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Abstract 

The main aim of this dissertation is to highlight the 

fundamental processes involved in the concept of anomalous 

resistivity, incorporating them into an overall model for the 

dissipation mechanism in the earth's bow shock. The 

philosophy is to elucidate the physical understanding as 

clearly as possible, occassionally at the expense of more 

realistic models. 

The instabilities, in particular the ion-acoustic and 

modified two-stream instabilities, that may grow in the shock 

layer are discussed in some detail. The interactions created 

by these instabilities are described by the quasilinear 

theory and particle trapping effects are employed to 

determine the saturated energy levels. 

The expression for the anomalous resistance developed 

within the quasilinear framework is then applied to the 

earth's bow shock. After having established the necessity of 

dissipation for the existence of the shock it is attempted to 

demonstrate that the anomalous resistance produced by any of 

the various instabilities is also sufficient. The failure of 

the ion-acoustic instability to operate in the regime T 1 ~ Te 

is seen to disqualify it as a contender for the dissipation 

mechanism. However, calculations for the modified two-stream 

instability, an intuitively more realistic model since it 

necessitates passage of a current across a magnetic field, 

indicate an apparent excess of anomalous resistance. Such an 

excess may he due to over simplifications in the model but 

the results encourage further investigation. 
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Introduction 

A fundamental problem and a topic of extensive research, 

in theoretical plasma physics, is how to explain the 

existence of the earth's bow shock. [5,12] Recent satellite 

missions (e.g. AMPTE - [15]) have provided a wealth of 

high-quality data enabling the theories to be verified more 

rigourously. 

In ideal gas shocks the necessary dissipation required 

to balance the nonlinear wave steepening is provided by 

binary collisions. However, the mean free path between 

particles in the interplanetary plasma is of the order of the 

distance from the earth to the sun whilst the shock thickness 

is only of the order of one hundred kilometres; hence the 

term coZZisionZess. The concept of a classical resistivity 

[19] produced by binary collisions can therefore not provide 

the dissipation. 

The basic large-scale structure of the shock is assumed 

to be laminar, allowing a two-fluid model to be used. The 

incoming plasma wave (in the solar wind) grows due to 

nonlinear steepening effects and the resulting magnetic field 

gradients drive a current along the shock front. This 

relative streaming between the ions and electrons allows 

drift instabilities to grow in the shock layer. These 

instabilities produce rapidly varying electromagnetic fields 

which interact collectively with the individual particle 

motions (the so-called wave-particle interactions) until the 

waves are saturated to a level governed by a nonlinear effect 
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known as particle trapping. An anomalous (i.e. not due to 

binary collisions) resistivity arises to restrict the growth 

of the incoming wave. This will then alter the instabilities 

generated in the shock layer, feeding back to produce a 

different value for the anomalous resistivity. Eventually the 

two opposing factors balance and the familiar shock profile 

is formed. 

Chapter 1 simply outlines the common models used in 

plasma physics. In Chapter 2 we describe the analysis 

required to study perturbations about the field free 

equilibrium state. This is used to explain the concept of 

Landau damping, the essential wave-particle mechanism, which 

may result in driving certain waves unstable. 

The drift instabilities (e.g. ion-acoustic, modified 

two-stream) that may occur in the shock layer are discussed 

in Chapter 3. These drift instabilities cause a large number 

of random collective interactions to be excited and the 

situation is referred to as turbulent in the literature. That 

is , there are now many waves present in the system and we 

assume it is possible to t~eat the phases of the waves as 

being random. A statistical formalism, called the quasilinear 

theory, is developed in Chapter 4 to describe this 

turbulence. The derivation of the expression for anomalous 

resistivity, within the framework of quasilinear theory, is 

then presented, including a definition of an effective 

"collision" frequency for use in Chapter 5. It becomes 

evident at this stage that an understanding of Chapters 1 and 

2 is necessary to calculate this frequency. The quasilinear 
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theory is also used to discuss the nonlinear effects of 

Landau damping, called quasilinear diffusion. The way in 

which the instabilities discussed in Chapter 3 saturate to a 

finite energy level is described and an estimate provided for 

this level which in turn enables the saturated collision 

frequency to be calculated. 

A derivation of the equation determining the shock 

profile is given in Chapter 5. It is shown that the inclusion 

of dissipation in the two-fluid model transforms a soliton 

solution into a shock-type solution, thus demonstrating the 

necessity of dissipation. The dissipative term is modelled in 

such a way as to allow the "collision'' frequency of Chapter 4 

to be employed. A theoretical value for the shock thickness 

is then calculated in Chapter 6, enabling verification of the 

theory by comparison with the satellite data. (15, 20] The 

results and assumptions of the model are discussed in 

Chapter 7. 

Note: Any reader unfamiliar with plasma physics notation is 

advised to consult Appendix 1. 
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Chaoter 1 

Governing Eauations 

There are basically three models used to describe plasma 

dynamics, depending on the scale of interest. The derivation 

of these models is somewhat lengthy and is not included here, 

instead the reader is referred to [3,6,9). 

1.1 The Vlasov-Maxwell System 

The first of these models, the Vlasov-Maxwell system is 

written below 

afs + ~.'ilf 5 + qs c~ + VB) .'ilvfs = 0 1.1.la 
-/\- -

at ms 

'il.E = p/Eo 1.1.lb 

'il.B 0 1. 1. le 

'il B = µ.o(j_+Eo~(~)) 1 .1. ld 
/\-

at 

'il E = -~(~) 1.1.le 
/\-

at 

where p = zqsNsf fsd~ is the charge density 
s 

and j_ = zqsNsf~fsd~ is the current density. 
s 

The integral Ja~ means integrate over all velocity 

space. The symbol N5 =N 5 /V denotes the average density of 

particles of species s, where N5 is the total number of 

particles of species sand where Vis the total plasma 

volume. 

The function f 5 (~ 1 ~ 1 t) is called a one-particle 

distribution function. It is such that lf 5 (~,~.t)8~8~ is the 
V 

probability of finding a particle of species s, within a 

position (~ 1 ~+8~) and with a velocity within (~,~+8~) at 
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time t. It is normalised via N5 Jf 5 d~dy = N5 where the 

integration is over all of six dimensional phase space. 

This is actually a highly reduced description of a 

plasma since the probability of finding a charged particle at 

x is altered by the presence of another charged particle at 

x• ~ x. This information is not contained in f 5 but would 

require a two particle distribution function. Similarly for 

three or more particle interactions. (See the BBGKY hierarchy 

in 6,9.) However,in a plasma,the range of the forces, 

r 0 ~ X0 , is much larger than the mean particle spacing, 

n 5 -
1 / 3 , (i.e. l/N 0 << 1) so that the dominant forces on two 

adjacent particles are those from the many particles further 

away. 

Moreover, the Vlasov equation is only valid on time 

scales much shorter than the mean time between particle 

collisions since binary collisions have been neglected. The 

interactions between particles appear through ~(~,t), ~(~,t) 

which are the average fields produced at a point x at time t 

by the particles and calculated self-consistently from 

Maxwell's equations. 

1.2 The Two-Fluid Theory 

The two fluid theory may be obtained by taking moments 

of the Vlasov equation (3,6,9) and assuming an equation of 

state to close the infinite chain of equations. The resulting 

equations are listed below. 

Momentum equation 

msns(:t + ~s· ~)~s = 1.2.la 
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Continuity equation 

~+ 'v,(ns~s) = 0 
at 

Equation of State 

P 5 = Kn 5 T5 

= en 'Ys s 

1.2.lb 

1.2.lc 

where K is Boltzmann's constant, 'Ys is ratio of specific heat 

capacities and C is also a constant. 

The suffix s denotes particle species. We always assume 

a Hydrogen plasma. That is, one fluid consists of electrons 

and the only other fluid consists of positive ions of equal 

but opposite charge. We writes= e for electrons and s = i 

for ions. 

Together with Maxwell's equations we have 18 scalar 

but the divergence of 1.1.2f,g give 1.1.2d,e. 

Maxwell's equations E 0 'v.~ = a 1.2.ld 

v.B = 0 1.2.le 

1 'v B = j + Eo~{:§) - I\-
l-10 at 

1.2.lf 

'v E = -~(~) I\-
at 

1.2.lg 

where a = qini + qene is the charge density 1.2.lh 

and 1.2.li 

The macroscopic variables are defined in terms of f 5 by 

Number density n 5 (~,t) = N5 Jf 5 (~,~,t)d~ 

Fluid velocity ~s = ~f~f 5 d~ 
ns 

Pressure tensor /;:s = ffisNsJ~s~sfsd~ 

where ~s = v - ~s• which reduces to the scalar 
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for the isotropic case. 

Also, the flux of K.E. crossing unit area in phase space is 

~ 5 (~,t) = .!!:..!!!.:.J~(~.~)f~d~ 
2 

On larger scales the plasma may be thought of as a 

single fluid and the MHD equations may be used (Nicholson 

p193) but these equations will not concern us in this 

dissertation. 
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Chapter 2 Linear Theory 

2.1 Perturbation Analysis 

In this chapter we study small amplitude plasma waves 

that propagate as perturbations about some equilibrium state. 

We will then be able to discuss the important concept of 

Landau damping which is necessary for an understanding of 

anomalous resistivity. 

We write 

~(~,t) 

Substituting into 1.1.1 yields: 

Zeroth order equations 

+ 5ui_(~o+~A~o).u~)fso = 0 
ffis 

EoU·~o = ~qsNsJfsod~ 

1 ~A~o = 
f.l-o 

Order E equations 

s 

2qsNsJ~fsod~ + Eo~(~o) 
at 

' 

2.1.la 

2.1.lb 

2.1.lc 

2.1.2a 

2.1.2b 

2.1.2c 

5k.(~o+~A~o}.U~Jfs1 = -5k_(~1+~A~1} .u~f 50 2.1.3a 
ffis ffis 

E0 U.~1 = 2q 5 N5 Jfs1d~ 2.1.3b 
s 

2qsNsJ~fs1d~ + Eo~{§1} 
at 

2.1.3c 
s 

2.1.3d 

The distribution f 50 and self consistent fields ~ 0 ,£0 , 

when they are all independent oft, represent a stationary 

plasma state whilst f 51 represents the development of the 

initial perturbation. The stationary states may be 
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constructed from the constants of the motion. (See Chapter 4} 

This perturbation analysis can also be used with a two-fliud 

model but the Vlasov-Maxwell system contains information not 

found in fluid theory. (e.g. Landau damping) 

For simplicity, consider a spatially uniform field-free 

plasma that obeys the equilibrium Vlasov-Maxwell equations. 

i.e. ~o = 0 = ~o ; fso = f 50 (~) 2 .1. 4 

2.1.2 become 

2qsNsJf 50 d~ = 0 
s 

and 2qsNsJ~f 50 d~ = 0 
s 

We assume the perturbation to be electrostatic. (i.e.~1= g) 

[This is certainly true if the perturbed charge density 

varies only in one dimension since Eis then necessarily in 

the form E ~ E(x)_i and so v E = 0. Maxwell's equation then 
/\-

yields ~(~ 1 } = 0 which implies ~ 1 = 0 since the arbitrary 
at 

constant of integration is absorbed into ~ 0 ] 

In this case ~1 = -v<t>1, so that fs1 is given by 

,a ' lat + ~-VJfs1 = .sL._V<P1•V!£fS0 2 .1. 5 

ms 

and EoV2cp1 = - 2qsNsJfs1d~ 2 .1. 6 

s 

We use the method of integral transforms to solve these 

partial differential equations in the context of an Initial 

Value Problem. The equations are reduced to algebrajc 

equations by taking their Fourier transform with respect to 

spatial variables and their Laplace transform with respect to 

time. The necessary inversions then solve the problem. 
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Define Fourier transform by 

fsk(~,y,t) = ( 2 ~)3J f 5 1(~,y,t)exp(-i~.~)d~ 
V 

with inversion 

fs1(~,~,t) = ( 2~)3J fsk(~,y,t)exp(i~.~)d~ 
V 

Define Laplace transform by 

00 

f 5 k(~,~,p) = I f 5 k(~.~.t)exp(-pt)dt 
0 

where suffices rand i shall, th~oughout the text, denote 

real and imaginary parts. 

The Laplace inversion is given by 

Po+ioo 

1 I -f 5 k(~,y,t) = 2ni f 5 ~(~.~,p)exp(pt)dp 

Po-1 00 

where the constant p 0 is chosen large enough for fsk to 

converge. Remembering that f 50 is independent of x and t, 

taking Fourier and then Laplace transforms of 2.1.5 and 2.1.6 

gives 

(p+i~.~)fsk = f 5 k(~,y,t=O) 

and Eok 2~k = lq5 N5 Jfskd~ 
s 

We can now eliminate fsk to .obtain 

k2: = 1 , N Jffsk(~,y,t=O)d 
't'k D ( k, W) L,qs s . Y 

- s p+J.~-~ 

2 .1. 7 

2 .1. 8 

2 .1. 9 

where the denominator of this equation has been identified as 

the dialectric function of a field free plasma for 

electrostatic waves of frequency w = ip, wave number k. 

Namely, 

2N Jk.uvfso 
D(k w) = 1+ ' 9s 5 2 - - dv 

- ' ~Eoffl 5 k ip-~.y -
2. 1. 10 

We now simplify the above velocity integrals by choosing 
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a co-ordinate system in which~ lies along one of the axes 

(i.e.~= kl) and then define F(u) as the integral off(~) 

over the other two velocity co-ordinates Vy and v 2 • 

i.e. F 50 {U) = Jf 50 {U,Vy,V 2 )dvydV 2 

and F 5 k(u) = Jtsk(U,Vy,Vz)dVydVz 

Then 2.1.7,2.1 . 9,2.1.10 become 

f 5 1(~,~,p) = p+i~.~(fsk(~,~,t=O) + ~(i~.Q~f 50 )~k) 
= -i , JFsk {u , t=O) 

~k(P) 1~13D(~,ip) ~ qsNs u-ip/1~1 du 
s 

D(~,ip) = 1 -
oFsa(u) 
au du {Pr~ Po) 
u-ip/1~1 

2.1.11 

2.1.12 

2.1.13 

We obtain the time dependence of~(~) by inverting the 

Laplace transform to obtain 

Pa+i<X> 
= _1_ ( 1 ' N JF s k ( u, t=O) d ( t) d 

2Tii J_D(~, ip)~qs s p+il~lu u exp p p 
P o-im s 

2. 1. 14 

where p 0 is chosen such that all poles of ~(p) lie to the 

left of Pr= Po• 

In general this integral can not be evaluated 

analytically except for a few special F50 (u) and Fsk(u,t=O). 

However, the long time solution may be obtained for a ~ide 

class of equilibrium distributions. We shall see that this 

assymptotic behaviour is determined by the normal modes of 

the plasma oscillations rather than by the details of the 

initial perturbation. 

Note that ~k(P) is only defined by 2.1.12 for Pr~ p 0 • 

For convenience in performing the p integration in 2.1.14 we 

define a function ~k{P) that is identical with ~k{P) for 

Pr~ Po whilst for Pr< p 0 , ~k(P) is defined as the analytic 
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continuation of ~k(P). (See appendix 2) Inspection of 2.1.12 

reveals that analytic continuation of ~k(P) requires a 

statement about the analytic properties of F. 6 ,F.~ as well as 

about analytic continuation of velocity integrals of the form 

+co 

J 
h(u) 

H(p) = u-ip/l~ldu 
-co 

to values of Pr< Po• 

We limit ourselves to functions h{u) that a~e analytic 

for all finite u. (e.g.Maxwellian.) 

It is trivial to analytically continue (See Appendix 2) 

H(p) to the half plane Pr> 0 since we simply have 

H(p) 

+co 

= J h(u) du 
u-ip/ I~ I · 

- co 

for all Pr> 0. 

The only problem that arises is when we try to analytically 

con~inue H(p) across the line of integration in the u-plane. 

Consider, 

H(p) = J h(u) du 
u-ip/1~1 
C 

where C is the contour in Fig.l as R~co. 

Fig.1 

-R R 

Cauchy's residue theorem states that 

H(p) = -2nizres(u-i~~f~,)du 
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where the summation is over all isolated singularities of 

f(u) Th i 1 it t i /lkl ·11 either be inside u-ip/l~I, e s ngu ar y a p _ w1 or 

outside C depending on the sign of Pr· 

Defining 

+co 

H(p) = I h(u) du 
u- i p /1~ 1 Pr 2:: 0 2.1.15a 

-co 

H(p) 

+co 

= J u-1~;)~ 1au + 2nih(ip/l~ll 
-co 

Pr~ O 2.1.15b 

we see that H(p) defined by 2.1.15ab is the analytic 

continuation of our original expression for H(p} which was 

only defined for Pr 2:: Po· 

The value of H(p) as Pr~O is 

+oo 

H(ip,) = J u+~~~~ l~l du + nih(-p,/1~1) 
-oo 

by the Plemelj formulae for Cauchy integrals (See Appendix 5) 

applied to either of the expressions 2.1.15ab. 

Alternatively we can use the function 

J
r h ( u ) 

H(p) = u-ip/l~ldu 
L 

where Li s the Landau contour sketched in Fig.2, since this 

is also analytic for all p. 

Fig.2a Fig.2b 

Pr> 0 Pr = 0 

x u=ip/ l~I 

- 10 -



Pig.2c Pig.3 

Pr< 0 

u=ip/1~1 

Thus, 

- i 2 N IF s k ( u I t = 0 ) d 
l kl3 qs s U 
- u-ip/lkl = L -~k(P) 2.1.16 

1 - 2 (~s )1 ¥uso(u) du 
s k L u-}p/_l ~ I 

where the velocity integrals are defined by the Landau 

contour or alternatively, the Landau prescription 2.1.15 is 

used as the analytic continuaton of $k(p). The contour in the 

Laplace inversion 2.1;14 can be deformed to any other path 

(because of Cauchy's theorem) provided that the poles 

(namely, D(~,ip) = 0) are not crossed. Fig.3 shows a deformed 

path of integration for a possible set of poles of ~k(p). 

Thus, 

j 

(a) 
-o:+im 

2~ipk(~)exp(i\t)ap 
-Q'.-1a> 

( C) 

1 1-=- im-Q'. 

+ 2ni ~~(p)exp(pt)dp + 

-1m+po (b) 
im+p 0 

+ 2;· 
1 .Jik (p) exp c pt) dp 
TI1 .. 

jm-o: (d) 

where D(~,ipj(~)) = 0 locates the poles pj of ~k(P) and Rj is 

- 11 -



the residue 

l. ( - ) 
RJ = p~;J (p-pJ)~k(P) 

[N.B. We have assumed all singularities of D(~,ip) = 0 are 

isolated simple poles.] 

Consider term (b) 

lim 
R~oo 

-iR-o-. 

~ 1- fik(Pr-iR)exp(prt+Rt)dpr 
2TTi 'R+ -1 Po 

Assuming ~k(Pr-iR) ~ 0 faster than exp(Rt) as R ~ oo this 

expression [and term (d)] vanishes. 

Term (c) involves integration of the form 

iR-o: 

2~if i,1-~+ipi)exp(-~t+ipit)dp, 

iR-cx 

lim 
R~oo 

which decays as t~oo due to the exp(-o-.t) factor. [It decays 

faster than exp(PJrt) since o-. is arbitrarily large and so (c) 

is negligible compared with (a) as t~oo] 

Thus, 

for large t. 
j 

We note that poles to the left of Pr= 0 are damped whilst 

those to the right create growing {unstable) fields. 

Define the frequency, w = ip. 

Then, 2.1.17 
j 

0, the dispersion 

relation, with D given by 2.1.13. 

Thus the non-transient response is determined by the 

normal modes (the zeros of the dialectric) of phase velocity 

w/k and group velocity aw. It is important to note that the 
ak 
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interpretation of the zeros of D being the normal modes is 

only valid in the time assymptotic limit. 

[N.B.It can easily be shown that [6] by assuming f 1 ,~ 1 have 

dependence exp{i(~.~-wt)), the same dispersion relation 

2.1.13 results.] 

The normal modes are those wave-like disturbances that 

persist long after any transients associated with the initial 

disturbance have died out. The eigenfrequency w is almost 

purely real since if wi were large (assuming wi < 0, a stable 

plasma) then the wave would be damped out quickly and would 

not be called a normal mode. This assumption of small wi 

simplifies the integration in 2.1.13 since a Taylor expansion 

about wi =O may be used. 

Thus, 

00 00 

J 
aFso(u) 
au du 
u-w/1~1 

-co - oo 

so 2.1.13 becomes 

00 

2.1.18 

using the Plemelj formulae. (See Appendix 5) 

It is important to remember that the dialectric 2.1.13 

and 2.1.18 are only valid for ~o = ~ = ~ 0 • More complicated 

equilibrium states have different dialectric properties. 

However, the general procedure is the same. Namely to derive 

the plasma dialectric, to locate its zeros and identify those 

zeros with plasma waves, which in the time assymptotic limit 

represent the normal modes of the system. 
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2.2 Solving the Dispersion Relation 

Approximate solutions of 2.1.18 may be found for phase 

velocities in certain ranges. First, we assume Wr/k >> Vth 

where Vth is the thermal speed of the particles. (See 

Appendix 1.) Then the Cauchy Principle Value integral in 

2.1.18 may be evaluated via a Binomial expansion in u. This 

is because contributions to the integral outside of the range 

-vP < u < vP are negligible. (See Appendix 7) 

We obtain 

00 

( )
2f aFeo 

~e c au du= 
J u-wr/1~1 
-oo 

2 
~p~ 
w2 

r 

+ ... 2. 2 .1 

Substituting this into 2.1.18, neglecting ion terms since 

they are smaller by a factor me/mi, we obtain 

2.2.2a 

wi = - (i) 1

~~~fg-,exp-(2!2 ~5 + J) 2.2.2b 

For small kAo we have 

which is the familiar result for Langmuir waves obtained from 

fluid theory [6,9]. The Vlasov theory, however, did not need 

to assume an equation of state, unlike fluid theory; rather 

it reveals the necessary equation of state needed in 

two-fluid theory. 

Note our solution 2.2.2 does indeed satisfy our two 

assumptions Wr/1~1 >> Vth and wi << Wr, provided kX 0 << 1. A 

most important property predicted by Vlasov and not fluid 

theory is the collisionless damping of the electrostatic 

potentials of the normal modes. This is discussed below. 
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2.3 Landau Damping 

The damping is characterised by the small negative 

quantity wi given by 2.2.2b. We can find Wr, wi in a more 

general way as follows. 

Assuming wi << Wr we have 

0 = D(~,w) ~ D(~,Wr) + iwiaD(~,wr) 
awr 

Equating real and imaginary parts in 2.3.1 ~ 

where 
s 

and 

from 2.1.18. 

2.3.2a and wi 

+oo 

= -Ddk,Wr) 
aDr(~,Wr) 
awr 

( ) 

2 r aF so 

L~ e a 
5 k J u-w~/1~1 

du 

-oo 

2.3.1 

2.3.2b 

2.3.3a 

2.3.3b 

So we have ~ 1 « exp(wit) where wi oc aFeol . Thus, 
au u=wr/1~1 

Landau damping is a resonant effect due to particles moving 

with velocity close to the phase velocity of the waves. 

Physically, Landau damping is explained by noting that for 

aFeo < 0 there are more particles travelling slightly slower 
au 
than the wave than there are faster so, if the slower 

particles are accelerated by the wave, the wave loses energy 

and is damped. 

From 2.2.2b it follows that 

i.e. Landau damping time>> plasma osillation period. 

As the wavelength A decreases and approaches Ao the damping 
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increases and then the oscillation can no longer be 

considered a normal mode. 

2.4 Ion Acoustic Waves 

Had the ion term in D(~,w) been retained the Langmuir 

frequency would only have altered by a small amount. However, 

if the electrons are warm (Te>> Ti) we shall see that there 

exists an electrostatic wave for which the ions play a 

significant role in the range 

Vthi = (K!~) 1/2 
< ~ < (K!:) 1/2= Vthe 2.4.1 

For the ions we perform a similar method to that used in 

deriving 2.2.1 (See Appendix 7) but for the electron integral 

a different approach is required. 

For the electrons we have 

00 

f aFeo (u) - e au du 
J u-wr/ l~I 
-oo 

00 

r a2F 
Jln(u-vp)au2e 0 au + 

Vp+S 

The terms in square brackets cancel and if Feo is an even 

function (e.g. Maxwellian) then 

rvP-S 
a2 F 

Jln(Vp-U}au2eodU 
-oo 

But, 

00 

r a2F 
Jln(U-Vp)au2eodu 

Vp+S 

00 

r a2F = Jln(U-Vp)au2eodu 

Vp+S 

00 

= Jr ln(u}~;eo 
au 

Vi,+6 

(The expansion is valid because u > Vi, throughout the 

integral.) 
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So, 

-oo 

00 

lim f a2F 
= 2s~o+Jln(u)au2eoau 

Vp+S 

00 

f aFeo(u) 
c au du 
J u-wr/ l~I 

i.e. 

-oo 

00 

r a2F 
2Jln(u)au2eoau 

0 

00 

f aF e o ( ) 
C au u du~ 
J u-wr/ l~I 

since Vp is small. (i.e. Wpe/lkl << Vthe) 

Let 
00 

r a2F 
I= Jln(u)au2e 0 du 

0 
00 

= -2bcJ(l-2u 2 c)exp(-cu 2 )lnudu 
0 

for Feo = bexp(-cu2 ) which is in the form of a Maxwellian. 

Consider 
00 

J = Ju2 exp(-cu 2 )lnudu 
0 

00 

= [;~exp(-cu2 )ulnu] + 
0 

00 

2~J(l+lnu)exp(-cu2 )du 
0 

The first term vanishes so 

00 

-I/2bc = K - 2cJ where K = Jexp(-cu 2 )lnudu 
0 

Then I/2bc = 

= 

Finally, 

00 

J aFeo(u) 
au du = 

J u-wr/1~1 
-oo 

00 

Jexp(-cu 2 )du by simple substitution. 
0 

l(~)1/2 using the r function. 

1 
-2-2 k Ao 

~ for a Maxwellian. 
2KTe 

2.4.3 

We now substitute 2.4.2 and 2.4.3 into 2.3.3a,b and employ 

2.3.2a,b to obtain 
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2.4.4a 

and 

= (rr)
1

/
2 

lw I [(T )
3

/
2 

( -T / T· ) wi - 8 (l+k2f~)3/2 ~ exp 2(1+i2~~) + (t) 1/2 l 
2.4.4b 

(
KT · ) 1

/
2 w which are valid provided ~ <!kl< (K~:)

1
/

2
is true. 

These waves are called ion-acoustic waves since they are 

like sound waves in the sense that all wavelengths propogate 

at the same speed Cs if kA 0 << 1. This is different to 

Langmuir waves which have the same frequency for all 

wavelengths (kAo << 1). We see from 2.4.4b that in order for 

wi << Wr we require Te>> Ti. From 2.4.4b one might also 

think that Ti>> Te~ wi << Wr but this is not true since 

2 . 4.4b is only valid for Ti < Te because the assumption 

W (KT · )
1

/
2 

w IKT )
1

/
2 

(KT · )
1

/
2 

=..c..lkl > ~mi is just .:::.c. =Cs= ~-e > ~ which is I k I \ mi mi 

actually Te> Ti. 

The electron damping term (::)
1

/
2 

in 2.4.4b is always 

small for ion waves which is because, although there are a 

lot of electrons with approximately the same speed as tne 

ion-sound wave, the slope of the electron distribution is 

small. (i.e. there are nearly as many electrons going faster 

than the wave as there are slower so the Landau effect is 

negligible, see Fig.4) 
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Fig.4 

F 1 (u) ,F. (u) 

,n:: (K!:)~/2 
The two waves (Langmuir and ion-acoustic) are actually 

the only two modes favoured by the field free isotropic 

plasma. 
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Chapter 3 

Plasma Stability 

We have shown that small perturbations about an 

equilibrium state grow under certain conditions - this is 

called instability. We shall study two types of instability 

with a view to using the growth rates in a calculation of an 

effective collision frequency. We have already seen that 

wi « dfl which implies that a distribution with a 

dulu=wr/1~1 

positive slope may be driven unstable by resonant particle 

(Landau) effects. (See the gentle bump instability in (6).) 

However, another type of instability that is not due to these 

wave-particle effects is the two-stream instability which 

occurs when the plasma consists of two streams drifting 

relative to each other with a constant velocity,~, much 

greater than the thermal spread of the beams. (See Fig.5) 

Such beams and currents are very common in both space and 

laboratory plasmas. 

Fig 5 

f(u) 
Electrons Ions 

V u 

3.1 The Two-stream Instability 

Consider a field-free plasma with equilibrium 

distribution 
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fio(Y) = 6(y-y) 

feo(y) = 6 ( y) 

i.e. Fio(y) = 6(u - ~-Y> 3.1.la 

F.o(y) = 6(u) 3.1.lb 

where k is the unit vector in the k direction. 

Assuming that the perturbations are electrostatic we 

have shown (see 2.1.13) that the resulting oscillations are 

of frequency w given by 

D ( ~, w) = 1-L ( wk s) 2

( ~ du = o 
s Ju-w/lkl 

L -

Now, 
CX) 

[s(u-i.Y>u-~/lkl] + 
- -ex, 

by parts. 

Thus, 

D{~,w) = 1 - (~W )2 - ( Wpi )2 
w-~.y 

using the well known result 

Jf(x)6(X-X 0 )dx = f(X 0 ) 

3 .1. 2 

[N.B. This result 3.1.2 may also be obtained directly from 

fluid theory.] 

Suppose we plot g(w) = (w:e)
2 

- (w~~~y) 2 

as a function of w 

Fig.6 

0 k.V 
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When the value, A, of the minima is< 1, there exist 4 

real roots but if A> 1 we have a complex conjugate pair with 

one root corresponding to instability. 

The point A is at wA = ~-Y{µ~l) 3 .1. 3 

where µ = (~)2/3 
Wp1 

Thus wA is always less than k.V. i.e. the waves that are 

driven unstable exist between the two 2 streams and therefore 

can not be due to Landau effects. 

No real stream will have a S function shape but thermal 

effects may be ignored if wA is not within the thermal spread 

of the distributions. 

Thus, 

I~ - k.vl k - -

must be valid. 

(
KT·)1/2 >> __ ::i. 

mi 
3 .1.4 

The question that immediately arises is "What is the 

physical mechanism for the instability if it is not Landau 

effects?" Consider a local decrease in charge density of 

electrons, say. (This could correspond to an electrostatic 

wave.} This would ind~ce a charge perturbation in the stream 

passing over the decreased density region. Ions passing over 

this "hole of charge" would be slowed down and then the 

conservation of charge equation 

lDn av = nDt ax 
implies that n increases so that the stream feeds the hole, 

creating an instability. 
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3.2 Ion Acoustic Instability 

We now tie up some of the ideas discussed in this and 

the preceding chapter. In chapter 2 we saw that ion-acoustic 

waves are weakly Landau damped if Te>>Ti and strongly damped 

if Te=Ti. The findings on the two-stream instability would 

appear to indicate that these ion waves might be driven 

unstable by a somewhat weak drift if the electrons are 

sufficiently hot that Landau effects are overriden by the 

growth from the drift. 

Thus, consider the distribution 

= { me )1/2 {-me(U-Uo )2) 
Feo 2nKTe exp 2KTe 3.2.la 

Fio = { mi )1~~P(- miu 2) 
2nKTi 2KTi 

3.2.lb 

where u 0 is the constant drift velocity. 

N.B. Here we are in the ion rest frame whereas in section 3.1 

we were in the electron rest frame. 

Ion waves exist in the range 

according to section 2.4. 

,~rl >> (K!~)1/2 
l~r -.uol << {K!:)1/2 

Substituting 3.2.1 in the field-free dialectric of 

Chapter 2 and solving as in section 2.2 implies that 

we obtain a contribution 
(,)2, - _p...._ 
w2 to Dr from the ion term 

r 

lw I (KT·)1/2 since jkrj >> ~ and we obtain a contribution 

from the electron term since (
~)1/2 

me 

Thus, 
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So, 

w2 
r 

Now, using 2.3.2b and 2.3.3a yields 

where we have put As= ms for convenience. 
2KTs 

Now, 

(~ )2- ~(~ )2 
Ae lkl - Uo - 2KTe lkl - Uo << l 

because otherwise the waves would not exist. 

So, 

exp[-Ae(l~I - u 0 )

2

] ~ 1 

Simple algebra yields 

and 

Altogether this implies that wi becomes 

( )
1/2 1 {(T )3

/
2

( -T ) 
wi = -I Wr I i ' ( l·+k.2~5)3/2 T: _exp 2Ti ( l+kzxff + 

(a) 

(mmei)
1

/
2

( 1 _ )} ~:(l+k2A5)1/2 

( b) 

3.2.2a 

3.2.2b 

When u 0 =0 we do indeed get the result 2.4.4b but if u 0 

is large enough the sign of wi may reverse to give 

instability. Term (a) is due to the ion damping whilst (b) is 

the growth due to the electron drift. 
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Instability occurs if 

i.e. if 

since we also require Te>>Ti for (a) to be negligible. 

Under these conditions 

(
nm ) 1

/
2 (u -w /k) 

wi = k ~ tf!"f2f5~)3/2 3.2.3 

This can be differentiated w.r.t. k to find the 

maximum growth rate needed in the calculation of the 

"collision" frequency of Chapter 4. 

3.3 The Modified Two-Stream Instability 

We now extend the idea of the two-stream instability to 

include a magnetic field ~o in the equilibrium state. [8] The 

instabilities created by the relative streaming of ions and 

electrons across a magnetic field play a crucial role in the 

concept of anomalous resistance. (See Chapters 4,6.) This is 

particularly relevant to a collisionless shock wave since a 

current does exist along the shock front. (See Chapter 5.) 

Let the ions drift relative to electrons with speed V. 

We assume the ~lectrostatic assump~ion is valid, so ~=-v~. 

McBride et al initially start "from kinetic theory but we 

derive the dispersion relation from two-fluid theory which is 

valid provided resonant particle effects are unimportant. 

i.e. valid if 

where Pe is the Larmor radius for electrons. 

In the electron drift frame the perturbation potential 
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gives rise to a perturbation ~e in electron velocity given by 

the following equations where we have assumed expi(~-~-wt) 

dependence for all perturbation quantities . 

The linearised electron momentum equations are 

iWVex = -iekx<P Wee Vey 3.3.la 
me 

iWVey = -iekyct, + Wee Vex 3.3.lb 
me 

iwv e z = -iekz<I> 3.3.lc 
me 

where Wes = lqlB for s=e,i is the cyclotron frequency of 
ffis 

species s. 

The linearised electron continuity equation~ 

n1e = -noU.Ve = ~o(kxVex+ kyVey+kzVez) 
iw w 

Now, kx(3.3.lb)-ky(3.3.la) ~ 

-kyVex+kxVey = Wce(kyVey+kxVex) 
iw 

and kx(3.3.1a)+ky(3.3.lb) ~ 

3.3.2 

3.3.3 

kxVex+kyVey = -e(k:+k~)<p + iWce(kxVey-kyVex) 3.3.4 
mew w 

Substitute 3.3.3 in 3.3.4 ~ 

So 3.3.2 ~ 

~ e 2 n 0 ~ ( k~+~ 
E 0 mew 2 \1-w~e/w 2 

= w!ek 2 ~ (~in 2 8 + 
w2-w~e 

+ k~) 
co::~) 

(using 3.3.lc) 

3.3.5 

where Wps (
n e 2)1/2. = ~ 1s the plasma frequency for species s 
msEo 

and where 8 is the angle between ~ and ~o so that cos6=kz/k. 

For the ions ~i' = ~+~i is the actual ion velocity where 

vis the constant drift velocity and ~ i the perturbation. 
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So 

after linearising. 

So 

(:t + (~.v) )~ = i(w-~.~}~ 

Consider the relative sizes of the terms 

i.e. 

i(~} 
at 

I iwvi I 

ev· B _1/1.-

We consider the case Wee>> w >>wei so we neglect vi B0 - A-

in the ion equation but retain ve B0 in the electron - ;\-

equation. The algebra for the ions is now the same as for the 

electrons only with 

w replaced by O = w-k.V 

me II mi 

-e II e 

Wpe II Wpe 

and Wee II Wei 

Thus 3.3 . 5, by analogy~ 

0 

= w2-k2<P 
n2-

3.3.6 

Now, ~.E = -v 2 <P = ~(ni 1 -ne 1 } is Poisson's equation. 
E o 

So 3.3.5,3.3.6 yield the dispersion relation 

2 
1 - ~ 

(w-~.~)2 
3.3.7 

For the case ky=O and remembering Wee>>w this is seen to 

be equation (5) in McBride et al. 
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We then have 

(a) ( b) ( C) 

w2 cos 2 9 = 0 
~2--

w 

( d) 

where cos9=kz/k, sin9=kx/k and k 2 =k~+k~. 

3.4 Solving the Dispersion Relation 

We shall now solve 3.3.8 for the special case of 

3.3.8 

case= {~)
1

/

2

• Compare 3.3.8 with the dispersion relation 

3.1.2 for the two-stream instability. (i.e. ~ 0 =Q) Terms 

{a), (b) are the same. Term {c) is due to the adiabatic 

polarisation drift of electrons across the magnetic field. 

Term {d) indicates that electrons behave as if they have an 

effective mass ~e = k 2 me/k~. This can be large for k 2 /k: >> 1 

{i.e.~ nearly perpendicular to ~ 0 ) and we shall in fact study 

the case 9 = 8 0 where case= {~)
1

/
2
since we then have 

me= mi. [N.B.McBride's 9 is our ~-9] 

At this angle 3.3.8 ~ 

1 2 
~i 

{W+~.~/2) 2 

2 

= 0 (Uses 3.4.1 

where we have put W=w-~.~/2 so that expressing this equation 

over a common denominator leads to a quadratic in W2 whose 

solutions are found to be 

where wLH (

w2-w2 )1/2 = -~1.:::.S..~-
Wce+Wpe 

is the lower hybrid frequency. 

The positive root implies W2 is always positive so 

3.4.2 

instability is not possible whilst W2 may be negative if we 

take the negative root. 

Let W2 =-~where ~ is some positive reaJ. 
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Then wi = wi = .J Ol. 

Now, dwi 1 dot. 
= dk ( 2./cx.) dk 

= 0 when dot. = 0 
dk 

Simple algebra shows this occurs when 

whereupon ex.= W[tt/4. 

Thus 

3.4.3 

is the maximum growth rate for 9=0 0 • Assuming~ is in the x 

direction then this growth rate occurs at a wavenumber given 

by 

kV = ./3Wt. H • 3.4.4 

Also we have 

Wr = Wr+kV/2 = ./3Wi:.H/2 3.4.5 

Thus 

3.4.6 

so this instability occurs at the lower hybrid frequency, 

which is why the modified two-stream instability is often 
J 

referred to as the lower hybrid instability. (Also as the 

Buneman instability, see [2]} 

Since Wr = kV/2 then lw-kVf>kvti becomes approximately 

V~vti whilst lwl>kzVte becomes v~(~) 1

/

2

for the case 8=8 0 • 

The main differences between the modified and ordinary 

two-stream instabilities are that 

1) the instability threshold is V~vti rather than V>vte 

2) the electrons behave as if they have an effective mass 

much larger than me. 
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Unlike many other electron-ion instabilities (e.g.ion 

acoustic) that mainly heat the electrons the modified 

2-stream instability results in comparable electron {parallel 

to ~ 0 ) and ion (perpendicular to ~ 0 ) heating. [8] Moreover 

the instability is insensitive to the ratio Te/Ti, unlike the 

ion acoustic instability and may therefore operate in regimes 

where the ion acoustic instability is inoperative. We will 

show in Chapter 4 how the growth rates calculated here may 

give some estimate of the saturated energy level needed to 

calculate an effective "collision" frequency. A comparison of 

the relative importance of the two instabilities in the 

anomalous resistivity of a collisionless shock wave can then 

be made. 
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Chapter 4 

Nonlinear Effects 

A weakly nonlinear theory (i.e. nonlinear theory treated 

by perturbation methods) is now presented in order to provide 

a basis for the explanation of plasma phenomena beyond the 

scope of linear theory. Examples of such nonlinear properties 

are as follows: 

a) Linear theory predicts growth/damping of amplitudes of 

plasma waves and the corresponding change in wave energy must 

be balanced by a change in energy of the particles. Energy 

conservation theorems are nonlinear since wave energy is 

proportional to E2 . 

b) In linear theory the change in the distribution function 

due to the growth of the waves is given by 

fs = fso + Jexp(i~.~)fskd~ 

Each Fourier component vanishes on averaging so changes in 

the average plasma properties (e.g. temperature) only appear 

in nonlinear theory. 

c) Waves of finite amplitude exhibit properties which depend 

on products of wave amplitudes and are necessarily nonlinear. 

There are two cases for which weakly nonlinear theory is 

tractable 

a) Where there are only a few waves of finite amplitude it is 

possible to treat each wave individually - the theory of weak 

coherent waves. [l,13] 

b) Where there are so many waves present that a statistical 

approach is needed to determine the features that do not 
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depend on the initial phase of the waves - the theory of weak 

turbulence or quasilinear theory. 

Both theories fail when the wave amplitudes become so 

large that 

a) the perturbation series fails to converge. 

b) the particle orbits become so distorted by the wave fields 

that f 5 ~ f 50 can no longer be used to calculate the linear 

wave properties. (e.g. particle trapping - see 4.5) 

In quasilinear theory the finite wave amplitudes are 

considered to be small enough that the wave propagation can 

be treated by linear theory but nonlinear theory is needed to 

determine the long term effect of many waves on the 

background distribution function f 0 • (N.B. The term 

quasilinear is not to be confused with the usual mathematical 

definition associated with partial differential equations. 

[18] ) 

4.1 Quasilinear Theory for the General Equilibrium State. 

We use the Vlasov-Maxwell system for a collisionless 

plasma. By collisionless we mean one in which transport 

properties are dominated-by collective interactions 

(instabilities) rather than by short range binary collisions. 

We follow the work done by Liewer and Krall [7]. 

We can not write f 5 = f 50 +f 51 , where f 50 is the initially 

spacially averaged or ensemble averaged distribution, since 

f 51 would then contain the difference between the final and 

the initial distributions. This difference may be as large as 
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f 50 itself in the vicinity of the instability and would cause 

the expansion to break down. 

Instead, we write 

~(~,t) = ~0 (~,t) + ~1(~,t) 

~(~,t) = ~0 (~,t) 

where the suffix O denotes a smooth, average over the 

4.1.la 

4.1.lb 

4.1.lc 

microscopic scale and 1 represents the turbulent oscillatory 

part. Note that we have assumed the waves to be electrostatic 

so ~1 = 0. 

We have fso = <fs> ~o = <E> ~o = <B> 

and 

where<.> is an average over some microscopic scale. 

Substituting 4.1.1 in the Vlasov equation and averaging over 

the microscopic scale~ 

(~t + V.V + ~=(~o+~A~o).v~)fso = -~:(~1·V~fs1) 4 .1. 2 

which shows the development of the macroscopic distribution 

function f 50 due to the turbulent term on the R.H.S. The 

R.H.S. acts as a "collision" term since, as we shall see, it 

allows momentum and energy transfer between particles of 

different species. This nonlinear R.H.S. is the only 

nonlinear part of quasilinear theory, the rest is completely 

linear. 

We now take velocity moments of 4.1.2. 

Integrating 4.1.2 over~~ 

J:!50 d~ + J~.vf 50 d~ + ~:J<~o+~-~ 0 ) .v~fsod~ = -;:J<~1-Vyfs1>d~ 
4 .1. 3 
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Now, 

where we have defined 

Also, 

But, 

Jyfsody = ~~s 

! ans 
N5 at 

= N5 Jf50dy 

where we have defined ~s = *:-Jyf50dy 

So, 

Now, 

and 

4 .1. 4 

4 .1. 5 

J~1·v~f 51dy = Jvx·<~1f 51 )dy (since E independent of y) 

= Jfs1~1·d~ 
s 

00 

where S
00 

is a surface at oo in ~-space. 

This vanishes provided f~O faster than l/v2 as v~oo which 

is indeed true for any distribution with finite energy_ since 

energy is proportional to Jv 2 fdv. 

i.e. J<~1,Vyfs1>dy = 0 4 .1. 6 

Similarly, 

4 .1. 7 

Finally, 

JyA~ 0 .vyf 50 dy = Jvy. (f 50 yA~ 0 )dy - Jf 50 Vy.(yA~ 0 )dy 

= Jfs1YA~o·d~ JfsoVy, (yA~o)dy 
s 

()() 

= 0 4 .1. 8 

since the first integrall. van.ii.shies by the abov,e ar,gu·ment and 



the second integral vanishes because u~.yA~o = 0 

Altogether the results 4.1.4,5,6,7,8 ~ 4.1.3 becomes the 

continuity equation 

ans+ v.ns~s = 0 
at 

4 .1.9 

Now multiply 4.1.2 by ms~ and integrate over~ to obtain 

msJ~:!sod~ + msJ~(~.u)f 50 d~ + qsJ~(~ 0 +~A~ 0 ) ,V~fsod~ = 
(a) (b) (c) 

-qsf~<~1,U~fs1>d~ 

( d) 

Term (a) is 

by the same argument as above. 

Term (b) is 

msf~(~.Vfs 0 )d~ = msfv.(f 50~~)d~ 

We use the identity (see appendix 4) 

u.(~~) = ~.(u~) + bu.a 

to see that 

'rl vectors a,b 

The first term vanishes since vis independent . of x 

Thus, 

= ~(y.u)fso 

So, 

Now, 

4.1.10 

4.1.11 

m5 N5 Jf 50~~d~ = msNs~Jfs 0 (~-~s)(~-~s)d~ + 2~sJ~fsod~ 

- ~s~sJfsod~} 
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But, 

So we have 

m5 N 5 J~(~.v)f 50 d~ = v.~ + m5 n 5 ~ 5 (v~ 5 ) + m5 ~ 5 v,(n 5 ~ 5 ) 

Two of the terms in 4.1.11 and 4.1.12 add to give 

~~t(ns~s) + v.(ns~s~s)} = ~:{~t(ns~s} + ns~s·(v~s) + 

4.1.12 

~s v , ( Il 5 ~s) } 

= ~~s(:~s + v,n 5 ~s) + n 5 (:~s + (~ 5 .v)~s)} 

m5 D ( ) = r:rnsDt ~ s 4.1.13 
s 

using the continuity equation 4.1.9. 
D 

[N.B. Dt 
a - at + ( ~s • v' ) ] 

Consider the identity 

where ll is the unit tensor, Fis any vector function and 

where f is any scalar function. 

But, v~.~ = 2 

for F = ~0 + ~A~o since ~ 0 ,~ 0 are independent of v. 

So term (c) is 

q 5 J~~·v'yf 50 d~ = qs{Jvy, (f 50 ~~)d~ - Jf~d~} 

The first integral on the R.H.S. vanishes by the same 

argument involving S already used. 
(X) 

So, 

q 5 J~~.v~f 50 d~ = -qsJfso(~o+~A§o)d~ 

= -qs~oJfsod~ + qs~oAJfso~d~ 

~
5 ns(~o+~sA~o) 
s 

Term (d) is 

r I r ~ \ qsj~<~1,vyfs1>d~ = qs\j~(~1,vyf 5 1)d~/ 

4. 1. 14 

= -q 5 (J!ifs1d~) by a sjmiJar argument. 



= - ~:(ns1~1) 4.1.15 

where ns 1 
r = Nsjfs1d~ 

Altogether 4.1.12,13,14,15 ~ 4.1.10 becomes 

4.1.16 

This is essentially the momentum equation of Chapter 1 

but with the anomalous term qs<ns 1~ 1> (the so called 

anomalous resistivity) allowing momentum exchange between 

ordered particle motions and fluctuating fields and also 

allowing momentum exchange between species. 

(N.B.Multiplying 4.1.2 by ms~s 2 /2 and integrating over v will 

yield an heat equation with an anomalous heating term. [7]) 

We continue to follow Liewer and Krall in order to 

obtain an expression for the anomalous resistivity. 

Subtracting 4.1.2 from the Vlasov equation and dropping 

second order terms~ 

( aat + v.u + qs(E 0 +v B0 ).u~)fs1 = - q 5 E1.V~f 50 m5 - -A- ms- 4.1.17 

More generally, the right hand side of 4.1.17 would be 

- qs(E 1+v B1 ) .u.,fso and we now illustrate the procedure to ms - -A- ""' 

solve this equation by the method of characteristics, often 

referred to as "integrating along unperturbed orbits" in the 

plasma physics liter ature. 

Define ~t'(~') = v' 4.1.18a 

and ~t' (~') = t(~o(~' ,t' )+~,A~ 0 (~' ,t')) 4.1.18b 

with boundary conditions 

~ 1 
( t 1 =t) = X 4.1.19a 

~· (t'=t) = ~(t) 4.1.19b 

The solution curves to the ordinary differential equations 
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4.1.18 are called characteristics and t' is the parameter 

along the characteristics. We solve 4.1.17 for f 51 (~.~,t) by 

considering the function f 51 (~'(t'),~'(t'),t') which is a 

function of time t' and satisfies the equation 

Dfs1 
Dt' ( 

a dx I dv I ) f ( I I t I ) 
- at' + dt' .Vx.• + dt' ,Vy• s1 ~ '~ ' 

= -;:-(~1(~' ,t' )+~'J\~1(~' ,t')) ,Vy• f 50 (~' ,~
1

) 

which is valid along the characteristics. 

Now, because of boundary conditions 4.1.19 

f 51(~ 1 
,~' ,t') = f 51 (~.~,t) at time t' = t 

4.1.20 

so the solution to 4.1.20 is also a solution to 4.1.17 at 

time t' = t. 

The L.H.S. of 4.1.20 is just the exact differential Dfs 1 
Dt' 

Integrating 4.1.20 from t' = -oo tot' = t ~ 

t 

f 51 (x_,v_,t) = - qsJ(E 1 (x',t')+v' B (x',t')).v ,f (x',v')dt' m
5 

- - _ J\-1 _ y so __ 

Assume 

-ex, 

+ f 5 1(~'(-m) ,~ 1 (-m) ,t'=-m) 

f 5 1(~,~,t) = f 5 k(~)expi(~.~-wt) 

~1(~,t) = ~kexpi(~-~-wt) 

~1 (~,t) = ~kexpi(~.~-wt) 

where ~k•~k are constant vectors. 

Then 4.1.21 ~ 

4.1.21 

4.1.22a 

4.1.22b 

4.1.22c 

- ~J(~k+~·A~k)expi(~.~'-wt') ,Vy•f50 (~' ,~')dt' 

We assume thqt the first term on the right hand side of this 

equation vanishes (i.e. no perturbation at t' = -oo). 

Define '[ = t'-t and X = x'-x 

so that dT.= dt' 
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So, 

0 

- ;:-expi(~-~-wt)J(!k+~'A~k)expi(~.~-wT) .v~·f 50 (~' .~')dT 
-oo 

This is because ~.tare independent of the integration 

variable and may be taken outside the integral. 

Thus, 

0 

f 5 k(~) = - ;:J(!k+~ 1 AWk)expi(~.~-WT) .v~,f50 (~' ,~')dT 4.1.23 
-oo 

This holds for wi > 0, analytic continuation being used for 

The variables~·,~',~ can all be expressed in terms of T 

by finding the unperturbed orbits from 4.1.18, with boundary 

conditions 4.1.19, for specified external field 

configurations ~ 0 ,~ 0 • Incidentally, the fact that the 

characteristics are the trajectories under the action of the 

unperturbed fields explains the phrase "integrating along 

unperturbed orbits" with reference to integration of 4.1.20. 

The equilibrium distribution f 50 (~,~) satisfies 

(~.v + ~=(~ 0 +~A~ 0 ) ,vy)fso = 0 4.~.24 

A way to generate solutions for f 50 (~,~) is as follows: 

Suppose 

ai(~' (t') ,~' (t')} ,a 2 (~' (t'} .~· (t'}}, ... 

are constants of the motion (for example, energy or 

components of momentum} of the particle under the action of 

the equilibrium fields ~ 0 ,~ 0 • [N.B. boundary conditions 

4.1.19 still apply.] 
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Then, 

da 1 = ~'.vK,a1 + dv' .Vy·a 1 = 0 
dt' dt 

da 2 = ~r ,VK,a2 + dv' .V~·a2 = 0 
dt dt 

so any function 

satisfies 4.1.24 at time t. This is easily verified by 

substituting f 50 into 4.1.24 and using 4.1.19. 

4. 1. 25 

is a stationary state solution of the Vlasov equation. 

For cases where 

P = LqsNsf fsod~ = 0 (no net charge in the plasma) 
s 

j = 2q 5 N5 f~f 50 d~ = 0 (no net current in the plasma) 
s 

in the equilibrium state, f 50 is controlled by the external 

fields and the constants of the motion for a particle in the 

fields ~ 0 ,~ 0 are used to construct stationary states. 

Altogether we have demonstrated that 4.1.23 (with 

4.1.22a} provides us with a solution for f 51 (~,~,t}. 

Note: It is worthwhile pointing out that the order E Maxwell 

equations 

::: -i<~1) 
at 

LqsNsJfs1d~ 
s 

2qsNsJ~fs1d~ + Eo~C~1) 
at s 

when transformed will, upon substituting 4.1.23, result in 6 

linear equations for !k,~k· We can then eliminate ~k in terms 

of ~k to give an equation~ -~= 0 where Dij {i,j = 1,2,3) is 
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the dispersion tensor. The equation has solutions only if 

det(D) = O which is the dispersion relation. 

However, we restrict ourselves to the electrostatic 

assumption (~k = O) so that we only require Poisson's 

equation (the rest of Maxwell's equations become redundant) 

in order to obtain our dispersion relation. 

Poisson's equation is 

iEo~·~1 = ~qsNsJfs1d~ 
s 

Using 4.1.22, 4.1.23 this states 

0 

4 . 1.26 

iE 0 ~.~k = - ~!~sJJ~kexpi(~.~-w,) .U~·f 50 (~' ,~')d.d~ 
s 

Now, !k is parallel to k so 

and we then have the dispersion relation 

4.1.27a 
s 

0 

where E5 = !
0
~~ss~expi(~.~-W,) .U~·f 50 (~

1 ,~')d,d~ 4.1.27b 
s 

is the contribution of species s to the plasma dialectric and 

is often called the plasma susceptibility. 

Now, 

n 5 1(~,t) = NsJfs1d~ 

by definition and nsk is defined by 

Using 4.1.23 and 4.1.27b this becomes 

[N.B. This is equation 9 in 

iE -
~

0 (k.Ek)E 5 qs - -

Liewer and Krall) 

- 41 -

4.1.28 



We are now in a position to find an expression for the 

anomalous term 

qs<~1ns1> = 9iJns1E1dX V V - -

where J d~ means integrate over the microscopic scale. 
V 

(Typically, the volume Vis the Debye sphere.) 

So, 

qs<~1ns1> = ~J((2~)3J~1(~)expi~-~a~)((2~)3Jn1(~)expi~-~a~)a~ 

= V(i~)sJ(JJ~1(~)n1(~)exp(i(~+~)-~)d~a~)a~ 

= V(~~)sJJ~1(~,t)n1(~,t) (Jexp(i(~+~) .~,a~)a~a~ 

But, 

limsinla 
l~oo TTa 

So 

= S(a) which=> 
00 

J exp ( iax) dx = 
-oo 

2TT8(a) 

Jexpi!-~d~ = JexpiKxdxJexpiKydyJexpiKzdz 

= (2TT) 3S(K1)S(K2)8(K3) 

Thus, 

qs<~1ns1> = v,i;,3J(J~1(~,t)8(~+~)d~)n1(~,t)d~ 

= V(~;)3J~1(-~,t)n1(~,t)d~ 4.1.29 

= V~;;)3J~1(-~,t)Es(~.~k)d~ 

using 4.1.28. 

Now, 

since ~ 1 is parallel to k for electrostatic waves. 

But, 

from Appendix 3. 

- 42 -



So we have 

Thus, 

qs<g1ns1> = V~~;)3J1g1(~,t) l 2 E5 (~,w)~d~ 

Defining the spectral energy density by 

- Eo ~(~,t) - 2V(2TT)3 ~1(~,t).~1(-~,t) 

so that the electrostatic energy is just 

<E2E2) = Js(~,t)d~ 

implies 

qs<g1ns1> = -2Js(~,t)Esi(~,W)~d~ 

4.1.30 

4.1.31 

[N.B. The imaginary part Esi appears because the L.H.S. must 

be real.] 

4.2 The Effective Collision Frequency 

Thus, with a knowledge of E5 , the plasma susceptibility, 

and a knowledge of s, the electrostatic energy density, we 

can calculate the anomalous resistivity term q 5 <~ 1n 51 >. This 

enables us to model the wave-particle interactions by 

defining an effective "collision" frequency,v 5 , via 

-Vs = qv5 2Vd.<E1r.s1> ns d- -

where ~dis the drift velocity between the ions and 

electrons. This can also be written, using 4.1.15 

- qsNsV r <E f d Vs - nsVa-d·j~ _1.Vy s1> ~ 

4.2.1 

This is from a dimensional argument since the momentum 

equation is now 

+ ( ~s • 'ii) ) ~s = 

Vs~d acts as a damping term.) 

1 
- v.P 
n = s 

4.2.2 

The application of this collision frequency is discussed 

in Chapter 5 on "collisionless" shock waves. 
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As stated previously, the only part of quasilinear 

theory that is nonlinear is the term <E 1 n 51 >; the rest is 

purely linear. Consequently, we use linear theory, namely 

2.1.13, to find E 5 (~,w). In fact assuming wi << Wr, we have 

from 2.3.3a (remember D = 1 - LEs) 

s 

(k ) = TIW~~sol 
Esi _ ,W 1{2 au u=wr/1~1 

To finds recall 

where 

Now, 

But, 

s(~,t) = 2 V~~TI)3 ~1(~,t) .~i(-~,t) 

~ 1 (~,t) = !kexpi(~-~-wt) 

w(~,t) = -w*(-~,t) 

from Appendix 3. 

Hence, 

Thus, 

~(~,t) = 2v~~n)3!k!-k;t(exp(2wi(~,t)t)) 

4.2.3 

= 2v~ 211 }3!k!-k(2wd~,t} + 2t~~i(~,t))exp(2wit) 

= 2wd~,t)s(~,t) 4.2.5 

upon neglecting the second term, since the wave energy 

saturates to a constant level after a few periods. (See 4.4) 

So, 

t 
s(~,t) = s(~,O)exp(2fwi(~,T)dT) 4.2.6 

0 

upon integrating. 
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4.3 Quasilinear Diffusion 

We now derive the equations determining the time 

development of the equilibrium distribution f 50 for the more 

simple equilibrium state with ~o = 0 = ~0 • Moreover we assume 

f 50 is independent of x so 4.1.2 becomes 

afso - - ~ E f at - m <_1.U~ s1> 
s 

4.3.1 

A similar argument to that used in the derivation of 4.1.29 ~ 

But 

afso = 
at 

fs1(~,t) = 

from linear theory. 

4.3.2 

[N.B. We only need linear theory here since R.H.S. is already 

second order.] 

Hence, 

Using 

afso 
at 

~(~} = I~(~) l~/1~1 and 4.1.30 this becomes 

afso 
at 

which may be written in the form of a diffusion equation 

4.3.2a 

where ~f 1 H = 2 ~k2_(_k~~)~(k,t)kkdk 
E 0 m5 i -·~-W - -- -

is the diffusion tensor. 

This may be simplified since 

( ;i )s(k,t) = -i(~~-iw~)~(k,t) 
W- .V - Or+Wi -

where we have put Or= wr-~·~ for convenience. 

Using 

(See Appendix 3} 
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we see that the imaginary part is an odd function and so 

produces no contribution to the integral. 

Thus, 

Recall 

4.3.2c 

Equations 4.3.2a,b,c constitute the quasilinear 

diffusion equations. For small wi, the dominant contribution 

to~ is from the particles with velocity approximately equal 

to Wr/lkl, the so called resonant particles. See [9] for a 

special case of 4.3.2. In linear theory, the resonant 

particles cause damping of the waves and in quasilinear 

theory these particles are diffused (in velocity space) by 

the wave fields which is the essential nonlinear feedback 

mechanism of quasilinear theory. 

Quasilinear theory can be shown to conserve particles, 

momentum and energy; unlike linear theory. (6] Indeed, an 

interesting account of the effects of quasilinear theory on 

Landau damping, instabilities, etc is to be found in [6]. 

4.4 Particle Trapping 

We now consider situations where the resonant 

wave-particle interactions play a significant role in the 

nonlinear evolution of the plasma. Linear Landau damping has 

shown that there can be an effective energy exchange between 

particles and waves when the particle velocity is 

approximately equal to the phase velocity of the wave. The 
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particles experience an electric field which is approximately 

constant in time. 

However, in nonlinear theory, when the amplitude of the 

field is finite the particle orbits are modified 

considerably. Purely as an il,lustration consider the 

trajectory of an electron moving in an electric field 

E(x,t) = E0 sin(kx-wt} -oo < x < oo, E0 constant 

[N.B. The assumption E0 is constant means that we have 

neglected the fact that the field is calculated 

self-consistently. However, for our present purposes this 

will suffice to obtain an understanding of the relevant 

physics.] 

The orbit x(t) is given by 

d 2 x = -eEsin(kx(t)-wt} 4.4.1 
dt 2 me 

In the limit of E~O we have 

where X 0 = x(O) and v 0 = v(O) 

Define 

x 1 (t) = x(t)-wt/k 

as the displacement of the electron relative to the wave 

frame. 

Then 

d 2 x 1 + eEsinkx 1 (t) = O 
dt 2 me 

For small kx 1 this is just 

where Ws 

d 2
X1 + W5

2
X1 = 0 

dt 2 

(
eEk) 1

/
2

. = ~- is called the bounce frequency. It 
me 
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frequency of oscillation of electrons trapped near the bottom 

of the potential well of the finite amplitude wave (at Bin 

Fig.7) 

Fig.7 

Integrating 4.4.2 ~ 

m (dx )2 

W = ~ dt 1 
- e~(x 1 ) = constant 

is 
E the total energy of the electron where ~(x 1 ) = kcoskx 1 . 

If -eE/k < W < eE/k the electron is trapped in the 

potential well, whilst if W > leE/kl the electron accelerates 

and decelerates as it passes over the crests and troughs but 

remains untrapped. For kx 1 ~ 0,!2TI, ... and W ~ -eE/k the 

particles exhibit simple harmonic motion with frequency w8 . 

We define characteristic Landau time scales of 

oscillation and damping respectively by 

where wr,Wi are calculated from linear theory. 

Recall 

wi ~ -(i) 1

/~l~j~
0

) 3 exp(2k;~~ - i) 
from 2.2.2b for Langmuir waves. 

So for lkAol << 1 we see that T 0 <<Td. 

The fact that Td can be so long means that it is possible for 

(Tt is the trapping time scale.) 
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so trapped particle effects must be taken into account as the 

wave is not sufficiently damped. Linear theory is only valid 

fort< Tt. 

Note also that 

where n 1 m is the maximum perturbation inn. 

(The approximation is from Poisson's equation.) This 

inequality means that the wave makes many oscillations in the 

time of one single particle oscillation in the well. 

The question arises as to which particles are actually 

trapped. Consider particles with velocity v = 0 at t = 0 in 

the wave frame. The maximum velocity obtained by any of these 

particles will be the trapping speed, Vt, given by 

(= depth of the well) 

where ~m is the maximum value of~. 

Any particle with a velocity> Vt will not be trapped. 

Thus particles with velocities in the range 

w/k - Vt < V < w/K + Vt 

are trapped. 

We might also consider the concept of particle trapping 

by considering particle orbits in the v-x phase plane.(Fig.8) 

The reader is referred to the standard text [17] on phase 

plane analysis. We have from 4.4.2 the equation 

dy 1 + asinkx 1 = O 
dt 

eE where we have put a= and where we have defined 
ffie 
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Thus, 

~ 1 = _ asin(kx 1 ) 

dx1 Y1 
,.,.3 

The equilibrium points are therefore given by 

Y1 = 0, kx 1 = nn (n integer) 

The standard linear approximation method for phase planes 

[17) shows that for n even the equilibrium points are centres 

whilst for n odd they are saddle points. See Fig.a. 

The contours indicated show particle trajectories for 

different initial conditions and therefore also represent 

contours of constant energy. The closed contours represent 

trapped particles as they are seen to represent oscillatory 

behaviour. 

Fig.a 

For the period up tot= O(Lt) linear theory is valid and 

particles exchange energy with the wave according to Landau 

damping/growth. Fort> Lt the wave amplitude has risen to 

such a level that trapped particle effects must be 

considered. Moreover, neighbouring trapped particles have 

different bounce frequencies and therefore become out of 

phase. At t ~ n/w 8 the trapped particles have experienced 

half a bounce and may now put energy back into the wave but 
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the reversal of energy will not be complete because the 

particles are no longer in phase. Thus, in reality we expect 

the wave amplitude to vary schematically as in Fig.9. The 

case shown here is for a damped oscillation but the same 

arguments apply to a growing wave which will eventually 

saturate to some higher energy level. (See 4.5) 

Fig.9 

t 

It must be noted that equation 4.4.2 does not take 

account of any energy exchange_between the particles and the 

wave since it is a conservative equation. It is merely used 

to illustrate the basic concepts involved and to derive an 

approximate time scale for trapping to occur. We shall assume 

in section 4.5 that the effects of particle trapping are 

sufficiently weak for quasilinear theory to be invoked. The 

energy exchange between the waves and particles can then be 

assumed to be due to the resonant particles oscillating in 

the troughs of the waves. The continuous growth/damping 

predicted by linear Landau theory is then modified by the 

fact that the particles become out of phase causing a 

saturation in the energy level. A more rigorous account of 
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particle trapping is to be found in Davidson Chapter 4 and 

[10]. However it will suffice for our purposes to find an 

estimate of the saturated energy level. 

4.5 Saturation Level 

We now develop the above ideas to derive an estimate of 

the saturated energy level of the waves, needed in the 

calculation of Vs· We follow the work done by McBride et 

al . [ 8] 

The wave potential energy in the electron frame of 

reference required to commence trapping the ions is 

4.5.1 

where Va is the relative drift velocity. McBride suggests the 

electrons trap on a similar time scale to the ions and has 

shown ~i ~ ~e· We may therefore use this result to find an 

estimate of the energy saturation level for either ions or 

electrons. 

Define W = E IEl 2 
0 -

which is, using~= -v~ and 4.5.1, 

k 2 2 
W = ~m~ (V - /k) 4 

16e2 d Wr 4.5.2 

where we take the fastest growing mode (since this causes 

trapping first) to find Wr and k. These are found from linear 

theory (See Chapter 3). 

The above estimate of the saturation level assumes that 

a) the nonlinear effects are sufficiently weak for linear 

theory to be invoked to find Wr/k in 4.5.2. 

b) the initially fastest growJng mode remains the fastest 

growing mode in the nonlinear situation. 

- 52 -



Another approach might be to try to extend Davidson's 

[4) work on particle trapping to apply it to the cases of the 

ion acoustic and modified two stream instabilities. This 

could provide the basis for future research. 
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Chapter 5 

Collisionless Shock Waves 

In ordinary collision dominated gases the shock 

thickness occurs in a distance of the order of a few 

collision mean free paths. Since collisions are so frequent, 

velocity distributions on both sides of the shock are 

Maxwellian, and the various species of particles obtain the 

same temperature. 

However, in a collision-free plasma energy and momentum 

can be transferred from particles to electromagnetic fields 

(see 4.1) by instabilities (see Chapter 3) so the 

conservation laws are now more complicated. Moreover, the 

ions and electrons are affected differently by these 

instabilities so there is no reason to believe their 

temperatures are equal. We shall be discussing physics that 

occurs on time-scales much shorter than classical (binary) 

collision times so we may use the Vlasov-Maxwell equations or 

the two-fluid model derived from these equations. 

We shall be dealing with magnetosonic shocks. A 

magnetosonic wave is a low frequency perpendicular 

electromagnetic wave travelling across an equilibrium field 

B0 with 

k 2 V~ w2 = K 

1+V~/c 2 

where VA is the Alfven speed. Fig.10 indicates the relative 

directions of vectors. 
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Fig .10 

The drift of electrons and ions 

in they direction are 

approximately equal but the 

k ions have an extra component in 

the x direction due to the polarisation drift. This current 

in the x direction produces the fluctuating field~ in the z 

direction. It is the current in the x direction that gives 

rise to the streaming instabilities (See Chapter 3). 

We have shown (4.3) how these instabilities may give us 

an expression for an effective "collision" frequency v 5 and 

later in this chapter we shall demonstrate why this 

dissipation is necessary for shock solutions to exist. The 

value for v 5 may then be used to predict an estimate of the 

shock thickness, enabling satellite observations to test the 

theory. 

5.1 Derivation of the Shock Profile Equations 

We use the two-fluid model of Chapter 1 and follow the 

work done by Tidman and Krall. [12,5] 

We seek constant profile waves in the wave frame so 

a at_ 0 and the magnetic field~ is taken along the z axis. 

The electric field has x and y components. Specify 

U 5 x(-oo) = const = u 1 for s = e,i 

(i.e. assume no external current) 

All variables are assumed independent of y and z and we 

neglect the pressure term in the momentum equation. (The so 

called cold plasma approximation.) 

1.1.2a reduces to U 5 xdU 5 = q 5 (Ex+U 5 yB,Ey-UsxB,O) 5. 1. la 
dx ms. 
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1.1.2b reduces to ~nsUsx) = 0 5.1.lb 
dx 

1.1.2d II E 0 dEx = Lqsns 5.1.lc 
dx s 

1. 1. 2f 11 (0,-dB,O) = µoLqsns~s 5.1.ld 
dx s 

1.1 . 2g II dEy = 0 5.1.le 
dx 

Integrate 5.1.lb => 

where 1 denotes the upstream value, not the perturbation. 

So 

Integrate 

Now the y 

5. 1. le 

nsx = n1U1 
Us x 

=> 

Ey = constant 

component of 5.1.la is 

llsxdUsy == qs(Ey - llsxB) 
dx ms 

Assume dU 5 y = 0 at x=-oo 
dx 

so that Ey = U1B1 at -oo 

Thus, Ey = U1B1 

We assume quasineutrality 

We already have 

So 

me(Y component of 5.1.la )+mi(Y component of 5.1.la)=> 
for electrons for ions 

ffieUxdUey + miuxdUiy = 0 
dx dx 

Integrating=> 

constant 

At x=-oo Uiy = Uey ~ 0 so the constant is zero. 
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Thus Uiy = -meuex 
mi 

5 .1. 5 

This is the drift between electrons and ions referred to in 

the two-stream instability. 

Subtracting the electron and ion x components of 5.1.la and 

using 5.1.4 and 5.1.5 ~ 

= -Bu + o(~) ey mi 

Whilst, 

me(X comp of 5.1.la) + mi(x comp of 5.1.la) ~ 
for electrons for ions 

(me+mi)uxdUx = eB(Uiy-Uey) 
dx 

Recall 5.1.ld is 

So n(5.1.7) becomes 

-dB 
dx 

n(me+mi)uxdUx = -B dB 
dx 'µ: 0 dx 

Using 5.1.2 we may integrate this to obtain 

where we have put 

Ux = -!(B 2 -B~) + U1 
A 

5 .1. 6 

5 .1. 7 

5 .1. 8 

5 .1.9 

for convenience and where the constant of integration was 

found from the condition 

[N.B.We have neglected me in the factor me+mi as me<< mi] 

Now we find Uey in terms of B. 

Recall 5.1.ld is 

But 

dB= ~ 0 en(Uey-Uiy) 
dx 

Uiy c= -meUey 
mi 

from 5.1.5 so we may neglect uiy here as it is o(::)· 
i.e. dB= 

dx 
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5.1.9 and 5.1.2 then give 

Uey = (1 (B 2 - Bf)) 1 dB 
i\.u1 µ.. 0 en1dx 

We now seek an equation for B only 

Uxd (5.1.ld) ~ 
dx 

Uxd (UxdB) = 
dx dx 

µ.. 0 eux~(nUxUey) 
dx 

5. 1. 10 

= µ.. 0 n 1 u 1 euxdliey (from 5.1.2) 5.1.11 
dx 

They component of 5.1.la then~ 

Ux~(uxdB) = µ 0 n 1 u 1 e 2 (Bux-Ey) 5.1.12 
dx dx me 

But Ux is known as a function of B from 5.1.9 and Ey=u 1 B1 so 

we have an equation for B. Simple substitution yields 

f(B)~(f(B)dB\J = g(B) 5.1.13 

where 

dx dx 

f(B) = 1-(B 2 -B~) 
i\.u1 

Now, dB(5.1.13)~ 
dx 

and 

!~(fdB)2 = 
2dx dx 

gdB 
dx 

And 

g(B) 

JgdB = ~e(B-B 1 )
2 (1- (B+B 1 )

2
) + constant 

2c 2 2u1i\. 

Integrating we have an equation of the form 

where <P(B) 

!(dB) 2 + q>(B) = 0 
2 dx 

- (dB) 2 
- ~~g_(B-B 1 )

2 (1 - (B+B 1 )
2

) 

= dx x 1 c 2u 1 i\. 

2(1 - (B2-B12))2 
i\.U1 

and where x 1 is the point at which B = B1 (i.e.x = -oo) 

Equation (A) is in the form of a classical potential well 

(A) 

problem and <P(B) is often called the Sagdeev potential [J4] 

as he was the first to recognise that the equation was i n 

this form. 
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The so called anomalous term 

J~<(~1+~A~1) .Qyfs1)d~ 
in Chapter 4 was omitted in the above theory. We now include 

this term and will show how it allows shock-like solutions to 

emerge. 

Write 

Cs = ~:<(~1+~A~1)•Qyfs1) 
for convenience. Since, for magnetosonic waves the dominant 

drift between electrons and ions is in they direction we 

assume this term has only an appreciable y component. The 

only equation that has changed in 5.1.la-5.1.le is 5.1.la, 

which is now 

Usxddxus = q 5 (Ex+UsyB,Ey-UsxB,0) + (o,!JcsVsydv,O) 
ms n -

5.1.14 

Equation 5.1.3 is still valid since we assume the turbulence 

is negligible at -ro (i.e. iJc 5 v 5 ydv .~ 0 at -ro). 

Now, me(Y component of 5.1.14) + mi(Y component of 5.1.14) ~ 

So 

for electrons for ions 

( 
dUey duiY) _ 0 meJ d miJ d medx + mi~d Ux - + ~ CeVy V + ~ CiVy V x n - n -

Uiy ~ -~eUey 
mi 

is only valid now provided that we assume the turbulence 

level is small (i.e. 2msJcsvyd~ ~ 0). Then all the algebra 

up to 5.1.11 is the same and the corresponding equation for 

5.1.12 is now 

Uxd (uxdB) = ~0 en 1 u 1 (-eEy + euxB - VeUev) 

dx dx me me 

where the "collision" frequency Ve is defined by 

VeUey = - .!.Jcevydv n -
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Again we can substitute for ux from 5.1.9 and Ey from 

5.1.3 to obtain an equation for B. 

The new term on the R.H.S. is (using 5.1.9,5.1.10} 

= -VeUxdB 
dx 

Our equation for Bis just 

~x~(~xdB) 
U1dX U1dX 

= w2 P.it_ c2 
Define a variable T by dx = Ux 

dT U1 

so that 5.1.16 becomes 

where ~(B) = 

d 2 B = -a~ - ~edB 
dT 2 as u1d-r 

~~~(B-B1 } 2 ,(B+B 1 )
2 

- 1) 
c 2 2 2ll.u 1 

5.1.15 

5.1.16 

5.1.17 

( B) 

which is in the form of a standard potential well problem 

with damping present. 

5.2 Solutions of the Profile Equations 

We must emphasise at this point that the following 

interpretation of the equations (A),(B) for B(x) are not 

intended to be rigorous mathematical proofs, but they give 

physical reasons for why the inclusion of dissipation is 

necessary for shock-like solutions to exist. 

Equation (A) is in the form of equation for a particle 

moving in a potential well. 

(i.e. in the form d 2 x 
dt 2 

= -~: ~ (~;) 2 = -V(x) + constant} 

So B plays role of x in cassical well problem, 

X 11 11 11 t 11 " " II 

II II " V II II II II 

Part of the function~ is sketched in Fig.11 
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Fig.11 

By analogy with the well problem we see that infinite 

nonlinear wavetrain solutions exist for B(x), corresponding 

to "reflections" at the "walls" of the well. 

Note that 

dq> = 0 
dB 

Consider the case when 

dBi = 0 
dx X1 

so that 4>(B 1 ) is also zero. See Flg.12. 

Fig.12 Case dB I - 0 dx X1-
By considering_a particle 

in the classical well 

incident from C we see it 

will be reflected at D but 

will then never be reflected 

again. Moreover, as it 

passes over the well it's 

speed increases and decreases. This corresponds to a solitary 

wave solution. (Fig.13) 
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Fig.13 

B 

BH 
This physical argument 

shows that shock-like solutions 

do not exist in equation (A). 

The above is only actually 
X 

valid in a certain range of the 

parameter, called the Alfven Mach number, M, defined as 

This is true for the following reasons: 

Let BH denote the maximum value of B. 

We have already assumed dBi = O dx X1 . 

In order that ~(B) is a potential well and not a hump we 

require that the station2Yy point between B1 and BH is a 

minima and that this is the only stationary poin! in (B 1 ,BH). 

Simple algebra shows that this entails M > 1. 

Now, 

dB= 0 
dx at B = Btt 

(from the analogy with the potential well) 

So (A) :::;, 

which :::;, 

Then (A) becomes 

5.2.1 

5.2.2 

The R.H.S. is positive since B < BH in the "well" so in order 

for {~!) 2 

to be positive (i.e. in order that a solution 

exists) we must have 

1 - 2(B 2 -B1) > 0 for all Be (B 1 ,BH) 

(BH+B1) 2 

which is actually just u~ > 0. 
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So we must have 

which means M < 2 5.2.3 

Altogether solitary wave solutions only exist if 

1 < M < 2 5.2.4 

For situations where M > 2, we will have Ux < 0 which means 

that the particles are reflected back upstream at the 

shock. [ 5] 

Similarly, with dissipation present (i.e. (B) valid) we 

still need a well not a hump and this again entails M > 1. 

Now the transformation 5.1.17 defining T breaks down when 

Ux = 0, at which point 

from 5.1.9. 

The maximum value of B that can occur in the well is denoted 

by B = BH and occurs when~= 0. (See Fig.14.) 

Thus, 

5.2.5 

from (B). 

Fig .14 Fig .15 

solution 

--- ·--- .__ --- B 

The dotted line shows the schematic variation of Bas the 

"particle" moves in the "well" whilst Fig.15 shows the shape 

of Bin space, corresponding to the dotted line in Fig.14. 
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Now ,provided 

where Bm is the maximum value of Bin the solution to (B) in 

the range (B 1 ,BH) a shock-like solution exists. (i.e. the 

transformation must not break down before the "particle" is 

reflected at the "wall" of the "well") 

We have above 

and 

It is easily shown that 

"I M < 2 

Hence 

"I M < 2 

Altogether we conclude that shock solutions exist for any 

finite value of v if 

1 < M < 2 5.2.6 

Now the minimum of~ occurs at 

5.2.7 

so we see that 

From Fig.14 we can see that Bm,B 2 as the damping v,oo. 

Thus, 

so there is no longer an upper bound for Min order for 

shocks to exist. 

We have shown how the inclusion of dissipation turns 

solitary pulse solutions into shock-like solutions. It is 
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important to note that we neglected the pressure term in the 

fluid equations and therefore did not allow the plasma to 

heat up even though we included a dissipation term, so energy 

is not conserved in our model. However, it can be shown [12] 

that such a model is valid for weak shocks (i.e. M=l+6,6 

small). Also, our assumption that the microturbulence is 

small may also be invalid. This could provide a starting 

point for further research. 

5.3 Phase Plane Analysis of the Profile Equations 

Defining 

we have from 

and 

dB 
Y = dx 

d dx(5.1.13) the autonomous system 

dy ( fdf 2) /f2 - 1 ( ) . dx = g - dBY = B,y, say. 
dB = y = m(B,y), say. 

We can now apply the standard linearisation technique [17] to 

determine the nature of the equilibrium points given by 

m(B,y) = 0 = l(B,y) 

The equilibrium points are found to be 

y = 0, B = B1 

The eigenvalues, ~. in the linearisation method are found to 

be 

_ (all )1/2 
µ. - ± oB 

Bo,Yo 

where (B 0 ,y 0 ) are the equilibrium points. 
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The sign of~~, determines whether the eigenvalues 
Ba,Yo 

are real and of opposite sign (saddle point) or purely 

imaginary (centre). [See 17] It is worthwhile noting that 

this analysis assumes that the phase paths of the original 

equation and those of the linearised equation near the 

equilibrium point are of the same character. This is true for 

spirals, nodes and saddle points but not always for a centre. 

Symmetry about they= 0 axis has to be checked to confirm 

the equilibrium point is indeed a centre and not a spiral. 

This is easily verified by showing 

dyl = l(B,y) = _ l(B,-y) 
dB y m(B,y) m(B,-y) 

= dyl 
dB -y 

For the equilibrium pointy= 0, B = B1 it transpires 

that if M > 1 then it is a saddle point or if M < 1 then it 

is a centre. For the equilibrium point at y = O ,. B = BR the 

reverse is true because for M > 1 it is a centre whilst for 

M < 1 it is a saddle point. The pointy= 0, B = BL is always 

a centre but we are not concerned with negative values of B 

because they are not applicable to the shock problem. In 

fact, as already explained in section 5.2 we -0nly consider 

the case M > dy 
1. An analysis of the behaviour o.f dB as B ~:!:co, 

y~~co enables the phase plane to be completed as in Fig.16 

The phase plane path B1 QRS corresponds to the solitary wave 

solution discussed in section 5.2. We now outline the 

approach to find the phase plane for equation (B) where we 

have also included dissipation via anomalous resistivity. 
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Fig .16 

dB 

We have the autonomous first order system 

~= 
d-r 
dB 

o'il> V 
- - - - y aB U1 

d-r = y 

The equilibrium points are found to be the same as before, 

namely 

B = B 1 , y = 0 

B = BL, y = 0 

B = BR, y = 0 

Notice that B = BR is actually B = B2 in 5.2.7 which 

corresponds to the bottom of the "well". The equilibrium 

point at B = B1 is a saddle if M >land the equilibrium 

points that were previously centres at BL,BR have now been 

deformed into stable spirals by the addition of the damping 

V 5 • The phase plane is sketched in Fig.17. 

The phase path B1 TUVBR corresponds to the shock-like 

solution discussed in section 5.2 so the phase plane clearly 

shows how the addition of dissipation allows B to change from 

one value, B1 , to another at BR via an oscillatory behaviour. 
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Fig.17 

dB 

5.4 Shock Thickness 

The damping length scale L - U1 /vs, associated with the 

shock, enables a knowledge _ of Vs from quasilinear theory to 

compare theoretical predictions with satellite data. The 

actual calculations are performed in Chapter 6. 
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Chapter 6 

6.1 Calculat ion of the Effec t ive Collision Frequency 

The theory of Chapter 4 is now used to provide an 

estimation of the effective collision frequency for both the 

ion acoustic instability and the modified two stream 

instability. This will result in an estimate of the shock 

thickness as outlined in Chapter 5, enabling a comparison 

with satellite data to be made. This will determine whether 

the anomalous resistivity produced by either of the 

instabilities provides enough dissipation to support the 

earth's shock. 

The saturated energy level 4.5.2 is substituted into 

4.1.31 so that our definition 4.2.1 of- the effective 

collision frequency becomes 

1/Ao 

= TIEoffifApW~sJk(V -w /k)4aFsol dk 
Vs 8e 2 V nm d rm au 

d s s u=v 
p 

0 

where we have used E 5 i(k,w) _ W~caFsol - TI-2----k au 
u=vP 

from 4.1.27a and 

2.3.3a. The variable Wrm is the value of Wr when wi is 

maximum since this was our model for obtaining the saturated 

energy level. (See section 4.5) The integration limits are 

form Oto l/X 0 because the waves are severely damped for 

kA 0 ~ 1. Note that we have assumed the one dimensional case 

when~ is parallel to ~d (the drift velocity between the ions 

and electrons in the instabilities) which will suffice for 

our purposes as we are considering instabilities that grow 

along the shock. 
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We can now substitute a Maxwellian for F 50 to obtain 

1/X0 

v5 = a.Jk(vd - wkm)
4

JZ'exp(2~~:.k,)dk 6 .1.1 

0 

where 
2... 2 

a = TIEgffi~Wps . 
s 8~(2n)e2Vdvihsnsms is a constant. 

6.2 Calculation of v 5 for the Ion Acoustic Instability 

To calculate the integral in 6.1.1 exactly involves 

finding the value of k for which 3.2.3 is maximum and then 

substituting into 3.2.2a to find Wrm· As an order of 

magnitude estimate we see from the ion acoustic dispersion 

relation that we may approximate Wr/k to be C5 for all k 

within the integration limits of 6.1.1. Recall that the 

theory of Chapter 5 requires only a knowledge of the 

effective collision frequency for electrons so we now have 

Ve= ~~(Vd-C 5 )
4 c 5 exp(-c:/2vfhs) 6. 2 .1 

where the constant ae/2X5 simplifies to 

6.2.2 

which shows how Ve varies with the different parameters more 

easily. Notice the sensitivity of Ve to the parameter Vd-c 5 • 

It is worthwhile remembering at this stage that we 

require 

for ion waves to exist and that we require 

for instability to occur. 

Papadopolous [19] has shown that electron-ion 

temperature ratios of Te/Ti~ 8 are required for the 

ion-acoustic instability to operate. Suc h ratios are n o t 
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observed in the earth's bow shock so we shall simply leave 

the expression 6.2.1 as a means of calculating anomalous 

resistivity for some other application. Instead we move onto 

the process whereby the modified two-stream instability 

provides the anomalous resistivity. 

6.3 Calculation of v5 for the Modified Two Stream Instability 

This instability is a more realistic one when applied to 

the earth's shock because the currents flowing along the 

shock do actually travel approximately perpendicular to a 

magnetic field. From section 3.4 we have that Wr/k = Vd/2 for 

all values of k at the angle given by case= (~)
1

/
2 

which 

simplifies the integration in 6.1.1 immensely. 

Thus 6.2.1 becomes 

_ 1 J(n)mf( vd )
4 

2 2 
Ve - 256 2 m~ Vthe Wpaexp(-Vd/8Vths) 

Notice that this is independent of ion temperature but 

is very sensitive to the relative drift speed, Vd, between 

the ions and electrons and also the electron thermal 

velocity. Recall that the modified two-stream instability 

only occurs provided that 

We have also assumed that Wee>> w >>Weiand we have only 

considered the case case= (~)
1

/
2

. This instability, unlike 

the ion acoustic instability, is insensitive to the ratio 

Te/Ti and may therefore operate in a wider regime. The data 

satisfies these conditions and so the instability may indeed 

operate. Substituting in typical values from [21] listed in 
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Appendix 6 yields 

Ve= 258s- 1 

giving a value for the shock thickness as 

L = U1/Ve = 2321m. 

The actual observed value for L, which is difficult to 

measure in practice, was in this case found to be . 50km. 

The data given by Scudder et al [20] listed in Appendix 

6 gives a value for the shock thickness as L = 90m. The 

observed value for Lat this time was approximately 15km. 
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Chapter 7 

Discussion and Conclusions 

The philosophy in this dissertation has been to 

highlight the fundamental processes involved with the concept 

of anomalous resistance in as simple manner as possible and 

to incorporate them into an overall model for the dissipation 

mechanism in the earth's bow shock. Mathematical rigor and 

more realistic models have sometimes been sacrificed to 

prevent the physical understanding from being obscured. For 

example, the three dimensional nature of the earth's bow 

shock has been ignored and the turbulence level in Chapter 5 

was assumed to be small. This latter assumption is consistent 

with using the weakly nonlinear theory in Chapter 4 for 

particle trapping. In Chapter 5 we demonstrated that 

anomalous resistivity is necessary to support the earth's bow 

shock and Chapter 6 showed that it is more than sufficient. 

The failure of the ion-acoustic instability to operate 

in the regime where Ti~ Te has been shown from the data 

[20,21] to mean that this can not account for the anomalous 

resistivity required to support the shock. The modified 

two-stream instability was then considered as a mechanism for 

producing anomalous resistivity and was used in this text for 

the first time to predict the shock thickness. This is 

intuitively more realistic as it necessitates passage of a 

current across a magnetic field which does actually occur in 

the shock. A further assumption involved here was that only 

(
m ) 1/ 2 

the angle 6 = 6 0 where cos6 0 = ~ between the direction 
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of propogation of the instability and the background magnetic 

field was treated. 

The results indicated an excess of anomalous resistance 

since the predicted value of the shock thickness was smaller 

by a factor of an order of magnitude. This discrepency might 

be explained by the one dimensional nature of the model or 

any of the other simplifications made in the model. Further 

extensions and investigations are required. In particular, 

the work of Davidson in [4] might be modified to provide a 

more sophisticated way of incorporating particle trapping. 
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Appendix 1 

Common Plasma Parameters 

Listed below are the definitions and notation for 

parameters used throughout the text. 

Plasma frequency - (noe2 )1/2 
Wps -

ffi sE.o 

These are oscillations of species s, assuming a uniform 

background of the other species, due to just the electric 

fields produced when the particles are displaced. 

Cyclotron frequency 

This is the frequency of gyration of particles of 

species s about a field Bin the absence of E. 

Debye length (
E. KT )1/2 Ao= .::.st..:;.2~ n 0 e 

When a test ion is placed in a plasma its field is 

shielded by the resulting cloud of electrons surrounding the 

ion. The Debye length is the distance for the ion's field to 

fall by 1/e times its original value. 

Plasma parameter 

This is the number of particles in a Debye sphere. 

Thermal velocity (
KT ) 1/2 

Vths = ~ 
ms 

This is a measure of the average K.E. of particles of 

species s. 
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Ion acoustic speed 

where ~sis the ratio of specific heats. 

This is the speed of propagation of low frequency 

compression waves in a plasma. It is reminiscent of sound 

waves in an ideal gas. 

Alfven speed 

This is the speed of propagation of waves whose 

restoring force is magnetic pressure, with the fluid density 

providing the inertia. 

Lower hybrid frequency 

This is the lower cut-off frequency for the so called 

extraordinary mode which is a wave travelling perpendicular 

to ~ 0 that is neither purely transverse or purely 

longitudinal. For very low frequencies this wave degenerates 

into the magnetosonic wave of Chap.5 which is mainly a 

longitudinal disturbance propagating across ~o· Hence the 

name magnetosonic. 

Note: simple algebra~ 

(a a a ) Note: v~ is used to denote the operator ~ ,~a ,~a 
0V1 Vz V3 

where 

v = (v 1 ,v2 ,v 3 ) is a position in velocity space, whilst vis 

f . 1 . (a a a ) ami iar ~a ,~a ,~a 
X1 Xz X3 

is a position the 

in configuration space. 
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Appendix 2 

Analytic Continuation 

Let f(z) be a function which is analytic within a region 

R. We wish to invent a function g(z) that coincides with f(z) 

in Rand that is analytic in some extension of this region. 

Then g(z) is called an analytic continuation of f(z). 

00 

e.g. f(z) = zzn is analytic for lzl<l but is divergent for 
n=O 

lzl~l. Consider g(z) = ~
1

1 . This is analytic everywhere -z 

except z=l and agrees with f(z) within lzl<l. It is therefore 

an analytic continuation of f(z). However, it is not always 

possible to be able to replace an expression by an equivalent 

one possessing a wider range of validity. In which case we 

shall use the following method. 

Let f(z) be analytic in some region R. Since f(z) is 

analytic there exists a Taylor series expansion that 

converges to f(z) within some circle, C1 , about any point z 0 

in R. In fact, for any given z 0 ER, we know that there exists 

a Taylor series within t_he largest circle; ce~tre z 0 , that 

lies entirely within R. However, it is possible that this 

series converges within some larger circle C2 . The series 

must agree with f(z) within C1 but the question arises as to 

whether it agrees with f(z) in (RnC 2 ),C 1 . Moreover, for a 

point z 1 outside R there may exist two chains of circles from 

R continuing f(z) into a region containing z 1 (See Fig.18) so 

the question also arises as to whether the two values for 

f(z 1 ) agree. If the answers to these questions are in the 
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affirmative then we have a way of analytically continuing 

f(z) to some larger region. 

Fig .18 

To demonstrate this is indeed true we shall require the 

following theorem. 

Identity Theorem for Single-Valued Ana lytic Functions 

Let f 1 (z),f 2 (z) be analytic in a region R. -Let f 1 (z),f 2 (z) 

coincide in some portion R' of R. 

[N.B. R' may be a subregion, a segment of a curve or even an 

infinite set of points having a limit point in R.] 

Then f 1 (z),f 2 (z) coincide in the whole of R. 

Proof 

F i g. l 9 

R 

Choose any point z 0 in R'. 
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Draw the largest circle,C, of centre z 0 , that fits entirely 

in R. Each of f 1 ,f 2 can be represented by a Taylor series 

about z 0 ,· convergent inside this circle, since they are 

analytic within R. But f 1 ,f 2 coincide within R' and the 

identity theorem for power series then implies that the two 

power series are identical. So f 1 ,f 2 are the same throughout 

the interior of C. We can then choose another point z, within 

Ru C until the whole of R is used - i.~. f 1 ,f 2 identical 

throughout the region R. 

Returning to our original question then we see that this 

theorem implies the series does agree with f(z) within 

(RnC 2 ),c 1 . To answer our second query concerning uniqueness 

of our continuation at some point z 1 we require the following 

corollary. 

Corollary Analytic Continuation is Locally Unique 

Proof 

Consider a function f 1 (z) analytic in a region R1 • 

Let R2 be some other region which has a region R in common 

with R1 . Let f 2 (z) be some analytic function in R2 which 

coincides with f 1 (z) in R. 

Fig.20 

Suppose g(z) is some other function, analytic in R2 , 

that coincides with f 1 (z) in R. Thus g(z) = f 2 (z) in R. But 

f 2 ,g are analytic in R2 with a subregion R of R2 where they 
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coincide. The above theorem implies f 2 (z) = g(z) throughout 

R2 . This means that f 2 (z) is the unique local analytic 

continuation of f 1 (z). 

[N.B. Continuing f 2 into some region R3 with an analytic 

function f 3 we will only have f 1 =f 3 if there exists a common 

Returning to Fig.18 we know that the function in Bis 

the unique function that is both analytic in Band agrees 

with fin P and we know the function is the unique analytic 

function that agrees with fin Q. However, we may still have 

two different functions but provided that there is no 

singularity within region S we can cover S with overlapping 

regions and apply the previous theorem to see f(z) is the 

same in B irrespective of the path taken. 

The total structure of an analytic function is then 

deducible from only a small sample of the function - a quite 

remarkable feature. Once all possible continuations are 

performed we arrive at the so called complete analytic 

function. It may happen in the process of continuation that 

we discover a curve across which it is impossible to continue 

the function. Such a curve is called a natural boundary of 

the complete analytic function. 

In order to illustrate the idea of analytic continuation 

as used in Chapter 2 consider, as an example, the function 

(a> 0) 

-00 

which is only defined for Imt > 0, say. 

- VI -



Employing Cauchy's residue theorem 

f(t) = Jcez2+a2~(z-t) dz 

2 . ~ ( 1 ) = - TTl res « (z-ia)(z+ia)(z-{.) 

where C is the contour in Fig.21, in the limit of R~~ and 

1 where res g(z) is the coeffecient of in the Laurent « z-« 

expansion of g(z) about z = «. 

Fig.21 

-R R Rez 

= 
Only z = -ia is within the contour and 

1 res = z=-ia 2ia({.+ia) 

So f ( s) -TI 
= a({.+ia) A2.1 

This is only valid for Si> 0 since the singularity at 

z ={.is then outside the contour of integration. 

If {.i <Owe have to add the residue at z = s which is 

1 = ~2+a2 
1 I 

(z+ia) (z-ia) lz={. 

f ( s) -TT 21Ti = a({.+ia) - I 2 +a 2 A2.2 So 

We can not use A2.2 as the analytic continuation of A2.1 

since the function is discontinous at Si= O and is therefore 

not analytic. We subtract the extra term in A2.2 and write 
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f(t) J+co 1 dx + 2TTi 
(t1 < 0) = 1x2+a 2) ( x-t,) I2+a2 

-co 
+co 

f({,) = J 1x2+a2~(x-{,) dx ((~ i > 0) 

-co 

as the analytic continuation of A2.l. Alternatively we can 

use 

f ( {,) = Jclz 2+a2t(z-{,) 
dz ( {, i < 0) 

co 

= J (x2+a2~(x- {.) dx u;~ i > 0) 

-(JC) 

where C1 is the contour in Fig.22 in the limit of R~oe> since 

the singularity at z ={,is then in the exterior of C1 • 

Fig.22 

lmz 

.ia 

R Rez 
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Appendix 3 

With reference to Chapter 4 we now prove 

where* denotes complex conjugate. 

According to linear theory we may express ~1 (~,t) in terms of 

its Fourier components 

~1(~,t) = (2;)3s~(~)expi(~-~+wt)d~ 

where we have assumed 

So 

~1 (~,t) = !(~)exp(iwt) 

!(k)expiw(~)t = (2;, 3f~ 1 (~,t)exp(-i~.~)d~ 

by inverting the Fourier transform. 

Thus 

which::) 

~·c-~)exp-iw*(-~)t = (2~) 3J~1(~,t)exp{-i~.~)d~ 

since ~1 is real. 

The R.H.S. 's of A3.1, A3.2, are equal so 

A3.1 

A3.2 

~(k)expiw(~)t = !*(-~)exp-iw*(-~)t V k, V t A3 . 3 

Since this is true V t, at t = 0, we have 

but Eis independent oft so 

Thus from A3.3 

Hence 

as required . 
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~ppendix 4 

We shall prove the identity 

v.(~~) = ~-(v~) + bv.a V vectors a,b 

where the diad ab means the tensor with components aibj for 

This diadic notation has been used in Chapter 4 since it 

is so common in the plasma literature. However, the suffix 

notation is more lucid when proving this result. 

Write v.(~~) = ~j~aibj) 
axi 

where ~j is the unit vector in the Xj direction and the 

summation convention is employed. 

v.(~~) = ~ j(ai~ + bjaai) 
axi axi 

So 

= ai~jabj + bj~jaai 
axi axi 

which, in diadic notation, is simply 
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Appendix 5 

Cauchy Integrals and Plemelj Formulae 

The function h(p) on page 9 is a Cauchy integral. [17] 

i.e. it takes the form 

F(z) = ~1 f(t)dt 
2TI1 t-z 

C 

where C is some curve, or collection of curves, in the 

complex t plane, where f(t) is a complex valued function 

prescribed on C and where z is a point not on C. 

For suitable curves C and functions f(t), F(z) will be 

analytic. Denote by t 0 a point on C, other than an end point. 

We wish to examine the behaviour of F(z) as z~t 0 from the 

left and right (as viewed facing the direction of 

integration) by F+(t 0 ) and F_(t 0 ) respectively. 

Define the principal value integral by 

where C2 is the portion of the curve C contained within a 

small circle of radius E, centred on t 0 . We wish to obtain 

relations between F+Ct 0 ), F_(t 0 ) and Fp(t 0 ). We assume f(t) 

is analytic at t 0 (and continuous elsewhere). Then there is a 

small circle, C0 , centre t 0 such that f(t) is analytic within 

this circle. See Fig.23. 
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Fig.23 

By Cauchy's theorem, C may be indented around t 0 by use 

of a semi-circle of radius E, centre t 0 , lying within C0 • 

This allows us to carry out the limiting process in which z 

approaches t 0 . 

1 i m _l_J.....!.l!) d t 
z~t 0 2ni t-z 

C 

= lim _l_J.....!.l!ldt 
z~t 0 2ni t-z 

C+C1-C2 

~ ~ 1~J_!_!_!>at + ~ 1~ J_f_!_!>at 
2ni t-t 0 2ni t~t 0 

C-C2 C1 

As E~O we obtain 

V. 1 

If z was outside C we would need a small semi-circle whose 

integration sense is clockwise giving rise to a minus sign. 

Thus, 

V. 2 

V.l,V.2 are called the Plemelj formulae. Our derivation has 

assumed f(t) to be analytic at t 0 , which is sufficient for 

our purposes, but weaker conditions on f(t) are possible.[18) 
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Appendix 6 

Typical Parameter Sizes 

Typical values for the following parameters for the 

calculations performed in Chapter 6 are 

Scudder et al [20] 

no 20x10 6 m- 3 

U.1 300x10 3 ms- 1 

vd 75x10 3 ms- 1 

KTe 5.5x10- 18 J 

KTi 1.4xl0- 18 J 

Wpe 2.5x10 5 rad/s 

Vthe 2.5x10 6 ms- 1 

L 15km 

We also have the absolute constants 

me= 9.lx10- 31Kg 

K = l.3ax10- 23 J/K 

E 0 = 8.85x10- 12 C/Nm 2 

N.B. leV = 1.6xl0- 19 J 

D.Lepine [21] 

25x10 6 m- 3 

600x10 3 ms- 1 

50x10 3 ms- 1 

9.6x10- 18 J 

6.4xl0- 18 J 

2.8x10 5 rad/s 

3.3x10 6 ms- 1 

100km 

Notice that the two data sets indicate that in reality these 

physical variables are by no means constant making it 

difficult in some instances to obtain reliable data. 
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Appendix 7 

00 

f i3Feo 
To evaluate tau du we split the integration into four 

Ju-vp 
-co 

regions 

-vP Vp-S Vp+o 00 

J I J I J I J A7.1 
J 

-oo -vP Vp-S Vp+S 

(a) ( b) ( C ) ( d) 

where Sis a small but fixed constant. We shall aim to show 

that term (b) is the most significant. 

Since Feo = ( me )
1

/
2
exp(-meu

2
) term (a) is bounded above by 

2TTKTe 2KTe 
- Vp 
f aFeo c au du = 
j -Vp 
-co 

The important fact to note is that this varies as 

exp(-v~/vfhe) and because we are dealing with the case 

lvPI >> IVthel, this term is very small. A similar argument 

applies to term (d). A more subtle approach is required for 

the Cauchy Principle Value in term (c). 

Define g(u) = -u ( 2; 2 ) '( 2 ) 3~exp -u 2Vthe 
"' TT Vthe 

Then term (c) is 

Vp+S Vp+S Vp+S 

! g(u)du = 6 g(velau + J g(u)-g(velau A7.2 
J U-Vp J u-vp J u-vP 

Vp-S Vp-S Vp-S 

The first integral vanishes whilst for the second integral we 

can write 

_ _ h(ve)-h~) _ 2 2 
g(u) g(vp) - '( 2 ) 3 exp( Vp/2Vthe) 

"' TT Vthe 

where we have defined h(u) = uexp(~2

2
;u

2
). 

Vthe 

- XIV -



We are thus required to evaluate the Cauchy integral 

Vp+6 

6 h(u)-h(ve >au 
J U-Vp 

Vp-6 

Now, h(u) certainly satisfies lh(u)-h(vp} I 5 K/u-vPI where K 

is a constant since h(u) is analytic. The second integral in 

A7.2 is bounded above by 

Vp+o 

exp(-v:;2vfh~)J L(u-vp)du 
J 

Vp-6 

where Lis a constant dependentent on K. Note that this again 

varies as exp(-v~/2vthe) so it is a small term. 

For term (b) a Binomial expansion may be used to give 

Vp-6 

J( 2ntvlh_fv:( 1 

Consider, 

Vp-6 

+ u 

J
~exp(-u2 /2vthe)du 
Vp 

V -6 

= [-vth.exp(-u2 /2v£hel] • 
-Vp 

A7.3 

This again varies as exp(-v~/2vthe) which is exponentially 

small. 

However, the second term in A7.3 involves an integral 

VP 

I= ju2 exp(-u2 /2v£he)du = 

-VP 

V -o 
[-v£heuexp(-u 2 /2vfhel] • 

-vP 

Vp 

+ jvfheexp(-u2 / 2vtheldu 

-vP 

The integral on the R.H.S. dominates and may be evaluated 
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using the substitution w = u 2 /2v~h• to obtain 

~ 

I~ 42v{h•Jw- 1 / 2 exp(-w)dw 

0 

where we have used the fact that vp is large to obtain the 

integration limits. 

So, 

where r(~) = r:~-1exp(-x)dx. 
0 

This yields a result 1/v; for term (b).A similar argument 

can be applied to the fourth order term in A7 . 3 so that 2.2.1 

has been proven. 
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