. 3.3. Problem Meszaros/scsd8-2r. Time to compute the preconditioner (left) and time for CGLS (right) as the

number of dense rows that are removed from A is increased.

than once with α increased each time (HSL MI35 takes care of this automatically) and this is reflected in

the time. To investigate whether the problem can be solved more efficiently by applying a higher quality

preconditioner, Figures 3.4 and 3.5 report results for HSL MI35 with the parameters lsize and rsize that

control the number of entries in the incomplete factor L̃s from 5 to increased to 20. We see that the

qualitative behavior remains the same and is consistent with our assumptions.
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Fig. 3.4. Problem Meszaros/scsd8-2r with lsize = rsize = 20. Iteration counts (left) and and ratios (right) as the

number of dense rows that are removed from A increases.

3.4. Results for Mittelmann/stormg2 1000. Next we consider the large example

Mittelmann/stormg2 1000; results are given in Figures 3.6 to 3.8. Again, the time for computing

the preconditioner is influenced by the number of times the incomplete factorization is restarted and this

is not a smooth function of the number of dense rows. The CGLS time drops dramatically when all 121

dense rows reported in Table 3.2 are removed.

4. Dealing with null columns. As already observed, even if A has full column rank, As may not

have full column rank. Indeed, in practice, As can contain null columns. In this section, we explain how

this can be overcome. Let A have full rank and assume As has n2 null columns with n2 � n. Assuming

these columns are permuted to the end, we have following splitting

A =
(
A1 A2

)
≡

(
As1 As2
Ad1 Ad2

)
, (4.1)
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Fig. 3.5. Problem Meszaros/scsd8-2r with lsize = rsize = 20. Time to compute the preconditioner (left), time for

CGLS (right) as the number of dense rows that are removed from A increases.
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Fig. 3.6. The number of entries in Cs for problem Mittelmann/stormg2 1000 as the number of dense rows that are

removed from A increases.

We have the following result that shows that the solution of the least squares problem can be expressed

as a combination of partial solutions.

Theorem 4.1. Let ξ ∈ Rn1 and Γ ∈ Rn1×n2 be the solutions to the problems

min
z
‖A1z − b‖2 (4.2)

and

min
W
‖A1W −A2‖F , (4.3)

respectively. Then the solution x =

(
x1
x2

)
of problem (1.1) with its splitting consistent with (4.2) (that is,

x1 ∈ Rn1 , x2 ∈ Rn2) is given by (
x1
x2

)
=

(
ξ − Γx2
x2

)
(4.4)

with

x2 = (AT2 A2 −AT2 A1Γ)−1(AT2 b−AT2 A1ξ).
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Fig. 3.7. Problem Mittelmann/stormg2 1000. Iteration counts (left) and ratios (right) as the number of dense rows

that are removed from A increases.
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Fig. 3.8. Problem Mittelmann/stormg2 1000. Time to compute the preconditioner (left) and time for CGLS (right) as

the number of dense rows that are removed from A increases.

Proof. From (4.2), we have

ATAx =

(
AT1 A1 AT1 A2

AT2 A1 AT2 A2

)(
x1
x2

)
=

(
AT1 b

AT2 b

)
. (4.5)

Furthermore, ξ = (AT1 A1)−1AT1 b and Γ = (AT1 A1)−1AT1 A2. Premultiplying the first block row of (4.5) by

(AT1 A1)−1, the result follows.

Theorem 4.1 implies a practical procedure for solving least squares problems with some dense rows:

compute partial solutions ξ and Γ corresponding to the non-null column block A1 using Algorithm 2.1 with

n2 + 1 right-hand sides and then use the result of Theorem 4.1. This requires forming and then solving

with (AT2 A2 −AT2 A1Γ). Provided n2 is small, this is inexpensive.

5. Concluding remarks. In this paper, we have looked at the problem of solving linear least squares

problems in which the system matrix A has a number of dense rows. We propose a new approach

that processes the dense rows separately within the CGLS method, using an incomplete factorization

preconditioner for the sparse rows and a complete Cholesky factorization of the small dense subproblem

arising from the dense rows. We note that other iterative methods, including LSQR [38] and LSMR [16],

could be employed. Likewise, other preconditioners could be used within our approach. Using problems

from practical applications that each has between 1 and 121 rows that we classify as dense, our numerical

experiments demonstrate the potential advantages of our proposed approach. In particular, we are able
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to efficiently solve large problems that we were not able to solve using preconditioned CGLS without

exploiting the dense rows. We remark that, in our experiments, we found the strategy based upon (2.8)

gave better results than using the more complex scheme (2.5). We conjecture that this conclusion may

be different if the preconditioner was based on a perturbed sparse direct solver rather on an incomplete

factorization; this requires further investigation that is beyond the scope of this paper.

There remain other issues that need to be addressed before we have fully reliable and robust

preconditioned iterative solvers for general least squares problems. In particular, more work needs to

be done to address rank deficiency. In the future, we plan to look at other possible splittings and

transformations of A based on the problem structure to improve the preconditioner quality further.

Finally, we remark that Avron, Ng and Toledo [7] look at using a QR factorization of A to solve linear

least squares problems. If A has a few rows that are identified as dense, they recommend that these rows

are dropped before the QR factorization starts. They then use the resulting R factor as a preconditioner

for LSQR and show that if md dense rows are dropped, then LSQR is expected to converge in at most

md + 1 iterations. We experimented with simply dropping the dense rows (that is, we discarded Ad and

just used the IC factorization of Cs) but we found for our test examples that in general this gave very

poor (or no) convergence, confirming the importance of incorporating the dense rows within the iterative

solver.

REFERENCES

[1] M. Adlers. Topics in sparse least squares problems. Technical Report, Department of Mathematics, Linköping University,
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[44] J. A. Scott and M. Tůma. On positive semidefinite modification schemes for incomplete Cholesky factorization. SIAM

J. on Scientific Computing, 36(2):A609–A633, 2014.

[45] C. Sun. Dealing with dense rows in the solution of sparse linear least squares problems. Research Report CTC95TR227,

Advanced Computing Research Institute, Cornell Theory Center; Cornell University, 1995.

[46] C. Sun. Parallel solution of sparse linear least squares problems on distributed-memory multiprocessors. Parallel

Computing, 23(13):2075–2093, 1997.

[47] R. J. Vanderbei. Splitting dense columns in sparse linear systems. Linear Algebra and its Applications, 152:107–117,

1991.

[48] M. A. Woodbury. The Stability of Out-Input Matrices. Chicago, Ill., 1949.

[49] M. A. Woodbury. Inverting modified matrices. Statistical Research Group, Memo. Rep. no. 42. Princeton University,

Princeton, N. J., 1950.

[50] M. H. Wright. Interior methods for constrained optimization. In Acta Numerica, Volume 1, pages 341–407. Cambridge

University Press, 1992.

14


	RAL-P-2017-001 - cover
	RAL-P-2017-001 - preprint



