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We identify and explore a high orbital angular momentum (OAM) harmonics generation and
amplification mechanism that manipulates the OAM independently of any other laser property, by
preserving the initial laser wavelength, through stimulated Raman backscattering in a plasma. The high
OAM harmonics spectra can extend at least up to the limiting value imposed by the paraxial approximation.
We show with theory and particle-in-cell simulations that the orders of the OAM harmonics can be tuned
according to a selection rule that depends on the initial OAM of the interacting waves. We illustrate the
high OAM harmonics generation in a plasma using several examples including the generation of
prime OAM harmonics. The process can also be realized in any nonlinear optical Kerr media supporting
three-wave interactions.
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Unlike cylindrically symmetrical wave fronts, which have
an intensity maximum on-axis and nearly flat wave fronts,
OAM lasers have doughnut intensity profiles and helical
wave fronts. Since the seminal paper byAllen et al. [1], these
unique properties have led to many scientific and techno-
logical advances. Experiments demonstrated the generation
of entangled photons with OAM, opening new directions in
quantum computing [2]. The OAM also promises to greatly
enhance optical communications [3]. It plays a pivotal role in
super-resolution microscopy [4], allows for new kinds of
optical tweezers [5], and itmight be even used as a diagnostic
for rotating black holes [6]. From a fundamental perspective,
all of these important contributions have only been possible
because the OAM is a fundamental property of light, which
can be controlled as an independent degree of freedom.
There are optical processes, such as high harmonic

generation [7] (HHG), where independent OAM and
frequency manipulations are not allowed. Because energy
and momentum are conserved, it is natural to assume that
the nth harmonic of a laser pulse with initial OAM level l
and photon energy ℏω has OAM nl and energy nℏω. Much
effort has been dedicated to demonstrate this hypothesis.
Apart from an exceptional result that seemed to break
this assumption [8], experiments [9–11] and theoretical
modeling [12–14] confirmed energy and momentum con-
servation in HHG, which then became the dominant view
of HHG using vortex lasers.
In contrast, in this Letter we identify a Raman scattering

process to create high OAM harmonics that preserves the
laser frequency and total angular momentum, thereby
manipulating the OAM independently of any other laser
property. An interesting path to produce lasers with very
high OAM levels, in which the OAM and frequency
harmonics are still coupled, has been recently suggested

[9]. As we will show, however, only by independently
controlling the OAM and laser frequency can the potential
of OAM for several applications (e.g., super-resolution
microscopy) become fully realized.
We consider a three-wave interaction mechanism, stimu-

lated Raman backscattering, in a plasma [15–22]. Raman
backscattering has been investigated in the frame of one-
dimensional physical models [23,24], focusing on energy
flows between the intervening waves. As an application, we
recently showed that Raman backscattering can amplify
seed pulses with a single OAM level to the required
intensities to explore relativistic laser-plasma interactions
[21,25–27]—by using a counter-propagating long pump
laser that also contains a single OAM mode [28]. Here we
demonstrate that three-wave interactions can also be used
to manipulate, with an unprecedented degree of control-
lability, the three-dimensional spatial-temporal laser pulse
structure. Specifically, we show that the seed will gain high
OAM harmonics while preserving its carrier frequency if
the pump contains several modes with different OAM
levels [Fig. 1(a)]. The OAM harmonics extend, at least, up
to the paraxial limit. These results demonstrate that the
scope of stimulated Raman backscattering and, more
generally, three-wave processes, goes beyond laser ampli-
fication by enabling an unexplored type of spatial-temporal
control that has never been considered. Because the
technique controls the OAM as an independent degree
of freedom, a combination of the conventional HHG
scheme and the Raman scheme opens the way for pro-
ducing lasers with extremely high OAM levels, and,
simultaneously, very high photon frequencies.
The order of the high OAM harmonics follows a simple

algebraic expression only involving the initial OAM of the
intervening lasers, being given by l ¼ l1 þmΔl, where
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l1 is the initial seed OAM and Δl ¼ l00 − l01 is the OAM
difference between two pump modes. The high OAM
harmonics result from the angular momentum cascading
from the modes with lower OAM to the modes with higher
OAM.This is an unexpected andunexplored behavior,which
is profoundly related to the role of the plasmawave as a spiral
phase element. Thus, similar mechanisms are expectedwhen
dealing with waves or oscillations in other nonlinear media,
e.g., phonons or molecular vibrations. We confirm the
analytical predictions numerically through ab initio three-
dimensional OSIRIS simulations [29,30]. OSIRIS employs
the particle-in-cell (PIC) technique, taking into account
the kinetic plasma response at the single particle level, in
the presence of the external and self-consistently generated
electromagnetic fields and without any physical approxima-
tions to the extent where quantum effects can be neglected.
In the small signal regime, valid when the amplitude of

the seed is much smaller than that of the pump, the
evolution of the seed envelope a1 is given by [28]

a1ðtÞ ¼
�
a1ðt ¼ 0Þ · a

�
0

ja0j
�

a0
ja0j

cosh ðΓtÞ; ð1Þ

Γ2 ¼ e2k2pω2
p

8ω0ω1m2
e
ja0j2; ð2Þ

where a0 is the envelope of the pump,ωp,ω0, andω1 are the
frequencies of the plasma wave, pump, and seed lasers,

respectively (corresponding wavelengths are given by λp, λ0
and, λ1, respectively). In addition, e and me are the electron
charge and mass, kpc ¼ ω0ð2 − ωp=ω0 − ω2

p=ω2
0Þ ∼ 2ω0 −

ωp is the plasma wave number, and c is the speed of light.
Equations (1) and (2) are similar to the solutions of
other three-wave interaction processes in the small signal
regime, such as frequency sum or difference generation for
instance. Equations (1) and (2) also describe stimulated
Raman backscattering of lasers with arbitrary polarizations
(although seed and pump need to have nonorthogonal
polarization components for Raman to occur) and arbitrary
transverse field envelopes profiles. Here we focus on the
scenario where the lasers are linearly polarized in the
same direction, and where the pump laser contains several
Laguerre Gaussian modes.
Unlike lasers described by a single OAM level, the time-

averaged intensity envelope of a laser containing several
OAM levels is no longer cylindrically symmetric. Consider,
for instance, the superposition between two modes with
l00 and l01 each with peak vector potential given by
a00 and a01. The corresponding transverse intensity
envelope [I0ðrÞ ∝ a0a�0�, given by I ∝ a200 þ a201 þ
2a00a01 cos ½ðl00 − l01Þϕ�, contains a cylindrically sym-
metric term (a200 þ a201), corresponding to the sum of the
intensity envelopes of each individual Laguerre-Gaussian
component, and a noncylindrically symmetric component
(2a00a01 cos ½ðl00 − l01Þϕ�Þ that corresponds to the beating
of the two Laguerre-Gaussian modes. This analysis shows
that noncylindrically symmetric pump lasers resulting from
the combination of several OAMmodes change key proper-
ties of stimulated Raman backscattering because the growth
rate, given by Eq. (2), now depends on ϕ. The ϕ dependent
growth rate can significantly reshape the intensity of the
seed, as shown in Figs. 1(b)–(d). Figures 1(b)–(d) show the
final intensity profile of an initially Gaussian seed pulse
(l1 ¼ 0) using a pump that is a superposition of OAM states
according to Eqs. (1) and (2). The seed transverse envelope
develops evenly spaced lobes at well-defined locations
along the azimuthal ϕ direction. The number of lobes
corresponds to Δl≡ l00 − l01. For Δl ¼ 1, a single lobe
appears [Fig. 1(b)]. When Δl ¼ 2, two lobules are formed
spaced by Δϕ ¼ π [Fig. 1(c)], and when Δl ¼ 3 there are
three lobules separated by Δϕ ¼ 2π=3 [Fig. 1(d)]. We note
that a00 and a01 (and a1) are the local, radius dependent
amplitudes of each mode.
The laser envelopes shown in Figs. 1(b)–(d) contain high

OAM harmonics. High OAM harmonics generation in
stimulated Raman scattering results directly from the
conservation of OAM. Initially, the seed is described by
a single Laguerre-Gaussian mode with l1, and the pump
described by two OAMmodes l00 and l01. This seed mode
beats with each pump mode exciting a Langmuir plasma
wave. In order to conserve angular momentum, the two
modes in the plasma have l00 − l1 and l01 − l1; i.e., the
modes in the plasma absorb the OAM difference between
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FIG. 1. (a) Illustration of the high OAM harmonics generation
mechanism in stimulated Raman scattering. The high OAM
harmonics are formed in a seed beam (red) after the interaction
with a pump beam with several OAM modes in the nonlinear
medium (plasma). (b)–(d) Transverse field profile of an initially
Gaussian laser pulse seed after interacting with a counter-
propagating pump. Initially, a00 ¼ a01 ¼ a1 ¼ 1.0 and time t
is normalized to t ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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p
. (b)–(d) show the seed pulse after

interacting with a pump with Δl ¼ 1 (b), Δl ¼ 2 (c), and
Δl ¼ 3, (d) respectively.
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every pump mode and the seed. The beating of these two
plasma modes with the pump is at the onset of the
cascading mechanism that leads to the high OAM harmonic
generation. The pump l00 beating with the plasma l01 − l1

preserves the initial OAM if a new seed component appears
with l1 þ Δl (Δl≡ l00 − l01). Similarly, the pump l01

beating with the plasma l00 − l1 preserves the OAM if
another seed mode component grows with l1 − Δl. These
are the first OAM sideband harmonics growing in the seed.
Each of these sidebands will beat with the pump, adding
new higher-order OAM sidebands to the plasma wave. In
general, each new mode in the plasma wave continues to
interact with every pump mode, generating higher OAM
seed modes l1 �mΔl, with integer m. The high OAM
harmonics then appear because the plasma wave is in a
superposition of OAM states. This unexpected behavior,
due to the wavelike plasma response, has no counterpart in
other optical devices such as spiral wave plates.
An analytical theory for the evolution of each seed OAM

harmonic supports this qualitative interpretation. Instead
of taking an azimuthal Fourier transform of Eq. (1),
which cannot be determined analytically, we start with
the general differential equation that describes the evolution
of the linearly polarized seed in the small signal regime,
d2t a1 ¼ αa1ða0a�0Þ ¼ αa1½a200 þ a201 þ 2a00a01 cos ðΔlϕÞ�,
where d2t ¼d2=dt2 and α¼ðe2ω3

p=8m2
ec2ω1Þ¼Γ=ja0j.

Instead of focusing in the amplification properties of
stimulated Raman backscattering, we describe, theoretically,
the evolution of the inner three-dimensional spatial-temporal
OAM structure of the seed. The evolution of the amplitude of
eachOAMcomponent, fm ¼ ð1=2πÞ R 2π

0 a1 exp ð−imϕÞdϕ,
can be readily obtained by multiplying the equation by
ð1=2πÞ exp ð−imϕÞ and then by integrating over ϕ. This
procedure, presented in detail in the Supplemental Material
[31], leads to the following differential equation for the
evolution of each seed mode:

d2fm
dt2

¼ e2ω3
p

8m2
ec2ω1

½ða200þa201Þfmþa00a01ðfmþΔlþfm−ΔlÞ�:
ð3Þ

Equation (3) predicts the generation of high OAM
harmonics. Unlike in conventional high (frequency) har-
monic generation, however, the frequency of the laser
remains unchanged in Eq. (3). According to Eq. (3), each
mode m grows from of its (unstable) coupling with the
plasma and the pump [first term on the left-hand side of
Eq. (3)]. In addition, each mode is also driven by its closest
sideband mode with l ¼ m� Δl [second term on the left-
hand side of Eq. (3)]. We can clarify the predictions of
Eq. (3) by distinguishing three cases: At early times the
fundamental mode l1 is driven by the first term on the
right-hand side (rhs) of Eq. (3) even if the second term is
not immediately available for these modes. Then, sideband
modes at l1 � jmjΔl are created and amplified once the
second term on the rhs of Eq. (3) appears because the first

term is not initially available. The modes between
l1 � jmjΔl and l1 � jm� 1jΔl will never grow since
neither the first or the second term on the rhs of Eq. (3) will
ever be available.
The evolution of the high OAM harmonics at sufficiently

early times, for which the higher OAM sidebands are driven
by their closest neighbor OAM mode, is

al1�jmjΔl
1 ðtÞ¼ a1

�
a00a01

a200þa201

�jmj�
coshðΓtÞ−

Xjmj−1

i¼0

ðΓtÞ2i
ð2iÞ!

�
;

ð4Þ
where Γ2 ¼ e2k2pω2

p=ð8ω0ω1m2
eÞða200 þ a201Þ. Figure 2

compares the numerical solution to Eq. (1), valid in the
small signal approximation, with the analytical solution of
Eq. (3) given by Eq. (4), which considers that the growth of
each mode is only driven by the amplitude of the preceding
sideband. The comparison assumed spatially uniform a00,
a01, and a1. The agreement is excellent at early times and
holds for different pump OAM compositions Δl as long
as the growth of the OAM harmonics are driven by their
closest neighbors. A subsequent approximation to Eq. (4)
can be obtained by retaining the leading order term of the
factor between the big brackets in Eq. (4):

al�jmjΔl
1 ≃ a1

�
a00a01

a200 þ a201

�jmj ðΓtÞ2jmj

ð2mÞ! ð5Þ

Figure 2 compares the numerical solution of Eq. (1) and the
analytical solution given by Eq. (5). The agreement is very
good for m≳ 4.
Equations (3) and (4) predict OAM harmonic generation

for arbitrarily high OAM orders. Our theory, however, is
not valid beyond the paraxial approximation, which can be
employed as long as the longitudinal laser wave number,
k∥, is much higher than the transverse laser wave number.
This assumption no longer holds when the azimutal wave
number kϕ ∼ l=r0 becomes of the same order of k∥, i.e.,
when jkϕj≃ k∥ (r0 ¼ w0

ffiffiffi
l

p
is the distance from the

origin to the radius of maximum intensity, w0 is the laser
spot size). Since k∥ ¼ 2π=λ0, the high OAM harmonics
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generation will differ from the predictions of Eq. (1) when
jlj≃ r0ω1=c≃ 2πr0=λ1 (additional arguments for the
maximum l allowed by the paraxial approximation pro-
vided in the Supplemental Material [31]).
The highOAMharmonic orders are produced according to

the simple algebraic relationl1 þmΔl. AllOAMharmonics
will be then generated when Δl ¼ 1. Figures 1(b) and 2(a)
illustrate this scenario. Even harmonics appear whenΔl ¼ 2
with even l1 [Figs. 1(c) and 2(b)]. When l1 is odd, then odd
OAM harmonics appear instead. To illustrate high OAM
harmonics generation, we have also performed three-dimen-
sional OSIRIS PIC simulations [29,30] (simulation parameters
provided in theSupplementalMaterial [31]).Thewaists of the
intervening OAM modes were chosen to ensure significant
overlap at the start of the interaction. Since the interaction
length is much shorter than the Rayleigh lengths, there is
significant overlap during propagation. Figure 3 shows the
seed electric field using Δl ¼ 1 [Figs. 3(a) and 3(b)] and
Δl ¼ 2 [Figs. 3(c) and (d)] in the pump. The initial OAM of
the Gaussian seed (l1 ¼ 0) does not change because the
amplitude of each pair of positive and negative sideband
harmonic is the same. Thus, the initially Gaussian (l1 ¼ 0)
seed pulse phase fronts remain flat during the process, as
shown in Figs. 3(a) and 3(c). For l1 ≠ 0, the phase fronts
would be twisted. Each positive and negative high OAM
harmonic creates an azimutal beat-wave pattern that modu-
lates the initial seed pulse transverse field profile. These
transverse modulations, shown in Figs. 3(b) and 3(d) confirm
the growth of positive and negative OAM harmonics.
They are also very similar to the theoretical predictions
shown in Figs. 1(b) and (c), supporting the validity of the
theoretical model.

Figure 4 shows the Fourier coefficients from the PIC
simulations using several seed and pump OAM combina-
tions. Figure 4(a) and the thick red line in Fig. 4(b), which
show the Fourier coefficients of the laser in Fig. 3, confirm
the generation of all OAM harmonics [Fig. 4(a)] and even
modes only [Fig. 4(b), thick red line], in agreement with
theory. Figure 4(b) (thin blue line) also shows the gen-
eration of the odd OAM harmonics using l1 ¼ 1.
To further demonstrate the high controllability of the

process, we provide an all-optical demonstration of the
Green-Tao prime number theorem [35]. The Green-Tao
theorem states that for every natural number k, there exist
natural numbers aðkÞ þ bðkÞ such that the numbers in
the sequence aðkÞ; aðkÞ þ bðkÞ; aðkÞ þ 2bðkÞ;…; aðkÞ þ
ðk − 1ÞbðkÞ are all prime. This arithmetic progression
corresponds to the OAM levels produced during high
OAM harmonic generation with a ¼ l1 and b ¼ Δl.
Figure 4(c) shows the generation of prime numbers with
Δl ¼ 4 and l1 ¼ 3, providing (positive) primes up to 11.
Theoretical predictions are very accurate for the positive
OAM sideband generation. The numerical diagnostic used
to decode the seed OAM harmonics does not fully discern
between positive and negative OAMs. As a result, Fig. 4(c)
shows the reflection of the positive OAM sidebands in the
negative OAM spectral region. Figure 4(d) shows a more
demanding scenario, generating primes smaller than 29,
using Δl ¼ 6 and l1 ¼ −1. In fact, Fig. 4 shows OAM
levels all prime except for −1 and −25 (if we take the
modulus), giving a total of 8 OAM prime harmonics. We
note that the laser spot sizes were adjusted to maximize the
overlap between the seed and pump.
We conclude by outlining a scheme that could boost

current super-resolution microscopy techniques [4], while
also highlighting the importance of controlling the OAM as
an independent degree of freedom. Consider a petal laser
pulse consisting of two Laguerre-Gaussian modes with
OAM levelsþl and −l. The distance between consecutive
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intensity maxima is d ¼ 2πr0=l, where r0 ¼ w0

ffiffiffi
l

p
is the

radial distance from the axis at which the intensity is
maximum. The distance d is also a figure for the resolution
of an imaging system based on these beams. Simple
arithmetic calculations show that d decreases to dHHG ¼
2πw0=

ffiffiffiffiffiffi
nl

p
for the nth harmonic in conventional HHG.

Thus, resolution increases by
ffiffiffi
n

p
. Combining conventional

HHG with the Raman scheme can reduce d even more,
to, at least, dRaman−HHG ¼ ðw0=λ0Þ½1=

ffiffiffi
l

p �ð1=nÞ within the
paraxial approximation, at least a factor of

ffiffiffi
n

p
smaller

than dHHG. The high OAM harmonics could be detected
experimentally by using computer generated holograms
(as in [2]) and will become spatially separated in vacuum
due to the differences in their group velocities [36]. The
mechanism can be generalized for other complete sets of
solutions of the paraxial wave equations, such as the
Hermite-Gaussian basis. Because OAM harmonics gener-
ation is a result of the wavelike nature of the plasma wave
as an optical element, our work may be lead to new types
of spiral phase elements capable of enhancing OAM
manipulation.
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STIMULATED RAMAN SCATTERING

For the sake of completeness, we review here the starting point for describing stimulated

Raman scattering in plasmas. In a plasma, Raman backscattering occurs when a long

laser (pump), with frequency and wavenumber (ω0, k0), decays into a Langmuir plasma

wave (ωp, kp) and into a counter propagating scattered light wave (seed) with (ω1, k1) [1].

The frequency and wavenumber of the pump, seed and plasma wave are related through

the energy and momentum conservation relations, which are given by ω0 = ω1 + ωp and

k0 = kp − k1, where ωp =
√

n0e2/meǫ0 = ckp is the plasma frequency, kp the plasma

wavenumber, ǫ0 is the vacuum permittivity, e is the elementary charge, me the mass of

the electron and where n0 is the background plasma density. These matching conditions

ensure energy conservation (frequency matching) and momentum conservation (wavenumber

matching), and can be obtained by assuming that the pump, the seed and the plasma wave

are well described as plane waves.

When light has orbital angular momentum, the frequency and wavenumber matching

conditions need to be supplemented by an additional relation ensuring conservation of orbital

angular momentum. If the orbital angular momentum of the pump, seed and plasma wave

is given by ℓ0, ℓ1, and ℓp respectively, then orbital angular momentum conservation requires

that ℓ0 = ℓp − ℓ1 [2]. In order to understand stimulated Raman backscattering of lasers

in a superposition of OAM modes we employ a generalised theory valid for arbitrary laser

transverse profiles. We consider that pump and seed have a complex field amplitude given by

a0,1(r) exp [ik0,1z − ω0,1t] + c.c. and that the amplitude of the resulting plasma wave density

perturbation is given by δn(r) exp [ikpz − ωpt] + c.c., where r is the position. The slowly

varying envelopes profiles of the pump and the seed lasers (a0,1) that propagate along the

longitudinal z direction, and the slowly varying envelope of the plasma wave (δn), obey

the paraxial wave equation, for which the system can be reduced to the one-dimensional

stimulated Raman scattering equations [2]. In these conditions the temporal evolution of

the stimulated Raman backscattering instability is given by the following coupled set of

first-order differential equations:

da0

dt
= −i(ω2

p/2ω0)δna1 (1)

1



da1

dt
= −i(ω2

p/2ω1)δn
∗
a0 (2)

dδn

dt
= −i(e2k2

p/4m
2
eωp)a

∗
1 · a0 (3)

These equations are formally identical to parametric amplification in nonlinear media with

Kerr nonlinearity. The evolution of the pump can be neglected in the small signal regime

where a0 ≫ a1, for which the seed evolves according to Eq. (1) in the main manuscript.

AMPLITUDE OF THE OAM HARMONICS

In order to derive analytical formulas for the amplitudes of the OAM harmonics we

consider neglect the pump depletion, such that the pump laser pulse is non-evolving. We

also assume linearly polarised laser pulses. We then take the derivative of Eq. (2) with

respect to time, and insert Eq. (3) in the resulting expression, yielding:

d2a1
dt2

=
e2k2

p

8ω1m2
e

a1|a0|2. (4)

In order to generate the OAM harmonics generation the pump needs to be a combination

of modes with different OAM levels. If we assume that the pump has two OAM modes ℓ00

and ℓ01, each with amplitudes a00 and a01, then the term |a0|2 in Eq. (4) becomes:

|a0|2 = a200 + a201 + a00a01 [exp (i∆ℓφ) + exp (−i∆ℓφ)] , (5)

where ∆ℓ = ℓ00 − ℓ01.

Inserting Eq. (5) into Eq. (4) gives:

d2a1
dt2

=
e2k2

p

8ω1m2
e

a1(a
2
00 + a201) +

e2k2
p

8ω1m2
e

a1a00a01 [exp (i∆ℓφ) + exp (−i∆ℓφ)] . (6)

We now multiply both sides of Eq. (6) by exp (imφ), and integrate both sides along the

azimutal direction φ. Eq. (6) then leads to:

d2

dt2

∫

a1 exp (imφ)dφ =
e2k2

p

8ω1m2
e

(a200 + a201)

∫

a1 exp (imφ)dφ

+
e2k2

p

8ω1m2
e

a00a01

∫

a1 exp [i(m+∆ℓ)φ]dφ

+
e2k2

p

8ω1m2
e

a00a01

∫

a1 exp [i(m−∆ℓ)φ]dφ. (7)
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We now make the following substitutions:
∫

a1 exp (imφ)dφ → fm (8)
∫

a1 exp [i(m+∆ℓ)φ]dφ → fm+∆ℓ (9)
∫

a1 exp [i(m−∆ℓ)φ]dφ → fm−∆ℓ (10)

where fm is the amplitude of the mode with OAM level m. Using these substitutions in

Eq. (7), we then arrive to Eq. (3) from the main manuscript:

d2fm
dt2

=
e2ω3

p

8m2
ec

2ω1

[(

a200 + a201
)

fm + a00a01 (fm+∆ℓ + fm−∆ℓ)
]

, (11)

where we have also replaced kp = ωp/c.

ANALYTICAL FORMULAS FOR THE AMPLITUDE OF THE OAM HARMONICS

In order to derive explicit analytical formulas for the amplitude of the OAM harmonics

we assume that the dominant terms come from the OAM orders that are closer the the

initial seed OAM mode. The evolution of the OAM harmonics in the seed laser pulse with

initial OAM level ℓ1, and initially given by a10 exp (iℓ1φ), are then given by:

d2fℓ1±∆ℓ

dt2
≃

e2ω3
p

8m2
ec

2ω1

(a200 + a201)fℓ1 (12)

d2fℓ1±∆ℓ

dt2
≃

e2ω3
p

8m2
ec

2ω1

a00a01fℓ1±(m−1)∆ℓ (13)

where m > 0 is a positive integer. We can now recursively solve Eqs. (12) and (13). The

solution for the fundamental OAM mode ℓ1 is:

fℓ1 = a1 cosh Γt, (14)

where Γ2 = (a200 + a201)(e
2ω3

p)/(8m
2
ec

2ω1) is the growth rate. The solution of Eq. (13) for the

second OAM harmonic ℓ = ℓ1 ±∆ℓ is:

fℓ1±∆ℓ =
a00a01a1

Γ2

e2ω3
p

8m2
ec

2ω1

[cosh(Γt)− 1] , (15)

where we have used the boundary conditions fℓ1±∆ℓ(t = 0) = f ′
ℓ1±∆ℓ(t = 0) = 0. For the

third OAM harmonic we have:

fℓ1±2∆ℓ =
a00a01a1

Γ2

e2ω3
p

8m2
ec

2ω1

[

cosh(Γt)− 1− t2Γ2

2

]

, (16)
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and for the fourth OAM harmonic component:

fℓ1±3∆ℓ =
a00a01a1

Γ2

e2ω3
p

8m2
ec

2ω1

[

cosh(Γt)− 1− t2Γ2

2
− t4Γ4

24

]

. (17)

By continuing this procedure we find that the general expression for fℓ1±m∆ℓ is thus given

by Eq. (4) in the main manuscript:

a
ℓ1±|m|∆ℓ
1 (t) = a1

(

a00a01
a200 + a201

)|m|


cosh (Γt)−
|m|−1
∑

i=0

(Γt)2i

(2i)!



 . (18)

DESCRIPTION OF THE OAM CASCADING MECHANISM

The high orbital angular momentum (OAM) harmonics generation based on stimulated

Raman scattering can be interpreted as a cascading process, illustrated schematically in

Fig. 1. Figure 1 considers that the pump is composed of two OAM modes, one with ℓ00 = 0

and the other with ℓ01 = 1. The counter-propagating seed is initially composed of a single

OAM mode with ℓ1 = 1. The initial seed pulse intensity profile is shown on the left hand

side of Fig. 1 at n = 1 in frame (a)-i. The initial pump and seed k-vector modes in the

(kz, kφ) phase-space are represented in frame (a)-ii. In order to conserve momentum two

modes appear in the plasma with ℓp = −1 and ℓp = 0. The new modes are represented by

the dashed green vectors in frame (a)-iii. The seed and the new plasma OAM modes are

also represented schematically in frame (a)-iv.

In a second step of the cascade (n=2) in Fig. 1 two new modes appear in the seed with

ℓ1 = 0 and ℓ1 = 2, which result from the beating between the plasma modes with ℓp = −1

and ℓp = 0 with the pump modes ℓ01 = 1 and ℓ00 = 0, respectively. The presence of these

two new modes changes the seed transverse intensity profile, which becomes asymmetric

(frame b-i). In order to conserve momentum, two new additional plasma modes also appear

with ℓp = −2 and ℓp = +1.

As the OAM mode cascade progresses, the seed profile becomes further transversely

compressed. At the n = 3 step of the cascade, two new OAM modes appear with ℓ1 = −1

and ℓ1 = 3. The seed mode with ℓ1 = −1 results from the beating of the pump ℓ01 = 1

with the plasma mode with ℓp = −2. The seed mode with ℓ1 = 3 results from the beating

of ℓ00 = 0 with the plasma mode ℓp = +1. In turn, conversion of momentum again creates

new OAM modes in the plasma with ℓp = −3 and ℓp = 2.
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MAXIMUM OAM ORDER PRODUCED BY THE HIGH OAM HARMONICS

MECHANISM

This cascaded mechanism continues to create higher OAM harmonics, at least until the

breakdown of the paraxial approximation, for which our theoretical model breaks. In the

main manuscript we have provided an argument based on the dispersion of the OAM laser.

Here, we show that an argument based on the Gouy phase shift can also lead to a similar

conclusion.

Consider a Laguerre-Gaussian beam with OAM ℓ and radial index p = 0. The Gouy

shift is (|ℓ| + 1) tan−1 (z/zR) ≃ (|ℓ| + 1)λ0z/(πw
2
0), where z is the propagation distance,

zR = πw2
0/λ0 is the Rayleigh length and λ0 the laser wavelength. Under the paraxial

approximation, the Gouy phase shift is smaller than k0z, where k0 = 2π/λ0 is the central

laser wavenumber. Thus 2piλ0 > (|l| + 1)λ0/(πw
2
0). Defining r0 = w0

√

(ℓ/2) as the radius

where the OAM beam intensity is maximum, the maximum OAM order ℓmax allowed by the

paraxial approximation becomes:

ℓmax =
2πr0
λ0

. (19)

The distance between consecutive field maxima at a given propagation distance is ∆ =

2πr0/ℓ. Hence, according to Eq. (19), the cascade continues as long as the spacing ∆ is

larger than the laser wavelength, i.e. as long as ∆ > λ0. This limit for the maximum

topological charge of an OAM laser pulse has also been demonstrated in experiments [6].

SETUP OF NUMERICAL SIMULATIONS AND SIMULATION PARAMETERS

Simulations have been performed using the massively parallel, fully relativistic, electro-

magnetic particle-in-cell (PIC) code Osiris [3]. In the PIC algorithm, electric currents,

electric fields and magnetic fields are defined in a discrete numerical grid. In each grid

cell there are simulation particles. Each simulation particle or macro-particle describes the

motion of an ensemble of charged particles. The PIC loop has 4 main steps: (i) the motion of

each macro-particle is updated using the relativistic Lorentz force equation; (ii) the electric

currents are deposited in each grid cell; (iii) electric and magnetic fields are advanced using a

finite-difference version of the full set of Maxwell’s equations. (iv) the electric and magnetic

fields are interpolated back to particles positions. Since the background plasma ion motion
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(b-i) (b-ii) (b-iii) (b-iv)

(c-i) (c-ii) (c-iii) (c-iv)

Supplementary Figure 1. Cascading process leading to the generation of the high orbital angular

momentum harmonics. Time flows downwards. The evolution of the seed profile is schematically

shown in the plots on the left. The middle k-vector diagrams illustrate the creation of the OAM

modes in during the first 3 steps in the cascade. The dashed line vectors represent new modes

created at a given step. The diagram on the right show the new OAM modes created at each

step in colours, and existing modes in grey. Green represents the plasma modes, orange the seed

modes, and blue the pump modes. The pump OAM is ℓ00 = 0 and ℓ01 = 1. The initial OAM seed

is ℓ1 = 1.

is negligible for our conditions, ions have been treated as a positively charged immobile

background. The plasma was initialised at the front of the simulation box. In order to

save computing time, simulations employ a moving computational window that moves at

the speed of light c. The moving window corresponds to a coordinate system that moves at

the speed of light c.

The simulation box dimensions are 50 µm× 2870 µm× 2870 µm. The simulation box is

divided into 650×2400×2400 cells, where each cell contains 1×1×1 particles. In total, each

6



simulation contains 3.7 × 109 simulation particles. The pump laser fields are injected from

the leading edge of the moving window [4, 5]. In order to conserve canonical momentum,

the initial momentum of each plasma electron macro-particle near the leading edge of the

simulation box has been set to match the normalised pump laser vector potential. The

particles are initialised with no thermal spread.

The initially linearly polarised OAM seed and pump laser electric fields are given by a

superposition of pure Laguerre-Gaussian modes:

E =
1

2

E0w0

w(z)

(

r
√
2

w(z)

)|ℓ|

L|l|
p

(

− 2r2

w2(z)

)

exp

(

− r2

w2(z)

)

× exp

[

ik (z − z0) +
ikz

1 + z2/z2R

r2

z2R
− i(2p+ |ℓ|+ 1) arctan

(

z

Zr

)

+ iθ0 + iℓφ

]

+ c.c.,(20)

where c.c. denotes complex conjugate and where E0 is the laser electric field at the focus. In

addition w2(z) = w2
0 (1 + z2/Z2

r ) is the waist of the beam as a function of the propagation

distance z in vacuum, w0 the waist at the focal plane, Zr = πw2
0/λ is the Rayleigh length,

λ = 2πc/ω = 2π/k the central wavelength of the laser, ω and k its central frequency and

wavenumber respectively. In addition, L
|l|
p is a generalised Laguerre polynomial with order

(p, ℓ), with ℓ being the index that gives rise to the orbital angular momentum, r =
√

x2 + y2

the radial distance to the axis, θ0 an initial phase, and z0 the center of the laser. We note

that all simulations involving Laguerre-Gaussian modes have p = 0.

The wave-number of the pump laser (which travels in the plasma) in all simulations

presented is set according to the linear plasma dispersion relation k2c2 = ω2 − ω2
p, where

ωp =
√

4πn0e2/me is the plasma frequency associated with a background plasma density

n0, and where e and me are, respectively, the elementary charge and electron mass. The

seed frequency and wavenumber are set according to the matching conditions for Raman

amplification (see Table 1).

The parameters of the seed and pump for each 3D simulation are shown in Table .

NUMERICAL FOURIER ANALYSIS OF PIC SIMULATIONS

The amplitude, EL(ϕ) of a laser field EL can be generally written as:

EL(ϕ) =
∞
∑

|ℓ|=0

Eℓ(ϕ,±|ℓ|), (21)
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Figures 3a-b, 4a 3c-d, 4b 4c 4d

Pump Seed Pump Seed Pump Seed Pump Seed

OAM ∆ℓ = 1 ℓ1 = 0 ∆ℓ = 2 ℓ1 = 0, ℓ1 = 1 ∆ℓ = 4 ℓ1 = 1 ∆ℓ = 6 ℓ1 = −1

a0[×10−2] (peak) (1.8, 2.2) 3.5 (1.5,2.2) 3.5 (2.2,2.2) 1.4 (5.4,2.2) 1.5

spot (µm) 435 717 435 717 384 384 (384,665) 538

duration (fs) 25× 103 25 25× 103 25 25× 103 25 25× 103 25

ω0/ωp 20 19 20 19 20 19 20 19

TABLE I. Initial seed and pump laser parameters used for the high OAM harmonic

generation simulations. The central wavelength of the seed pulse in all simulations is 1 µm.

The background plasma density in all simulations is n0 = 4.3 × 1018cm−3. The peak pump laser

a0 is represented as (a00, a01), where a00 and a01 are the peak a0 values for each pump mode.

where ϕ = ω0t− k0z is the phase, and ±ℓ is the OAM. Each mode Eℓ is given by:

Eℓ(ϕ,±ℓ) = A+|ℓ| cos (ϕ+ ℓθ) + A−|ℓ| cos (ϕ− ℓθ) + B+|ℓ| sin (ϕ+ ℓθ) + B−|ℓ| sin (ϕ− ℓθ) .

(22)

The amplitude of a mode with +|ℓ| is given by
√

A2
+|ℓ| +B2

+|ℓ| and the amplitude of a mode

with −|ℓ| is
√

A2
−|ℓ| +B2

−|ℓ|. In order to find the coefficients A±ℓ and B±ℓ we solve the

following 4 independent linear equations:

I+|ℓ| =

∫ 2π

0

EL(ϕ1) sin (ℓθ) dθ =

∫ 2π

0

Eℓ(ϕ1) sin (ℓθ) dθ (23)

I−|ℓ| =

∫ 2π

0

EL(ϕ1) sin (−ℓθ) dθ =

∫ 2π

0

Eℓ(ϕ1) sin (−ℓθ) dθ (24)

J+|ℓ| =

∫ 2π

0

EL(ϕ2) cos (ℓθ) dθ =

∫ 2π

0

Eℓ(ϕ2) cos (ℓθ) dθ (25)

J−|ℓ| =

∫ 2π

0

EL(ϕ2) cos (−ℓθ) dθ =

∫ 2π

0

Eℓ(ϕ2) cos (ℓθ) dθ, (26)

where ϕ1 and ϕ2 are two phases, and where I±|ℓ| and J±|ℓ| are given by the numerical

integration of the laser field retrieved from the simulations. Equation 23 is solved for every

transverse simulation slice. The results in Fig. 4 are then retrieved at a particular simulation

longitudinal position.
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