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Experiments with sparse Cholesky using a parametrized task

graph implementation

Iain Duff† and Florent Lopez†

ABSTRACT

We describe the design of a sparse direct solver for symmetric positive-definite systems using the PaRSEC

runtime system. In this approach the application is represented as a DAG of tasks and the runtime

system is in charge of running the DAG on the target architecture. Portability of the code across different

architectures is enabled by delegating to the runtime system the task scheduling and data management.

Although runtime systems have been exploited widely in the context of dense linear algebra, the DAGs

arising in sparse linear algebra algorithms remain a challenge for such tools because of their irregularity.

In addition to overheads induced by the runtime system, the programming model used to describe the

DAG impacts the performance and the scalability of the code. In this study we investigate the use of a

Parametrized Task Graph (PTG) model for implementing a task-based supernodal method. We discuss

the benefits and limitations of this model compared to the popular Sequential Task Flow model (STF)

and conduct numerical experiments on a multicore system to assess our approach. We also validate the

performance of our solver SpLLT by comparing it to the state-of-the-art solver MA87 from the HSL library.
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1 Introduction

We investigate the use of a runtime system for implementing a sparse Cholesky decomposition for solving

the linear system

Ax = b, (1.1)

where A is a large sparse symmetric positive-definite matrix. In this approach the runtime system acts as

a software layer between our application and the target architecture and thus enables portability of our

code across different architectures. In our solver we use the task-based supernodal method implemented

in the state-of-the-art HSL MA87 [11] solver that has been shown to be efficient for exploiting multicore

architectures. The HSL MA87 solver is designed following a traditional approach where the task scheduler

is implemented using a low-level API specific to a target architecture. In our solver, we express the DAG

using a high-level API and the runtime system handles the management of task dependencies, scheduling

and data coherency across the architecture.

Many dense linear algebra software packages have already exploited this approach and have shown that

it is efficient for exploiting modern architectures ranging from multicores to large-scale machines including

heterogeneous systems. Two examples of such libraries are DPLASMA [4] built with the PaRSEC [5]

runtime system and Chameleon which has an interface to several runtime systems including StarPU [3]

and PaRSEC. As a result of these research efforts for demonstrating the effectiveness of this approach,

the OpenMP board decided to include tasking features in version 3.0 of the standard to facilitate the

implementation of DAG-based algorithms. The library includes, for example, the task directive for

creating tasks and the depend clause for declaring dependencies between them. The PLASMA package [10],

which used to rely on the QUARK runtime system, has been ported to OpenMP using the tasking features

offered in the latest versions of the standard. This transition not only improved the portability and

maintainability of this library but also didn’t impact the performance of the code [15].

In contrast, sparse linear algebra algorithms represent a bigger challenge for runtime systems because

the DAGs arising in this context are usually irregular with an extremely variable task granularity. In [8] we

studied this case using both the StarPU runtime system and the OpenMP standard for implementing the

sparse Cholesky solver SpLLT. We exploited a Sequential Task Flow (STF) model and obtained competitive

performance compared to HSL MA87. However, we identified potential limitations of the STF model in

terms of performance and scalability. For this reason we now investigate the use of an alternative paradigm,

the Parametrized Task Graph (PTG) for implementing the factorization algorithm. We use the PaRSEC

runtime system to implement the PTG and compare it with our existing OpenMP implementation and

the HSL MA87 solver.

2 Task-based sparse Cholesky factorization

In the context of direct methods, the solution of equation (1.1) is generally achieved in three main phases:

the analysis, the factorization and the solve phases. The analysis is responsible for computing the structure

of the factors and the data dependencies during the factorization. These dependencies can be represented

by a tree structure called an elimination tree. Note that the nonzero structure of the factors differs from the

original matrix because some zero entries become nonzero during the factorization. This phenomenon is

referred to as fill-in. Moreover, sets of consecutive columns that have the same structure are amalgamated

and the elimination tree is replaced by an assembly tree where nodes in this tree are referred to as

supernodes. Although this amalgamation generally results in a higher fill-in and therefore a higher floating

point operation count, it enables the use of efficient Level-3 BLAS operations in the factorization. We use

the software package SSIDS from SPRAL1 to compute the assembly tree during in the analysis phase.

The factorization phase computes the Cholesky decomposition of the input matrix as:

PAPT = LLT , (2.1)

1https://github.com/ralna/spral
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where P is a permutation matrix and the factor L is a lower triangular matrix. The two main techniques

for finding the permutation matrix are Minimum Degree [2, 13,14] or Nested Dissection [9].

The factorization is effected by traversing the assembly tree in a topological order and performing

two main operations at each supernode: compute a dense Cholesky factorization of the supernode and

update the ancestor supernodes with these factors. The factorization is then followed by a solve phase

for computing x through the solution of the systems Ly = Pb and LTPx = y by means of forward and

backward substitution.

nb

Figure 2.1: Simple assembly tree with three

supernodes partitioned into square blocks of order nb.
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Figure 2.2: DAG corresponding to the factorization

of the tree in Figure 2.1.

Two levels of parallelism are commonly exploited in the assembly tree: tree-level and node-level

parallelism. Tree-level parallelism comes from the fact that coefficients in independent branches of the tree

may be processed in parallel and node-level parallelism corresponds to the fact that multiple resources can

be used to process a supernode. In our work we implement a DAG-based supernodal method in which

supernodes are partitioned into square blocks of order nb and operations are performed on these blocks.

In Figure 2.2 we illustrate the DAG for the factorization of the simple assembly tree shown in Figure 2.1

containing three supernodes. The tasks in this DAG execute the following kernels:

• factor block (denoted f) that computes the Cholesky factor of a block on the diagonal;

• solve block (denoted s) that performs a triangular solve of a subdiagonal block using the factor

computed in factor block;

• update block (denoted u) that performs an update of a block within a supernode corresponding to

the previous factorization of blocks;

• update btw (denoted a) that computes the update between supernodes.

In this algorithm the exploitation of parallelism no longer relies on the assembly tree but is replaced

by the DAG where tree-level and node-level parallelism are exploited without distinction. Moreover, tasks

in a supernode might become ready for execution during the processing of its child nodes. This brings an

additional opportunity for concurrency referred to as internode-level parallelism.

3 The Parametrized Task Graph model

The PTG model is a dataflow programming model for representing a DAG and was introduced in [6]. It

is an alternative to the Sequential Task Flow (STF) paradigm that we presented and used in previous
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work [8]. In the STF model, the DAG is sequentially traversed and tasks are submitted to the runtime

system along with data access information used by the runtime system to infer dependencies and guarantee

the correctness of the parallel execution. In the PTG model, the DAG is represented using a compact

format, independent of the problem size, where dependencies are explicitly encoded. We introduce the

PTG model by using the simple sequential code shown in Figure 3.1. A part of the DAG associated with

this algorithm is illustrated in Figure 3.2 and shows the dependencies between the tasks executing the

kernels f and g.

1 for (i = 1; i < N; i++) {

x[i] = f(x[i]);

3 y[i] = g(x[i], y[i-1]);

}

Figure 3.1: Simple example of a sequential code.

f g

f g

f g

i-1

i

i+1

Figure 3.2: Extract of the DAG corresponding to the

sequential code presented in Figure 3.1.

Figure 3.3 illustrates a compact representation of the DAG presented in Figure 3.2 where tasks are

divided into two classes: task f and task g executing kernels f and g respectively. Tasks of type task f

manipulate data X in Read/Write (RW) mode and tasks of type task g manipulate three pieces of data,

X and Y1 in Read (R) mode and Y2 in Write (W) mode. Each task instance is identified by a parameter

i ranging from 1 to N. In task f tasks, the input data is directly read from the array x in memory and

the output data is given to the task instance task g(i). In task g the input X comes from the output of

task f(i) task, the input Y1 comes from the output of task g(i-1) and the output Y2 is given to task

task g(i+1).

Figure 3.3: PTG representation for task types task f (left) and task g (right) as shown in the DAG

presented in Figure 3.2.

The example in Figure 3.3 corresponds to a possible PTG representation for describing a DAG using

a diagram language. It illustrates the fact that the PTG representation is independent of the size of the

DAG (which depends on the parameter n in our example) and therefore has a limited memory footprint.

In comparison, when using an STF model, the memory footprint for representing the DAG grows with

the size of the DAG because every task instance has to be kept in memory at least until its completion.

Another interesting aspect of the PTG model comes from the fact that when the DAG is traversed in

parallel every process involved in the execution only needs to traverse the portion of the DAG related to

the tasks being executed in that process. Therefore, the DAG is handled in a distributed fashion which
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constitutes an advantage over the STF model where every process is required to unroll the whole DAG

which could limit the scalability of the application on large systems.

4 Runtime systems

The PaRSEC runtime system is one of the few libraries providing an interface for implementing PTG-

based parallel codes. This is done by using a dedicated high-level language called Job Data Flow (JDF) for

describing DAGs. The JDF code is translated into a C-code at compile time by the parse ptgpp source-to-

source compiler distributed with the PaRSEC library. The JDF codes contain a collection of task types,

usually one for each kernel, associated with a set of parameters. These parameters are associated with

a range of values and each value corresponds to a task instance. Tasks are associated with one or more

data, and the dataflow is explicitly encoded for each task type. Several kernels can be attached to each

task type depending on the resources available on the architecture such as CPUs and GPUs.

In the context of distributed memory systems, users must provide the data distribution to the runtime

system in addition to the JDF code which is used to map the task instances on the compute nodes during

the execution.

N [type = int]

2

task_f(i) /* Task name */

4

i = 1..N-1 /* Execution space declaration for parameter i */

6

: x(i) /* Task must be executed on the node where x(i) is stored */

8

/* Task reads x(i) from memory ... */

10 RW X <- x(i)

/* ... and sends it to task_g(i) */

12 -> X task_g(i)

BODY

14

X = f(X) /* Code executed by the task */

16

END

18

task_g(i) /* Task name */

20

i = 1..N-1 /* Execution space declaration for parameter i */

22

: y(i) /* Task must be executed on the node where y(i) is stored */

24

/* Task reads x(i) fron task_f(i)... */

26 R X <- X task_f(i)

/* ... y(i-1) from task_g(i-1)... */

28 R Y1 <- (i > 1) ? Y2 task_g(i-1) : y(i-1)

/* ... and sends y(i) to task_g(i+1) */

30 W Y2 -> (i < N-1) ? Y2 task_g(i+1)

32 BODY

34 Y2 = g(X, Y1) /* Code executed by the task */

36 END

Figure 4.1: Simple example of a parallel version of the sequential code in Figure 3.1 using a PTG model

with PaRSEC.
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In Figure 4.1, we illustrate the use of a PTG model using PaRSEC by implementing a parallel version

of the simple example shown in Figure 3.2 using the JDF language. In this JDF code we have the

representation for the two types of task task f and task g that are associated with one parameter i

each. This parameter is defined on the range 1..N-1 where N is defined at the beginning of the JDF code,

associated with the type int, and initialised when the DAG is instantiated. As illustrated by the diagram

in Figure 3.3, the dataflow for task f contains two edges that are expressed lines 10 and 12 of the JDF

code using the symbols <- for the input dataflow and -> for the output dataflow. Similarly, the three

edges for the dataflow for task g are expressed lines 26, 28 and 30. Note that the last two dataflows are

conditional and depend on the value of i. The instance of task g associated with the parameter i=1 reads

the data denoted Y1 in memory because it is the first task to touch this data. The following instances

however will get this data from the previously executed tasks. The kernel associated with each task is

contained between the BODY and END keywords. As we mentioned previously, multiple kernels, one for each

type of architecture for example, can be associated with these tasks. In our example we only provided

the implementation for CPUs. In a distributed-memory context, the node selected to execute a given task

depends on the memory location of the associated data. In our example the data affinity is defined with

the instructions on lines 7 and 23 and depends on data x for task f and data y for task g. Note that

during the execution, data might not be up-to-date on a given node in which case PaRSEC handles the

transfer from one node to another before executing the task.

5 Expressing a parallel Cholesky factorization using a PTG

model

We use PaRSEC to implement our SpLLT solver by expressing the DAG of the factorization algorithm

presented in Section 2 in the JDF language. In a previous study [1] we investigated the use of a PTG model

for implementing a multifrontal QR method and used a two-level approach where the processing of the

assembly tree and the node factorization are split in two different JDFs thus separating the exploitation

of tree-level and node-level parallelism. Even if this hierarchical approach facilitated the construction of

the dataflow representation, it incorporated unnecessary synchronisation, prevented the exploitation of

internode-level parallelism and therefore drastically impacted the scalability of the code. For this reason,

in SpLLT, we choose to express the whole DAG in one JDF file that includes all the task types and

dependencies. This enables the exploitation of all the parallelism available in the DAG but increases the

complexity of the dataflow representation.

In Figure 5.1 we present an extract of this JDF code with the description of the task factor block

task type associated with the factor block kernel. As shown in Figure 2.2, the factorization DAG

contains one task factor block task for every block on the diagonal in our matrix. We thus associate

this task type with the parameter diag idx, ranging from 0 to ndiag-1, where ndiag is the total number

of diagonal blocks. A task instance manipulates a single block, referred to as bc kk, in a RW mode as

it computes its Cholesky factor. The instructions on lines 6-16 retrieve the information on the current

supernode and block being processed that is necessary to determine the data flow associated with the task.

This information is obtained from the structure of the problem which is built during the analysis phase.

The instruction on line 18 indicates to the runtime system the location where the task should be

executed. In this example, the notation blk(id kk) means that the task should be executed on the

compute node where the block is stored. This location depends on the data distribution given to the

runtime system by the user. Note that in our implementation the data distribution is straightforward as

we focus on multicore machines for which the data is located on one compute node.

The input dataflow, expressed on lines 20-25, is split into three different cases: if the processed

block corresponds to the first block in the current supernode, then either the supernode has received

a contribution from a descendent supernode and thus the data is received from an task update btw task

or we read the data from the initialization task of type task init block; if the current block is not
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task_factor_block(diag_idx)

2

diag_idx = 0..( ndiag -1) /* Index of diag block*/

4

/* Global block index */

6 id_kk = %{ return get_diag_blk_idx(diag_idx);%}

/* Index of current supernode */

8 snode = %{ return get_blk_node(id_kk);%}

/* Index of block in current block -column */

10 last_blk = %{ return get_last_blk(id_kk);%}

/* id of prev diag block */

12 prev_id_kk = %{ return get_diag_blk_idx(diag_idx -1) ;%}

/* Number of input contribution for current block */

14 dep_in_count = %{ return get_dep_in_count(id_kk);%}

/* Number of out contribution for current block*/

16 dep_out_count = %{ return get_dep_out_count(id_kk);%}

18 : blk(id_kk)

20 RW bc_kk <- (is_first(snode , id_kk) && dep_in_count ==0) ?

bc task_init_block(id_kk)

22 <- (is_first(snode , id_kk) && dep_in_count > 0) ?

bc_ij task_update_btw(id_kk , dep_in_count)

24 <- (! is_first(snode , id_kk)) ?

bc_ij task_update_block(diag_idx -1, prev_id_kk +1, prev_id_kk +1)

26 -> (id_kk == last_blk) ?

blk(id_kk) : bc_kk task_solve_block(diag_idx , (id_kk +1).. last_blk)

28 -> (dep_out_count > 0) ?

bc task_update_btw_aux(id_kk , 1.. dep_out_count)

30

; FACTOR_PRIO /* Task priority */

32

BODY

34

factor_block(bc_kk); /* Cholesky factorization kernel */

36

END

Figure 5.1: Extract of the JDF representation implemented with PaRSEC for the supernodal algorithm.

the first in the supernode, then the data necessary comes from an update block task resulting from the

factorization of previous block-column. The output dataflow, expressed on lines 26-29, shows that the data

is sent to several tasks: the task solve block tasks that compute the factors on the subdiagonal blocks

and the task update btw aux tasks that update the blocks in the ancestor nodes. Note that, for every

block, we need the number of contributions received (dep in count) and sent (dep out count) to other

blocks located in other supernodes. This information is computed during the analysis phase by traversing

the assembly tree and is added to the data structure associated with each block.

Whenever a task is completed during the execution of the DAG, the data associated with this task

become available and the runtime system checks in the output dataflow which tasks become ready for

execution. The new ready tasks are then scheduled using the task priority FACTOR PRIO provided on

line 31 and as well as data locality information.

6 Experimental results

We tested the PaRSEC implementation of our SpLLT solver on a multicore machine equipped with two

Intel(R) Xeon(R) E5-2695 v3 CPUs with fourteen cores each (twenty eight cores in total). Each core,
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clocked at 2.3 GHz and equipped with AVX2, has a peak of 36.8 Gflop/s corresponding to a total peak of

1.03 Tflop/s in real, double precision arithmetic. The code is compiled with the GNU compiler (gcc and

gfortran), the BLAS and LAPACK routines are provided by the Intel MKL v11.3 library and we used

the latest version (version v1.1.0-2771-g7a4cb0d) of the PaRSEC runtime system.

In our experiments, we use a set of matrices taken from the SuiteSparse Matrix Collection [7]. From

this collection, we selected a set of symmetric positive-definite matrices from different applications with

varying sparsity structures. They are listed in Table A along with their orders and number of entries. In

this table, we also indicate the number of entries in the factor L and the flop count for the factorization

when using the nested-dissection ordering MeTiS [12]. Note that, in this table, matrix characteristics are

obtained without node amalgamation. This means that the number of entries in L as well as the operation

count is minimized. However, in our experiments we use node amalgamation to obtain better efficiency

of operations at the cost of an increase in the operation count and the number of entries in L. Node

amalgamation is controlled by a parameter nemin used during the analysis phase. The elimination tree is

traversed using a post-order and, when a node is visited, it is merged with its parents if the column count

in both nodes is lower than nemin or if the merging generates no additional fill-in in L. In our experiments,

we use the analysis routine SSIDS and set the nemin value to 32. This corresponds to a good trade-off

between sparsity and efficiency of floating-point computation.

For each tested problem it is not theoretically possible to determine an optimal value for the parameter

nb because it depends on a huge number of factors including the number of resources and the amount of

parallelism available in the DAG. For this reason, the best value for the parameter nb is empirically chosen

by running multiple tests on the range (256, 384, 512, 768, 1024, 1536).
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Figure 6.1: Performance results for both PaRSEC and OpenMP versions of the SpLLT and HSL MA87

solvers on 28 cores for the test matrices presented in Table A.

In order to assess the performance results obtained with our PaRSEC implementation, we run the

STF-based OpenMP implementation of our solver, presented in [8], and the HSL MA87 solver on the

same set of test matrices. The factorization times are presented in Table 6.1 along with the value of the

parameter nb for which these times are obtained. The performance results associated with the factorization
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# Name SpLLT MA87

PaRSEC OpenMP

nb Time (s) nb Time (s) nb Time (s)

1 Schmid/thermal2 384 0.465 768 1.831 768 0.375

2 Rothberg/gearbox 384 0.203 384 0.209 256 0.190

3 DNVS/m t1 256 0.191 256 0.180 256 0.183

4 Boeing/pwtk 384 0.216 768 0.253 256 0.217

5 Chen/pkustk13 384 0.219 384 0.237 256 0.217

6 GHS psdef/crankseg 1 384 0.224 256 0.211 256 0.219

7 Rothberg/cfd2 384 0.244 384 0.242 256 0.215

8 DNVS/thread 256 0.227 256 0.210 256 0.196

9 DNVS/shipsec8 256 0.239 384 0.243 256 0.218

10 DNVS/shipsec1 256 0.236 384 0.279 256 0.229

11 GHS psdef/crankseg 2 256 0.265 256 0.262 256 0.262

12 DNVS/fcondp2 256 0.296 384 0.310 256 0.248

13 Schenk AFE/af shell3 384 0.400 768 0.612 256 0.388

14 DNVS/troll 256 0.358 512 0.381 256 0.362

15 AMD/G3 circuit 384 0.788 768 2.760 256 0.598

16 GHS psdef/bmwcra 1 384 0.329 384 0.356 256 0.320

17 DNVS/halfb 384 0.389 384 0.445 256 0.389

18 Um/2cubes sphere 384 0.438 512 0.488 256 0.328

19 GHS psdef/ldoor 384 0.582 512 1.120 256 0.610

20 DNVS/ship 003 384 0.398 384 0.430 256 0.365

21 DNVS/fullb 384 0.484 384 0.478 256 0.470

22 GHS psdef/inline 1 384 0.637 512 0.703 256 0.672

23 Chen/pkustk14 384 0.585 384 0.597 256 0.563

24 GHS psdef/apache2 384 0.858 384 1.593 256 0.708

25 Koutsovasilis/F1 384 0.819 384 0.844 384 0.759

26 Oberwolfach/boneS10 512 0.993 384 1.110 384 1.104

27 ND/nd12k 512 2.052 512 1.682 384 1.461

28 ND/nd24k 768 6.986 768 5.999 384 5.383

29 Janna/Flan 1565 768 6.929 384 8.218 384 7.820

30 Oberwolfach/bone010 768 7.013 512 7.373 384 7.238

31 Janna/StocF-1465 768 9.523 768 10.078 384 8.400

32 GHS psdef/audikw 1 768 10.894 768 11.004 384 10.634

33 Janna/Fault 639 1024 14.464 768 14.185 768 14.407

34 Janna/Hook 1498 1024 18.096 1024 17.378 768 17.074

35 Janna/Emilia 923 768 23.263 1536 22.957 768 23.337

36 Janna/Geo 1438 1024 29.629 1536 30.103 768 29.651

37 Janna/Serena 1536 53.805 1536 52.954 768 51.888

Table 6.1: Factorization times (seconds) obtained with MA87 and SpLLT code using PaRSEC and

OpenMP. The factorizations were run with the block sizes nb=(256, 384, 512, 768, 1024, 1536) on

28 cores and nemin=32.
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are shown in Figure 6.1. It is interesting to note that the value for the parameter nb is generally bigger for

SpLLT than for HSL MA87. This is because of a bigger overhead required by a general purpose runtime

system for managing the tasks compared to the lightweight scheduler in HSL MA87 specifically optimized

for the target architecture. From these factorization rates we can see that SpLLT is competitive with

HSL MA87 with both the OpenMP and PaRSEC versions. In addition the PaRSEC version generally

performs better in our tests and we observe a big difference between the OpenMP and PaRSEC versions

for some particular problems. For example results obtained with matrices #1, #13, #15, #19 and#24

indicate that the SpLLT-OpenMP version performs poorly on these particular problems. In [8] we identified

this issue and determined that when using the STF model the performance could be limited by the time

spent in unrolling the DAG which causes resource starvation. This occurs either when the task granularity

in the DAG is relatively small or the number of resources is big compared to the amount of parallelism

available. In the PTG version, this issue no longer appears because the traversal of the DAG is handled

in a distributed fashion by all the workers involved in the computation.

7 Concluding remarks

In this study we presented the design of a task-based sparse Cholesky solver using a PTG model and

implemented with the PaRSEC runtime system. In our experiments, we have shown that the PTG model

is an interesting alternative to the popular STF model as our PaRSEC implementation offered competitive

performance against our STF-based OpenMP implementation and the state-of-the art HSL MA87 solver

on a multicore machine. We explained the potential benefits of this model over the STF model for

large-scale systems and we pointed out the challenge of implementing the PTG representation of a DAG.

In the case of irregular DAGs, such as those arising in the context of sparse linear algebra algorithms,

we show that it becomes particularly difficult to produce the dataflow representation of this DAG. The

encouraging performance results obtained with our PaRSEC implementation indicate that it is a good

candidate to target distributed memory systems. The high level of abstraction used to describe the DAG

and the portability provided by the runtime system allows us to use the same JDF code for targeting such

architectures. However, a new challenge arises for establishing a proper data distribution for limiting the

data movements between the compute nodes.

The future work for this PaRSEC version of our SpLLT solver includes the design of a data distribution

for the supernodes and the blocks within supernodes capable of limiting the communication cost when

running on a distributed-memory machine. Moreover in the supernodal algorithm the updates between

supernodes can be performed in a different order that impacts the communication pattern and we want

to investigate the effect of the updating scheme on the performance of our code.
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A Test problems

# Name n nz(A) nz(L) Flops Application/Description

(103) (106) (106) (109)

1 Schmid/thermal2 1228 4.9 51.6 14.6 Unstructured thermal FEM

2 Rothberg/gearbox 154 4.6 37.1 20.6 Aircraft flap actuator

3 DNVS/m t1 97.6 4.9 34.2 21.9 Tubular joint

4 Boeing/pwtk 218 5.9 48.6 22.4 Pressurised wind tunnel

5 Chen/pkustk13 94.9 3.4 30.4 25.9 Machine element

6 GHS psdef/crankseg 1 52.8 5.3 33.4 32.3 Linear static analysis

7 Rothberg/cfd2 123 1.6 38.3 32.7 CFD pressure matrix

8 DNVS/thread 29.7 2.2 24.1 34.9 Threaded connector

9 DNVS/shipsec8 115 3.4 35.9 38.1 Ship section

10 DNVS/shipsec1 141 4.0 39.4 38.1 Ship section

11 GHS psdef/crankseg 2 63.8 7.1 43.8 46.7 Linear static analysis

12 DNVS/fcondp2 202 5.7 52.0 48.2 Oil production platform

13 Schenk AFE/af shell3 505 9.0 93.6 52.2 Sheet metal forming

14 DNVS/troll 214 6.1 64.2 55.9 Structural analysis

15 AMD/G3 circuit 1586 4.6 97.8 57.0 Circuit simulation

16 GHS psdef/bmwcra 1 149 5.4 69.8 60.8 Automotive crankshaft

17 DNVS/halfb 225 6.3 65.9 70.4 Half-breadth barge

18 Um/2cubes sphere 102 0.9 45.0 74.9 Electromagnetics

19 GHS psdef/ldoor 952 23.7 144.6 78.3 Large door

20 DNVS/ship 003 122 4.1 60.2 81.0 Ship structure

21 DNVS/fullb 199 6.0 74.5 100.2 Full-breadth barge

22 GHS psdef/inline 1 504 18.7 172.9 144.4 Inline skater

23 Chen/pkustk14 152 7.5 106.8 146.4 Tall building

24 GHS psdef/apache2 715 2.8 134.7 174.3 3D structural problem

25 Koutsovasilis/F1 344 13.6 173.7 218.8 AUDI engine crankshaft

26 Oberwolfach/boneS10 915 28.2 278.0 281.6 Bone micro-FEM

27 ND/nd12k 36.0 7.1 116.5 505.0 3D mesh problem

28 ND/nd24k 72.0 14.4 321.6 2054.4 3D mesh problem

29 Janna/Flan 1565 1565 59.5 1477.9 3859.8 3D mechanical problem

30 Oberwolfach/bone010 987 36.3 1076.4 3876.2 Bone micro-FEM

31 Janna/StocF-1465 1465 11.2 1126.1 4386.6 Underground aquifer

32 GHS psdef/audikw 1 944 39.3 1242.3 5804.1 Automotive crankshaft

33 Janna/Fault 639 639 14.6 1144.7 8283.9 Gas reservoir

34 Janna/Hook 1498 1498 31.2 1532.9 8891.3 Steel hook

35 Janna/Emilia 923 923 21.0 1729.9 13661.1 Gas reservoir

36 Janna/Geo 1438 1438 32.3 2467.4 18058.1 Underground deformation

37 Janna/Serena 1391 33.0 2761.7 30048.9 Gas reservoir

Table A.1: Test matrices and their characteristics without node amalgamation. n is the matrix order,

nz(A) represent the number entries in the matrix A, nz(L) represent the number of entries the factor L

and Flops correspond to the operation count for the matrix factorization.
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