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A SCHUR COMPLEMENT APPROACH TO PRECONDITIONING SPARSE LINEAR

LEAST-SQUARES PROBLEMS WITH SOME DENSE ROWS

JENNIFER SCOTT∗ AND MIROSLAV TŮMA†

Abstract. The effectiveness of sparse matrix techniques for directly solving large-scale linear least-squares problems is

severely limited if the system matrix A has one or more nearly dense rows. In this paper, we partition the rows of A into

sparse rows and dense rows (As and Ad) and apply the Schur complement approach. A potential difficulty is that the reduced

normal matrix AT
s As is often rank-deficient, even if A is of full rank. To overcome this, we propose explicitly removing null

columns of As and then employing a regularization parameter and using the resulting Cholesky factors as a preconditioner

for an iterative solver applied to the symmetric indefinite reduced augmented system. We consider complete factorizations

as well as incomplete Cholesky factorizations of the shifted reduced normal matrix. Numerical experiments are performed

on a range of large least-squares problems arising from practical applications. These demonstrate the effectiveness of the

proposed approach when combined with either a sparse parallel direct solver or a robust incomplete Cholesky factorization

algorithm.

Key words. large-scale linear least-squares problems, dense rows, augmented system, Schur complement, iterative

solvers, preconditioning, Cholesky factorization, incomplete factorizations.

AMS subject classifications.

1. Introduction. We are interested in solving the following linear least-squares problem:

min
x
‖Ax− b‖2, (1.1)

where A ∈ <m×n (m ≥ n) and b ∈ <m. The most commonly-used approach is to work with the

mathematically equivalent n× n normal equations

Cx = AT b, C = ATA, (1.2)

where, provided A has full column rank, the normal matrix C is symmetric and positive definite. Our

focus is on the case where the system matrix A is large and sparse but has a number of “dense” rows (that

is, rows that contain significantly more entries than the other rows, although the number of entries in each

such row may be less than n). Just a single dense row is sufficient to cause catastrophic fill in C and thus

for the factors of a Cholesky or QR factorization to be dense. In practice, for large-scale problems this

means that it may not be possible to use a direct solver since the memory demands can be prohibitive.

Moreover, if an incomplete factorization is used as a preconditioner for an iterative solver such as LSQR

[29, 30] or LSMR [13] applied to the normal equations, the error in the factorization can be so large as

to prohibit its effectiveness as a preconditioner; this was recently observed in the study by Gould and

Scott [18]. The effects of the presence of dense rows has long been recognised as a fundamental difficulty

in the solution of sparse least-squares problems; see, for example, [2, 5, 8, 14, 16, 40, 41, 42].

Let us assume that the rows of A are partitioned into two parts: rows that are sparse and those that

are considered dense. We also assume conformal partitioning of the right-hand side vector b as follows:

A =

(
As
Ad

)
, As ∈ Rms×n, Ad ∈ Rmd×n, b =

(
bs
bd

)
, bs ∈ Rms , bd ∈ Rmd , (1.3)

with m = ms +md, ms ≥ n and md ≥ 1 (in general, ms � md). Problem (1.1) then becomes

min
x

∥∥∥∥(AsAd
)
x−

(
bs
bd

)∥∥∥∥
2

. (1.4)
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In this paper, we exploit the fact that solving (1.4) is equivalent to solving the larger (m+ n)× (m+ n)

augmented system Ims
As

Imd
Ad

ATs ATd 0

rsrd
x

 =

bsbd
0

 , (1.5)

where

r =

(
rs
rd

)
=

(
bs
bd

)
−
(
As
Ad

)
x

is the residual vector. Here and elsewhere Ik denotes the k × k identity matrix. The system (1.5) is

symmetric indefinite and so, if there is sufficient memory available, a sparse direct solver that incorporates

the use of numerical pivoting for stability can be used (well-known examples include MA57 [12] and HSL MA97

[20] from the HSL mathematical software library [21], MUMPS [27] and WSMP [43]). Employing a general-

purpose sparse solver ignores the block structure, although its use of a sparsity-preserving ordering (such

as a variant of minimum degree or nested dissection) will tend to lead to the dense rows being eliminated

last [11]. An alternative approach is to perform a block elimination to reduce the problem from a 3-

block saddle-point system to a 2-block system. This reduced augmented matrix can be factorized using

a sparse indefinite solver, but this would again ignore the structure. Instead, we use the so-called Schur

complement method (see, for example, [15, 26, 34]) that exploits the structure by performing a sparse

Cholesky factorization of ATs As, forming an md ×md dense Schur complement matrix and factorizing it

using a dense Cholesky factorization; using the sparse and dense factors to solve a number of triangular

systems completes the solution process. This has the advantage of using Cholesky factorizations that,

because they do not involve numerical pivoting, are more efficient (especially in parallel) than an indefinite

factorization. Moreover, it can be easily incorporated into the normal equations approach.

In practice, even if A is of full rank, As is often rank deficient (indeed, it may have null columns).

In this case, a Cholesky factorization of ATs As will break down. To overcome this, we propose removing

null columns and employing a regularization parameter and using the resulting Cholesky factors as a

preconditioner for an iterative solver applied to the reduced augmented system. For large problems, even

if As is sparse, memory limitations can mean that it is not possible to use a sparse direct solver. Thus we

also consider using incomplete Cholesky factorizations combined with an iterative solver.

The outline of the rest of the paper is as follows. In Section 2, we recall the Schur complement approach

and, in particular, we look at regularization and propose using the factors of the reduced regularized

matrix ATs As + αI to obtain a block preconditioner. The use of a limited memory incomplete Cholesky

factorization is also discussed. Section 3 introduces our numerical experiments. Computational results for

complete and incomplete Cholesky factorizations are given in Sections 4 and 5, respectively. Concluding

remarks are made in Section 6.

2. Schur complement method.

2.1. Schur complement method with direct solvers. An alternative approach to applying a

direct solver to either the (dense) normal equations or the augmented system (1.5) is to eliminate the first

ms rows and columns of (1.5) to obtain a reduced 2-block system of order (md + n)× (md + n) that can

be written in the form

K

(
x

rd

)
=

(
−ATs bs
bd

)
, K =

(
−Cs ATd
Ad Imd

)
. (2.1)

Here the n × n matrix Cs = ATs As is termed the reduced normal matrix. We will refer to (2.1) as the

reduced augmented system. Provided As has full column rank, Cs is symmetric positive definite and, if the

partitioning (1.3) is such that all the rows of As are sparse, Cs is generally significantly sparser than the
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original normal matrix C. Let Cs = LsL
T
s be the Cholesky factorization of Cs. Using this yields a block

factorization

K =

(
Ls
Bd Imd

)(
−In

Sd

)(
LTs BTd

Imd

)
, (2.2)

where Bd and the Schur complement matrix Sd are given by

LsB
T
d = −ATd (2.3)

Sd = Imd
+BdB

T
d . (2.4)

Since Ls is lower triangular, solving (2.3) for BTd is straightforward. Bd will normally be dense and hence

Sd will be dense and symmetric positive definite. Once we have Ls, Bd and Sd, we can solve (2.1) by

solving (
−Ls
−Bd Sd

)(
ys
yd

)
=

(
−ATs bs
bd

)
, (2.5)

followed by (
LTs BTd

Imd

)(
x

rd

)
=

(
ys
yd

)
. (2.6)

Using rd = yd, this requires us to solve

Lsys = ATs bs, (2.7)

Sdrd = bd +Bdys, (2.8)

LTs x = ys −BTd rd. (2.9)

Again, (2.7) and (2.9) are triangular systems and hence straightforward to solve. Solving (2.8) requires

the Cholesky factorization of the md ×md dense matrix Sd. Observe that in the case of a single dense

row (md = 1) this is trivial. In general, the LAPACK routine potrf can be used to factorize Sd and then

routine potrs employed to solve (2.8).

2.2. Scaling and stability. Poorly scaled entries in As may result in the block elimination of the

first ms rows and columns of (1.5) being unstable. To overcome this, we prescale A so that the entries of

the scaled A are small relative to 1. Thus we scale A by normalising each column by its 2-norm. That

is, we replace A by AD, where D is the diagonal matrix with entries Dii satisfying D2
ii = 1/‖Aei‖2 (ei

denotes the i-th unit vector). The entries of AD are all less than one in absolute value. The elimination

of the first ms rows and columns is thus stable (the pivots can be chosen in order from the main diagonal

and they satisfy the criteria for complete pivoting). However, this does not guarantee stability of the next

step. The entries of the factor Ls of the positive definite Cs can be small leading to large entries in Bd
and hence large entries in Sd.

If instability is detected then a general-purpose symmetric indefinite sparse solver that incorporates

numerical pivoting can be applied to solve the reduced augmented system (2.1). Whilst this offers a robust

approach, it has the disadvantage that the block structure within (2.1) is not exploited. Furthermore, if

As is fixed and the interest lies in adding new rows Ad, the factorization must be redone in its entirety for

each Ad. Thus, in the next subsection, we propose an alternative approach to maintain stability.

We assume throughout the remainder of our discussion and in all our numerical experiments that A

has been prescaled but omit D to simplify the notation.

2.3. Removal of null columns. In practice, when A is partitioned, the sparse part As often contains

a (small) number of null columns. It is possible to explicitly remove these columns, as we now show. Let
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A have full column rank and assume As has n2 null columns with n2 � n. Assuming these columns are

permuted to the end, we can split A into the form

A =
(
A1 A2

)
≡
(
As1 0

Ad1 Ad2

)
(2.10)

with A1 ∈ Rm×n1 and A2 ∈ Rm×n2 (n = n1 + n2). The following result from [39] shows that the solution

of the least-squares problem can be expressed as a combination of partial solutions.

Lemma 2.1. Let the columns of A be split as in (2.10) and let z ∈ Rn1 and W ∈ Rn1×n2 be the

solutions to the problems

min
z
‖A1z − b‖2 (2.11)

and

min
W
‖A1W −A2‖F , (2.12)

respectively. Then the solution x =

(
x1
x2

)
of the least-squares problem (1.1) is given by

(
x1
x2

)
=

(
z −Wx2

x2

)
(2.13)

with

x2 = (AT2 A2 −AT2 A1W )−1(AT2 b−AT2 A1ξ).

The least-squares problem (2.11) again has md dense rows and thus can be solved using the Schur

complement method. The factorizations of the reduced normal matrix Cs1 = ATs1As1 and the Schur

complement matrix Sd1 can then be used to solve (2.12). Since n2 � n, this step is inexpensive.

2.4. Regularization and preconditioning. While Lemma 2.1 provides a way of removing null

columns, it is possible that even if A is of full column rank, As (or As1 after the removal of null columns)

is rank deficient (or is close to rank deficient). To simplify notation, in our discussion we use As but this

may be replaced by As1 if As contains null columns. If As is rank deficient, the reduced normal matrix Cs
is positive semi definite and a Cholesky factorization breaks down (that is, a very small or a non positive

pivot is encountered). If break down occurs, we employ a shift α > 0 and compute a Cholesky factorization

of the shifted matrix

Cs(α) = ATs As + αIn. (2.14)

The shift α is also referred to as a Tikhonov regularization parameter. The choice of α should be related

to the smallest eigenvalue of ATs As, but this information is not readily available. Clearly, it is always

possible to find an α so that Cs(α) is positive definite; if the initial choice α is too small (that is, Cα is

positive semi definite), it may be necessary to restart the factorization more than once, increasing α on

each restart until breakdown is avoided. Use of a shift was discussed by Lustig, Marsten and Shanno [24]

(see also [1, 2]). It was observed that careful and often substantial use of iterative refinement to compute

each column of BTd was required. However, we adopt a different approach in which we use the factorization

of (2.14) to obtain a preconditioner for the system (2.1).

If α > 0 then using (2.14) the computed solution is the solution of (2.1) with K replaced by

K(α) =

(
−Cs(α) ATd
Ad Imd

)
.
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Thus the computed value of the least-squares objective may differ from the optimum for the original

problem. Having solved the regularized problem we want to recover the solution of the original problem.

Following Scott [36], we propose doing this by using the factors of K(α) as a preconditioner for an iterative

method applied to (2.1).

Let the Cholesky factorization of Cs(α) be Ls(α)Ls(α)T . For α > 0, this is an approximate

factorization of Cs, that is, Cs ≈ Ls(α)Ls(α)T . More generally, let

Cs ≈ L̃sL̃Ts , (2.15)

where L̃s is lower triangular. We are interested in the case L̃s = Ls(α) but our main focus is where L̃s
is an incomplete Cholesky (IC) factor, that is, one that contains fewer entries than occur in a complete

factorization. For very large systems, computing and factorizing Cs (or Cs(α)) is prohibitively expensive

in terms of memory and/or computational time. Over the last fifty or more years, IC factorizations have

represented an important tool in the armoury of preconditioners for the numerical solution of large sparse

symmetric positive-definite linear systems of equations; for an introduction and overview see, for example,

[6, 32, 38] and the long lists of references therein. Here we consider preconditioning the symmetric indefinite

system (2.1) using an factorization of the form (2.15) and exploiting the block structure of (2.1).

The right-preconditioned reduced augmented system is

KM−1

(
ws
wd

)
=

(
−ATs bs
bd

)
, M

(
x

rd

)
=

(
ws
wd

)
, (2.16)

where M is the chosen preconditioner. Using (2.15), we obtain a preconditioner M given by

M =

(
L̃s
B̃d Imd

)(
−In

S̃d

)(
L̃Ts B̃Td

Imd

)
, (2.17)

where B̃d and S̃d are given by (2.3) and (2.4) with the complete factor Ls replaced by the incomplete one

L̃s, that is,

L̃sB̃
T
d = −ATd (2.18)

S̃d = Imd
+ B̃dB̃

T
d . (2.19)

Applying this preconditioner requires a number of steps that are analogous to (2.7)–(2.9). In particular, a

dense md×md symmetric positive-definite system of the form S̃dyd = ud must be solved. We again assume

that LAPACK may be used. If md is so large that this is too expensive, an incomplete factorization of S̃d
could be used. Algorithm 1 outlines the steps required for each application of the preconditioner. We see

that it involves a triangular solve with L̃s and with L̃Ts , calls to the BLAS routine gemv for steps 2 and

4, and triangular solves using the factors of S̃d.

Algorithm 1 Application of the block factorization preconditioner, that is, compute M−1z = y.

Input: L̃s, B̃d, the Cholesky factors of S̃d, and the vector z =

(
zs
zd

)
.

Output: y =

(
ys
yd

)
= M−1z.

1: Solve L̃sus = −zs.
2: Compute ud = zd + B̃dus.

3: Use the Cholesky factors of S̃d to solve S̃dyd = ud.

4: Form us = us − B̃Td yd.
5: Solve L̃Ts ys = us.
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Many different IC factorizations have been proposed. Although they may be considered to be general

purpose, most are best suited to solving particular classes of problems. For example, level-based methods

are often most appropriate for systems with underlying structure, such as from finite element or finite

difference applications. Here we use the limited memory based approach of Scott and Tůma [37, 38], that

has been shown in [18] to result in effective preconditioners for a wide range of least-squares problems.

The basic scheme employs a matrix factorization of the form

Cs ≈ (L̃s +R)(L̃s +R)T , (2.20)

where L̃s is the lower triangular matrix with positive diagonal entries that is used for preconditioning and

R is a strictly lower triangular matrix with small entries that is used to stabilize the factorization process

but is then discarded (it is not used as part of the preconditioner). The user specifies the maximum

number of entries in each column of L̃s and R. At each step j of the incomplete factorization process, the

largest entries are kept in column j of L̃s, the next largest are kept in column j of R, and the remainder

(the smallest entries) are dropped. In practice, Cs is optionally preordered and scaled and, if necessary,

shifted to avoid breakdown of the factorization (which occurs if a non positive pivot is encountered) [25].

3. Numerical experiments. In this section, we present numerical results to illustrate potential of

the Schur complement approach and, in particular, demonstrate that it allows us to solve some problems

that are intractable if dense rows are ignored. Results are included for direct solvers and for iterative

solvers that can be used to solve very large problems.

3.1. Test environment. The characteristics of the machine used to perform our tests are given in

Table 3.1. All software is written in Fortran and all reported timings are elapsed times in seconds. In

Table 3.1

Test machine characteristics

CPU Two Intel Xeon E5620 quadcore processors

Memory 24 GB

Compiler gfortran version 4.8.4 with options -O3 -fopenmp

BLAS Intel MKL

our experiments, we employ the Cholesky sparse direct solver HSL MA87 [19] for positive-definite systems

and HSL MA97 [20] for general sparse symmetric indefinite systems; both employ OpenMP and are run in

parallel, using 4 processors. Both solvers are run with a nested dissection ordering [23]. Sparse matrix-

vector products required by the iterative solvers are performed in parallel using the Intel Mathematics

Kernel Library (MKL) routines; no attempt is made to parallelize the iterative methods themselves. In

each test, we impose a time limit of 600 seconds per problem and for the iterative methods, the number

of iterations is limited to 100,000.

Following Gould and Scott [18], we want the computed residual r to satisfy

ratio(r) < δ with ratio(r) =
‖AT r‖2/‖r‖2
‖AT b‖2/‖b‖2

. (3.1)

We set the tolerance δ to 10−6 and in our experiments, the right-hand side b is taken to be the vector of

1’s. As the preconditioner (2.17) is indefinite, it needs to be used with a general non symmetric iterative

method such as GMRES [33]; we use right preconditioned restarted GMRES. Since GMRES is applied

to the reduced augmented system matrix K, the stopping criteria is applied to K. With the available

implementations of GMRES, it is not possible during the computation to check whether (3.1) is satisfied;

this can only be checked once GMRES has terminated. Instead, we use the scaled backward error

‖K

(
x(k)

r
(k)
d

)
−
(
−ATs bs
bd

)
‖2

‖
(
−ATs bs
bd

)
‖2

< δ̃, (3.2)
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where

(
x(k)

r
(k)
d

)
is the computed solution of (2.1) on the kth step. In our experiments, we set δ̃ = 10−7.

With this choice, in most of our experiments (3.1) is satisfied with δ = 10−6.

3.2. Test set 1. Our test problems are taken from the CUTEst linear programme set [17] and the

UFL Sparse Matrix Collection [9]. In each case, the matrix is “cleaned” (duplicates are summed, out-of-

range entries and explicit zeros are removed along with any null rows or columns). In our experiments, we

use the following definition for a dense row of A: given ρ (0 < ρ ≤ 1), row i of A is defined to be dense if

the percentage of entries in row i is at least ρ.

Our first test set is given in Table 3.2. The problems were chosen because they have at least one

row that is more than 10% dense. They are also difficult problems to solve (see [18]); at least three of

the problems are rank deficient. An estimate of the rank was computed by running the sparse symmetric

indefinite solver HSL MA97 on the augmented system (1.5) (with the pivot threshold parameter set to 0.5);

for problems 12month1 and PDE1 there was insufficient memory to do this.

Table 3.2

Statistics for Test Set 1. m, n and nnz(A) are the row and column counts and the number of nonzeros in A. nullity

is the estimated deficiency in the rank of A, rdensity(A) is the largest ratio of number of nonzeros in a row of A to n over

all rows, mj (j = 10, 20, 30, 40, 50) is the number of rows of A with at least j% entries, and density(C) is the ratio of the

number of entries in C to n2. − denotes insufficient memory to compute the statistic.

Problem m n nnz(A) nullity rdensity(A) m10 m20 m30 m40 m50 density(C)

Trec14 15904 3159 2872265 0 0.791 2664 1232 649 346 150 9.32×10−1

Maragal 6 21251 10144 537694 516 0.586 68 68 30 21 0 7.49×10−1

Maragal 7 46845 26525 1200537 2046 0.360 85 43 21 0 0 3.10×10−1

scsd8-2r 60550 8650 190210 0 0.100 40 0 0 0 0 5.22×10−2

PDE1 271792 270595 990587 - 0.670 1 1 1 1 1 -

12month1 872622 12471 22624727 - 0.274 284 4 0 0 0 6.87×10−1

Table 3.3

The effects of varying the row density parameter ρ on the number md of rows that are classed as dense and the density

of Cs (the ratio of the number of entries in Cs to n2).

Identifier m n ρ md density(Cs)

Trec14 15904 3159 0.005 12643 2.38×10−2

0.010 9676 8.52×10−2

0.050 4467 6.17×10−1

0.100 2664 8.31×10−1

Maragal 6 21251 10144 0.005 2923 6.22×10−4

0.010 823 1.93×10−2

0.100 68 5.49×10−2

Maragal 7 46845 26525 0.001 4668 2.15×10−4

0.005 687 9.02×10−3

0.010 108 1.70×10−2

0.100 85 1.78×10−2

scsd8-2r 60550 8650 0.050 50 1.44×10−3

0.100 40 1.39×10−2

PDE1 271792 270595 0.660 1 4.52×10−5

12month1 872622 12471 0.010 43951 1.10×10−1

0.050 3641 5.66×10−1

0.100 284 6.56×10−1

In Table 3.3, we report the effects of varying the parameter ρ that controls which rows are classified as

dense. Increasing ρ reduces the number md of dense rows but increases the density of the reduced normal

matrix Cs. Problem PDE1 has only one row that is classified as dense for ρ ∈ [0.001, 0.66]. We see that for

12month1 and Trec14, ρ has to be very small for Cs to be sparse but, in this case, md is large compared
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to m. For the Maragal problems, Cs is highly sparse if approximately 10% of the rows are classified as

dense.

3.3. Test set 2. For our second test set, we take some of the CUTEst and UFL examples that do

not initially contain dense rows and append some rows. This allows us to explore the effect of varying the

number of dense rows as well as the density of these rows. The problems are listed in Table 3.4; these

problems are all of full rank. When appending rows, the pattern of each such row is generated randomly

with the requested density and the values of the entries are random numbers in [−1, 1].

For our solvers, the number of entries nnz(C) in the normal matrix C can be at most huge(1)

(≈ 2 × 109) where huge is the Fortran intrinsic function. If we add a single row with density ρ ≥ 0.1

to each of the matrices As in the lower part of Table 3.4 then nnz(C) exceeds this limit. Thus for these

examples and our current software, we cannot use any approach that requires the normal matrix to be

computed.

Table 3.4

Statistics for Test Set 2. ms, n and nnz(As) are the row and column counts and the number of nonzeros in As.

rdensity(As) is the largest ratio of number of nonzeros in a row of As to n over all rows, and density(Cs) is the ratio of the

number of entries in Cs to n2.

Problem ms n nnz(As) rdensity(As) density(Cs)

IG5-15 11369 6146 323509 1.95×10−2 1.52×10−1

psse0 26722 11028 102432 3.63×10−4 5.88×10−4

graphics 29493 11822 117954 3.38×10−4 5.91×10−4

WORLD 67147 34506 198883 4.64×10−4 4.89×10−4

STAT96V3 1113780 33841 3317736 3.55×10−4 3.58×10−4

STORMG21K 1377306 526185 3459881 1.93×10−3 3.00×10−4

GL7d20 1911124 1437546 29893084 2.99×10−5 2.23×10−4

CONT11 L 1961394 1468599 5382999 4.77×10−6 8.38×10−6

LargeRegFile 2111154 801374 4944201 4.99×10−6 9.93×10−6

relat9 9746232 274667 38955420 1.46×10−5 5.09×10−4

4. Direct solver results. Our first experiments look at the effectiveness of the Schur complement

approach using the Cholesky direct solver HSL MA87 to factorize the reduced normal matrix Cs. We

compare this with using HSL MA87 to solve the original normal matrix C (1.2) without partitioning A into

sparse and dense parts. If the Cholesky factorization of C breaks down because of a non positive pivot,

we factorize the shifted normal matrix C + αIn = L(α)L(α)T and use the factors as a preconditioner for

the iterative method LSMR [13] (see [36]). In our tests, we set α = 10−12.

Results are given in Tables 4.1 and 4.2 for the normal equations and Schur complement approaches,

respectively. For problem PDE1, the number of entries in the normal matrix C exceeds huge(1) so we

cannot form C and use the direct solver HSL MA87. The reported times Tf and Tp for computing the

Cholesky factorization of C (Table 4.1) and the block factorization preconditioner (Table 4.2) include the

time to form C and Cs, respectively. For problem 12month1, forming C (or Cs) accounts for approximately

half the total time. Note we could try to employ a solver that avoids storing C in main memory. The

out-of-core solver HSL MA77 [31] only requires one column of C at a time and both matrix and factor

data are written to files on disk, thus minimising memory requirements. However, HSL MA77 is for sparse

matrices and when n is large and C is dense the amount of in-core memory available is still exceeded.

The results reported in Table 4.2 illustrate that the Schur complement approach is successful but

to achieve savings compared to using the normal equations in terms of the size of the factors and/or

the computation time, md must be small compared to n and the reduced normal matrix Cs must be

sparse. For the Maragal problems, we are able to choose the density ρ to achieve this. In Table 4.2,

we include the time TK to form the reduced normal matrix K and then factorize and solve (2.1) using

the symmetric indefinite solver HSL MA97; we also report the number nnz(LK) of entries in the HSL MA97

factors of K. A comparison of the times in the Ttotal and TK columns illustrates the savings offered by
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Table 4.1

Results for Test Set 1 of running the Cholesky direct solver HSL MA87 on the normal equations (without exploiting dense

rows), using LSMR for refinement. nnz(L) denotes the number of entries in the Cholesky factor L of C and Its is the

number of LSMR iterations. Tf , Ts and Ttotal denote the times (in seconds) to compute the normal matrix and factorize

it, to run LSMR and the total time. − denotes unable to form normal matrix C.

Identifier m n nnz(L) Its Tf Ts Ttotal

Trec14 15904 3159 4.85×106 1 4.79 0.03 4.82

Maragal 6 21251 10144 4.96×107 3 13.1 0.12 13.2

Maragal 7 46845 26525 1.43×108 4 37.8 0.40 38.2

scsd8-2r 60550 8650 1.20×107 0 0.88 0.00 0.88

PDE1 271792 270595 - - - - -

12month1 872622 12471 7.27×107 1 42.5 0.35 42.9

Table 4.2

Results for Test Set 1 of solving the reduced augmented system (2.1) using the Schur complement approach and the

Cholesky direct solver HSL MA87. ρ is the row density parameter. density(Cs) is the ratio of the number of entries in the

reduced normal matrix Cs to n2, nnz(L) is total number of entries in the factors (that is, nnz(Ls) + md(md + 1)/2), Its

is the number of GMRES iterations. Tp, Ts and Ttotal denote the times (in seconds) to compute the preconditioner, to run

GMRES and the total time. TK is the time to form the reduced augmented matrix and solve using the sparse symmetric

indefinite direct solver HSL MA97 and nnz(LK) is the number of entries in HSL MA97 factors.

Identifier ρ md density(Cs) nnz(L) Its Tp Ts Ttotal nnz(LK) TK

Trec14 0.050 4467 6.17×10−1 1.48×107 1 4.09 0.06 4.14 7.97×106 7.18

0.100 2664 8.31×10−1 8.50×106 1 2.48 0.04 2.52 7.13×106 6.59

0.200 1234 9.09×10−1 5.73×106 1 2.41 0.02 2.43 6.76×106 5.63

Maragal 6 0.001 2923 6.22×10−4 4.39×106 3 1.78 0.16 1.94 1.78×107 2.54

0.010 823 1.93×10−2 2.46×107 3 2.77 0.12 2.88 2.95×107 5.58

0.100 68 5.49×10−2 4.30×107 3 4.61 0.15 4.76 4.15×107 18.3

Maragal 7 0.001 4668 2.15×10−4 1.12×107 4 9.51 0.69 10.2 6.15×107 12.9

0.005 687 9.02×10−3 9.04×107 3 11.7 0.36 12.1 1.10×108 26.5

scsd8-2r 0.050 50 1.44×10−3 9.20×104 3 0.03 0.00 0.03 5.77×105 0.03

0.100 40 1.39×10−2 5.40×106 3 0.30 0.04 0.34 5.25×106 0.29

PDE1 0.100 1 4.52×10−5 2.04×107 0 1.24 0.03 1.27 2.07×107 5.02

12month1 0.050 3641 5.66×10−1 7.74×107 3 49.3 0.70 50.0 8.91×107 61.4

0.100 284 6.56×10−1 7.23×107 3 42.1 0.54 42.7 7.53×107 70.0

the Schur complement approach that result from being able to exploit a Cholesky solver. Observe that

although the symmetric indefinite solver HSL MA97 ignores the block structure of K, as already noted,

the sparsity-preserving nested dissection ordering it computes prior to the numerical factorization orders

the dense rows last and thus the difference between nnz(L) and nnz(LK) is generally relatively small.

Furthermore, HSL MA97 is able to take advantage of any zeros in the “dense” rows. If the number md of

dense rows is not small, nnz(L) is dominated by the storage needed for the dense factors of Sd (2.4) and

nnz(L) can then exceed nnz(LK); this is illustrated by problem Trec14.

5. Iterative method results. A software package HSL MI35 that implements the limited memory

IC algorithm outlined in Section 2.4 for the normal equations has been developed for the HSL library. We

employ this package in our experiments. Note that it handles ordering for sparsity and scaling and also

automatically selects the shift α. We use the default settings and set the parameters lsize and rsize that

control the maximum number of entries in each column of the factors to 20; see [37] for more details of

the parameters.

5.1. Results for Test Set 1. Table 5.1 presents results for running LSMR on the normal equations

(1.2) using the IC preconditioner. Here the density of the rows is ignored. In Table 5.2 results are given for

running GMRES on the reduced augmented system using the block IC factorization preconditioner. The

time Tp includes the time for forming the reduced normal matrix Cs and computing its IC factorization, for
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solving (2.18), and for forming and factorizing the Schur complement matrix (2.19). For problems Trec14,

scsd8-2r and 12month1, results are given for more than one value of the parameter ρ that controls which

rows are classified as dense. As the density of Cs increases, a larger shift α is needed to prevent breakdown

of the IC factorization and this has the effect of decreasing the quality of the preconditioner. However,

for small ρ, for examples 12month1 and Trec14, md is large. Consequently, the factorization of the dense

Schur complement S̃ is expensive and although the GMRES iteration count is much less than the LSMR

count, for these two problems the Schur complement approach offers no significant benefit in terms of

total time. For the other problems, exploiting the dense rows is advantageous. In particular, PDE1 could

not be solved via the normal equations but the reduced augmented system approach performs well. We

observe that for the rank deficient Maragal problems, we found it was necessary to use a very small ρ to

obtain a preconditioner that gave rapid convergence of GMRES (larger values of ρ led to unacceptably

slow convergence). Finally, we remark that the size of the incomplete factors for the normal equations

approach is approximately lsize∗n while for the Schur complement approach it is lsize∗n+md(md+1)/2

(recall in our experiments the HSL MI35 memory parameter lsize is set to 20).

Table 5.1

Results for Test Set 1 of running preconditioned LMSR on the normal equations using the IC factorization preconditioner

HSL MI35. α denotes the global shift, Its is the number of LSMR iterations. Tp, Ts and Ttotal denote the times (in seconds)

to compute the form the normal equations and compute the IC preconditioner, to run LSMR and the total time.

Identifier m n α Its Tp Ts Ttotal

Trec14 15904 3159 1.638×101 1050 4.52 3.19 7.71

Maragal 6 21251 10144 5.120×10−1 1130 6.41 1.59 8.00

Maragal 7 46845 26525 2.048 410 19.9 1.47 21.4

scsd8-2r 60550 8650 3.277×101 140 0.46 0.19 0.64

PDE1 271792 270595 - - - - -

12month1 872622 12471 1.024 200 32.6 10.0 42.7

Table 5.2

Results for Test Set 1 of running GMRES on the reduced augmented system using the block IC factorization

preconditioner. density(Cs) is the ratio of the number of entries in the reduced normal matrix Cs to n2, α denotes the

global shift, Its is the number of GMRES iterations. Tp, Ts and Ttotal denote the times (in seconds) to compute the

preconditioner, to run GMRES and the total time.

Identifier m n ρ md density(Cs) α Its Tp Ts Ttotal

Trec14 15904 3159 0.050 4467 6.17×10−1 6.400×10−2 163 2.72 4.17 6.89

0.100 2664 8.31×10−1 2.560×10−1 245 1.41 3.49 4.90

0.200 1234 9.09×10−1 1.024 352 1.71 2.74 4.45

Maragal 6 21251 10144 0.001 2923 6.22×10−4 1.562×10−5 62 1.46 1.86 3.33

Maragal 7 46845 26525 0.001 4668 2.15×10−4 2.500×10−4 15 8.95 1.74 10.7

scsd8-2r 60550 8650 0.050 50 1.44×10−3 9.766×10−7 2 0.03 0.00 0.03

0.100 40 1.39×10−2 3.227×101 68 0.32 0.13 0.44

PDE1 271792 270595 0.100 1 4.52×10−5 8.000×10−3 174 1.25 4.19 5.44

12month1 872622 12471 0.050 3641 5.66×10−1 1.024 127 32.8 13.0 45.8

0.100 284 6.56×10−1 1.024 151 36.1 10.3 46.4

5.2. Results for Test Set 2. We now look at adding rows to the examples in Test Set 2. We first

append a single row (md = 1) of increasing density and solving the normal equations using preconditioned

LSMR with the HSL MI35 IC preconditioner. In Table 5.3, we report results for ρ = 0.01, 0.1, 0.5. Problem

CONT11 L is omitted since the time to compute the IC factorization exceeds 600 seconds. In Table 5.4,

results are given for ρ = 1; results are also given for running GMRES on the reduced augmented system

using the block IC factorization preconditioner. We see that, if the normal equations are used, as ρ and

hence the density of C increases, so too do the shift α needed to prevent breakdown, the time to compute the

IC factorization, and the iterations for convergence. Indeed, for the large examples, the time exceeds our
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limit of 600 seconds. By contrast, for preconditioned GMRES on the reduced augmented system, the shift

and the times to compute the incomplete factorization and achieve convergence are essentially independent

of ρ (and for this reason only results for ρ = 1.0 are included in Table 5.4). Furthermore, this approach

uses a smaller shift than for the normal equations and produces a much higher quality preconditioner,

leading to significantly faster times. With more than one added row, the density of C often increases

further making the normal equation approach even less feasible. For the augmented approach, adding

more than one row does not affect Cs or the time to compute the incomplete factorization but does result

in the dense factorization of the Schur complement matrix becoming more expensive. For most of our test

problems, the number of iterations decreases as the number of added rows increases (for example, psse0

and graphics but for others (including relat9), the converse is true (see Table 5.5).

Table 5.3

Results for Test Set 2 with a single dense row of density ρ appended. Results are for preconditioned LMSR on the

normal equations using the IC factorization preconditioner. α denotes the global shift, Its is the number of iterations. Tp,

Ts and Ttotal denote the times (in seconds) to compute the IC preconditioner, to run the iterative solver and the total time.

– indicates statistic unavailable.

Problem density(C) α Its Tp Ts Ttotal

ρ = 0.01

IG5-15 1.52×10−1 5.120×10−1 280 0.18 0.29 0.47

psse0 5.33×10−4 2.500×10−4 1030 0.09 0.92 1.00

graphics 6.56×10−4 2.500×10−4 6350 0.03 6.30 6.33

WORLD 5.88×10−4 1.638×101 1340 0.28 3.57 3.85

STAT96V3 4.57×10−4 1.024 560 0.27 12.1 12.4

STORMG21K 4.00×10−4 1.311×102 1620 51.9 101 153

GL7d20 3.23×10−4 5.243×102 40 166 19.1 185

LargeRegFile 1.10×10−4 1.311×102 70 127 7.68 134

relat9 6.09×10−4 1.311×102 90 19.8 29.1 48.9

ρ = 0.1

IG5-15 1.61×10−1 3.277×101 810 0.23 0.83 1.07

psse0 1.06×10−2 3.277×101 38200 0.22 40.2 40.4

graphics 1.06×10−2 3.277×101 >100000 0.23 – –

WORLD 1.05×10−2 1.311×102 1840 0.88 4.91 5.79

STAT96V3 1.04×10−2 1.311×102 880 1.19 19.86 21.0

STORMG21K 1.03×10−2 1.049×103 1470 192 97.8 290

GL7d20 – – – >600 – >600

LargeRegFile – – – >600 – >600

relat9 1.05×10−2 5.243×102 90 63.7 28.6 92.3

ρ = 0.5

IG5-15 3.64×10−1 6.554×101 880 0.50 0.91 1.41

psse0 2.50×10−1 2.621×102 34570 1.31 40.64 41.96

graphics 2.50×10−1 2.621×102 >100000 1.38 – –

WORLD 2.50×10−1 5.243×102 2020 13.10 6.42 19.52

STAT96V3 2.50×10−1 5.243×102 760 10.91 17.03 27.94

STORMG21K – – – >600 – >600

GL7d20 – – – >600 – >600

LargeRegFile – – – >600 – >600

relat9 – – – >600 – >600

6. Concluding remarks. In this paper, we have focused on using the Schur complement approach

to solve large-scale linear least-squares problems in which the system matrix A contains a number of

nearly dense rows. Our proposed approach involves using a regularization parameter and then applying

a Cholesky solver to the shifted reduced normal equations. A small number of steps of the iterative

solver GMRES applied to the reduced augmented system are then employed to recover the solution of

the original (unshifted) problem. We have considered some hard-to-solve problems (including some rank

deficient examples) from practical applications and shown that this approach offers savings (in terms of
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Table 5.4

Results for Test Set 2 with a single dense row (ρ = 1.0) appended. Results are for preconditioned LMSR on the normal

equations using the IC factorization preconditioner and for running GMRES on the reduced augmented system using the

block IC factorization preconditioner. α denotes the global shift, Its is the number of iterations. Tp, Ts and Ttotal denote

the times (in seconds) to compute the IC preconditioner, to run the iterative solver and the total time. – indicates statistic

unavailable.

Problem Normal equations with LSMR Reduced augmented system with GMRES

α Its Tp Ts Ttotal α Its Tp Ts Ttotal

IG5-15 6.5536×101 810 0.92 0.82 1.73 1.024 337 0.47 1.08 1.55

psse0 2.6214×102 33690 2.06 39.8 41.9 0.0 81 0.01 0.05 0.06

graphics 2.6214×102 >100000 3.56 >134 >138 9.766×10−7 900 0.02 1.49 1.51

WORLD 5.2429×102 2040 39.9 7.16 47.1 1.280×10−1 294 1.32 1.31 2.63

STAT96V3 5.2429×102 750 23.9 16.8 40.7 0.0 20 0.20 0.04 0.23

STORMG21K – – >600 – >600 2.621×102 1320 19.5 211 230

GL7d20 – – >600 – >600 5.120×10−1 32 187 39.0 226

CONT11 L – – >600 – >600 8.000×10−3 142 9.23 22.8 32.0

LargeRegFile – – >600 – >600 0.0 11 1.61 0.53 2.14

relat9 – – >600 – >600 9.766×10−7 41 32.3 3.18 35.5

Table 5.5

Results for Test Set 2 of running GMRES on the reduced augmented system using the block IC factorization

preconditioner when md =1, 50 and 100 rows are appended. Its is the number of iterations and Ttotal is the total time.

Problem md = 1 md = 50 md = 100

Its Ttotal Its Ttotal Its Ttotal

psse0 81 0.06 40 0.05 30 0.07

graphics 900 1.51 107 0.12 68 0.11

WORLD 294 2.63 158 2.13 116 2.21

IG5-15 337 1.55 151 0.95 129 0.91

STAT96V3 20 0.23 7 0.25 7 0.32

STORMG21K 1320 230 906 194 959 228

LargeRegFile 11 2.14 9 3.28 9 4.83

CONT11 L 142 32.0 12 13.0 13 15.9

GL7d20 32 226 22 222 22 231

relat9 41 35.5 160 33.3 279 65.1

time and the size of the factors) compared to using a general sparse symmetric indefinite solver. The

approach can be used with an incomplete Cholesky factorization preconditioner. In this case, a larger shift

is required to prevent breakdown of the factorization, and this increases with the density of the reduced

normal matrix and number of iterations needed for convergence. We have also considered adding a number

of dense rows to the matrix A. For some examples, if the dense rows are not explicitly exploited, we were

unable to solve the least-squares problems using an IC preconditioner for the normal equations. However,

the use of the reduced normal equations reduces the size of the shift needed, which gives a higher quality

preconditioner that successfully solved the test problems when one or more dense rows were added.

Finally, we remark that although our main motivation for partitioning A is the presence of one or

more dense rows, there are other possible reasons for employing a partitioning of the form (1.3). For

example, a set of additional rows, that are not necessarily dense, is obtained by repeatedly adding

new data into the least-squares estimation of parameters in a linear model, see, for example, [3, 4].

Nowadays, there exist important applications based on this motivation related to Kalman filtering or

solving recursive least-squares problems, see the seminal paper [22] or for a comprehensive introduction

[10, 35]. Furthermore, additional constraints for the least-squares problem represented by Ad and bd
naturally arise when solving rank-deficient least-squares problems (for instance, [5, 7, 28]). If extra rows

are added, the sparse (incomplete) Cholesky factorization within the Schur complement approach can be

reused and so the only work needed to solve the updated system (or, in the incomplete case, to apply a

preconditioner for the enlarged system), is the solution of triangular systems.
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