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Abstract

We discuss our progress on the self-consistent calcu-

lation of the 4D phase space density (PSD) and electro-
magnetic fields in a Vlasov-Maxwell formulation. We em-
phasize Coherent Synchrotron Radiation (CSR) from arbi-
trary curved planar orbits, with shielding from the vacuum
chamber, but space charge forces are naturally included
Our focus on the Vlasov equation will provide simulations
with lower numerical/statistical noise than standard PIC
methods, and will allow the study of issues such as emit-
tance degradation and microbunching due to space charg
and CSR in bunch compressors. The fields excited by the
bunch are computed in the lab frame from a new double in-
tegral formula. The field formula is derived from retarded
potentials by changes of variables. It is singularity-free and
requires no computation of retarded times. Ultimately, the
Vlasov equation will be integrated in beam frame coorin Fig.1. We letH (Y) be the fixedY” density defined for
dinates using our method of local characteristics. As ai’| < g, then the coupled 4D Vlasov-Maxwell system
important intermediate step, we have developed a “selfor the field vecto€ (R, Y, u) and the phase space density
consistent Monte Carlo algorithm”, and a correspondind? (Y)6(Py)¥ (R, P, u), with the shielding boundary con-
parallel code. This gives an accurate representation of tition, takes the form:
sggrfe and V\rl:” hel(pl)in E{Jn(;j_e;standifnglgl the 2PSDhsupport. In OER,Y,u) = HY)S(R,u), 1)
addition we have studied carefully a phase space : .
Vlasov analogue and (2) derived an improved expression of Ou¥ +R-VRY +P- Vel =0, &)
the field of a 1D charge/current distribution which accounts ERY =+h/2,u) =0, 3)
forthe interference of different bends and other effects UsYyherey = ct, cis the speed of light= d/du, 0 = A-02,
ally neglected. Bunch compressors will be emphasized. gnq

Figure 1: Basic lab frame setup.

cOzp+ OuJz
; (4)

INTRODUCTION S(R7u) = ZyQ ( cOxp+ OuJx

: . o OxJz — 0zJ
Our basic starting point is the Vlasov-Maxwell system Xz Zox

in 6D, i.e., we assume collisions can be ignored and that R =P/my(P)c,

the N —particle punch can be approximated by a cgntin- p_4 [E”(R7y7 u) + (R x By (R, Y, u))]. (5)
uum. Our coordinate systeriZ, X,Y’), is shown in Fig. ¢

1. We assume an external force due to a magnetic fieltlere Z, is the free space impedancé) is the total
Be.¢(R), in the Y —direction. We define a reference or-charge, QH (Y)p(R,u) is the lab frame charge density
bit, R,.(s) = (Z.(s), X,(s)), lying intheY = 0 plane, (with [ HdY = [pdR = 1), QH(Y)(Jz, Jx)(R,u)
which is a solution of the Lorentz equation f&r = 0 is the current density (which, of course, has Yiocom-

andB = B.:(R)ey. HereR := (Z,X) ands is arc ponent),m is the electron mass, is the electron charge
length along the reference orbit. In Fig. 1 we sketchedso thatQ) = Ng¢ where N is the number of particles in
R,(s) for a 4 dipole magnetic chicane bunch compresthe bunch),y is the Lorentz factorE | = (Ez, Ex) and

sor. We focus on the evolution & := (Ez, Ex,By) By = (Bext(R) + By (R,Y,u))ey. Equations (1-2) are
and take(Fy, Bz, Bx) = 0. We model shielding by the incomplete without the coupling betweghand ¥ given
vacuum chamber by takin§ = 0 atY = +4g, where by
h = 2g is the height of the vacuum chamber as shown

p(R,u) == /dP\I/(R,P, u), (6)
*Work supported by DOE grants DE-FG02-99ER41104 and DE-
AC02-76SF00515
T ellisonatmath.unm.edu J(Ryu) = /dP(P/mv(P))\I'(R, P,u), (7)
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whereJ| = (Jz, Jx). We use(c, Zp) as our basic param-  In principal the initial value problem for (1-3) should be
eters instead ofeq, o), WhereZ2 = g /€0, c> = 1/poeo.  solved with the actual physical initial conditions. However
Integrating the Vlasov equation ovBrand using (6-7) these are not known, so researchers often take= —oo,
yields the continuity equatiofi,p + 1Vg - J; = 0. We assume the source is given a priori ferco, @], and then
are investigating energy conservation, a type of Poyntingtart the self-consistent calculation @t For the bunch
theorem, for our model. In addition, we would like to compressor, we choose = 0 as the time the bunch en-
characterize the ISR and CSR in analogy wiftparticles ters the chicane. For numerical integration the contribu-
under uniform motion on a circle using a Klimontovich tion from the source is neglected forless than a certain
source. In that model the particle positions are 1ID raneutoff, u., to give a finite interval of integration. Another
dom variables with probability densitf(6), and one ob- view leading to (8) is to solve the initial boundary prob-
tains Proq = >, [N + (N2 = N)| [ f(0)e™?df|*|ReZ,. lem in terms of the unknown initial condition. This adds a
Here the first term is identified with the ISR and the seconlomogeneous solution of (1) to (8). Thep is then cho-
with CSR. sen enough negative so that the homogenous solution has
While we believe (1-7) is a good approximation to”passed through” the bunch compressor before the bunch
the full 6D dynamics at high energies where spacarrives and thus can be ignored in the solution.
charge effects are small, we are investigating ways to To reduce the computation time we can average (8) with
check this. Consider thé D case and defings := respecttdd (Y). This reduces the (3+1)D space-time grid
QY )p(R,u), I3 == Qo(Y)(Jz,Jx,0) and ¥3 := to (2+1)D. A further reduction is obtained by assuming the
0(Y)o(Py)¥(R,P,u). Then plugging these into th&D Y extent of the beam is small comparedhtdr his amounts
Vlasov-Maxwell system we find that (1-7) must be satisfiedo approximating? (Y") by 6(Y"), which reduces the 3D in-
with H(Y) = 6(Y"). This will also give wave equations for tegration to a 2D one. The order of the two approximations

&1 = (By, Bz, Bx) and we can investigate its size. can be reversed by first letting (Y) = 6(Y), and then
averaging ovel” (which amounts to settingy = 0). For
FIELD FORMULA H(Y) = §(Y), (8) becomes

Solving (1) with Dirichlet's boundary condition (3) and u=|Y —kh|

1 k
zero initial conditionsE (R, Y, u = ug) = 0,E(R,Y,u = ER,Y,u) = T4 Z(_l) LO Av1uy,00) (V)
ug) = 0, gives k

/QW dOS(R ++/(u—v)2 — (Y —kh)2e,v),  (10)
0

1 [u—uo u—|n|
ER,Y,u) = —4—/ dnG(mY)/ dv X
T
. ~(u=uo) o wherel(v) is the indicator function of the intervdl This
/ dOS(R + \/(u — 0)% — 12, v), @8) ?s the exgct solut?on for thé{ = ¢ case discussed in the
0 introduction. Putting” = 0 gives the formula we use and
the interest is in (10) foR in the bunch at timey, i.e.,
for u > wug, |Y| < g, e9 = (cosf,sin ), and R~ R,(B-u).
An important feature of (10) is that the second argument
G(n,Y) =Y Hycosapynip(Y), a, =pr/h, of the source does not depend é@nd thed integration
p=1 depends only on the bunch at timeForY = 0, thef inte-

gration is over an arc centered at the observation it

time u with radius/(u — v)? — (kh)? and whose extent

is its intersection with the bunch at time This is illus-

We emphasize that the integrand in our formula has no sifrated in the Fig. 2 fok = 0. Whenw is close tou the two

gularities and a retarded time calculation is not necessarpunches overlap and tie-support of the source is large.
Equation (8) was derived by the eigen expansior=  However, for most thed—supportis small and it is impor-

>, Entp(Y), where eaché,(R,u) satisfies a nonho- tant to determine the approximate support as shown in the

mogeneous Klein-Gordon equation. (R, W, u) := figure. Currently thcf) integration is dong v_vith_ the super-

exp(ioy, W)E, (R, u) thené, satisfies the nonhomogeneousconvergent trapezoidal rule. The remainingintegrand

wave equation, i{Z, X, W), with zero initial data and no Varies withv, R andq in ways we have not yet quantified

boundary conditions. The resultifig) wave equation is nd SO use an adaptive integrator.

solved using the retarded Green function. Making the tem-

poral argument in the source an integration variable gets BEAM FRAME

rid of the singularity and gives (8). The formula can also

be derived by the more physical method of images start- In our approach the Maxwell equations are solved in the

ing from Eq.(6) in [1], taking proper account of the initial lab frame and the Vlasov equation is solved in the beam

conditions and again making the temporal argument of thitame. Here we discuss the beam frame coordinates and

source an integration variable. the transformation of the densities between the two frames.

1 g
GY)=sinay (¥ +9), Hy= [ H(Y)0,(¥)aY. @)
9J—g
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second step the variablesaandwu are interchanged making
s the new independent variable and in the final step-
s — Bru replaces: as a dependent variable apd:= (v —
)/ replacews. (11) definess = s(R) andz = z(R)
so thatz = z(R, u) = s(R) — §,u and we have the identity
R =R, (2(R,u) + fru) + z(R)n(z(R, u) + Bru). Now z
is small in the bunch and expanding for smafiivesR =
R, (Bru) + M (B,u)r + O(k(2? + x2) and we obtain ob-
tain the approximate inverse= M7 (3,u)(R—R.(5,u)).
Here M (s) = (t(s),n(s)) andr = (z,z)7.

The equations of motion iz, z,p.,p.;s) have the
fields £(R,u) evaluated alR = R,(s)) + zn(s) and
u = (s — z)/06,. We have the following approximations
ER(s) +an(s), (s — 2)/0) = E(R (s + z) + zn(s +
z),s/0r) = ERy(Bru) + M (Bru)r,s). At the first ap-
proximation we use the fact that the fields are slowly vary-
Figure 2: Plan fo# integration. ing in s for fixedr. The second approximation uses the fact

that3,. ~ 1 and we are only interested in the fields in the

bunch forr small. We obtain
X
. 2= —k(s)r  p.=F.a(R,s)+p.F.a(R,s)
P A
X ' =p, Pl = k(s)p: + Fi(R, s), (13)
: P whereR := R,.(s) + M (s)r and’ = d/ds. The self-forces
are given approximately by
R
' q q
F,, = —E -t(s), F.o= E|-n
s ! P.c - Hs) 2 P.c I+ n(s)
F, = (=B X)(s) + ExZ\(s) = cBy),  (14)
v z where(E, Ex, By) are evaluated dR, s). We have ex-
pandedF,, in order to point out that each of the last two
Figure 3: Beam frame coordinates. terms are large whereas their difference is small.

The equations of motion (13), without the self fields,

_The beam frame is defined in terms of the reference Ofaye heen linearized. They can be solved and the solution
bit using the Frenet-Serret coordinatesr), wheres is the written ¢ = ®(s)Co, whereC = (2,2, p.,p.)". Here® is

arc length along the reference orbit ant the perpendic- the principal solution matrix which is defined in terms of

ular distance along from the orbit atR.(s) as shown in dispersion function)(s), and Rss(s) (see [2]). The

F'QI:-_ 3.1Recall the reference orbit for a bunch compressqfyations of motion in the interaction picture become
in Fig. 1.

The transformatioiZ, X) to (s, z) is ¢ = 1(s)(0, F,,0, F) " (s, o). (15)

R = R.(s)+zn(s), (11) ®(s) varies more slowly than the self-forces and so we nu-

) merically solve these rather than (13). A larger time step,
(s), X+ (s)) and the unit normal vec- \yhich is controlled entirely by the self-forces, can be used.

torn(s) := (=X.(s), Z/(s)). The corresponding tangent oy field formula is in the lab frame so the lab charge

vector ist(s) = R,.(s) = (Z(s), X;(s)). In addition, ang current densities must be determined from the beam

we definep; andp,, by P := P.(pst(s) + pan(s)), where  frame pSD. The relation between lab and beam PSDs is

P, = m~,.6-c is the momentum of the reference particle. g

Finally, we define the curvature(s) by n’(s) = k(s)t(s) co) — Pr .

and it follows thatt’(s) = —x(s)n(s). In terms of Fig. 1 Vil2, X, Pz, Priu) p? Jo(%:pspeis). - (10)

this makes< negative in the first magnet, positive in theThis leads to

second and so on.

Our lab to beam transformation has three steps: pr(R;u) ~ /dpzdpwa =: pp(r;s), (17)

whereR,.(s) := (Z,(s
_ /

N

!
T

(2, X, Pz, Px;u) = (5,2, ps; P 1) (12) JL(R;u) = Brclpp(z,z;s)t(s) + 7(2,x;5)n(s)], (18)

= (U, 2, ps, Pa; 8) = (2,2, Pz, Pas 8).-
where 7(z,2;5) = [ p.f5(2 2,05 ps; s)dpzdp.. Us-
The first step is the transformation just discussed, in theg the fact that fz(z,z,p.,p.;-) IS slowly varying
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and pp(r,s) has its support forr small, we have
pB(z(R,u), z(R); 2(R,u) + Bru) pp(f; Gru), where
i = M7 (Bu)(R— R.(Bu)). Thus

~
~

pr(R;u) = pp(f; Bru) (19)
JL(R; U) ~ ﬁrC[PB(f; ﬂru)t(z + ﬁru) =+
7(F; Bru)n(z + Bru)], (20)

where thel ;, approximation is derived similarly to that for

Proceedings of PAC07, Albuquerque, New Mexico, USA

SELF-CONSISTENT VLASOV-MAXWELL
ALGORITHMS

We have discussed our method for calculating the fields
in the lab frame and the determination of the lab frame
charge and current densities from the beam frame PSD.
Here we discuss two approaches for coupling the numerical
integration of the Vlasov equation with field calculation.

Salf-Consistent Monte Carlo (SCMC) Method

PL-

Here the basic algorithm is the same as in the UPS case

There is a subtlety in the second transformation causegCePt the field calculation can.not be dong up front and
d PL can not be computed analytically. We discuss the ba-

by interchanging the roles of ands as independent and
dependent variables. The phase space density transforn}
tion and the approximations are discussed in detail in [3].

1.

UNPERTURBED SOURCE MODEL (UPS)

In this model we uncouple the Vlasov-Maxwell system
so that it becomes a Liouville-Maxwell system. Here the
source evolves with no self-fields and the fields are calcu-
lated from this unperturbed source. The Vlasov equation o
thus becomes a Liouville equation which defines the evo-
lution of the beam frame phase space density.

We have focused on the bunch compressor with an ini-
tial Gaussian PSD density in the beam frame. Because (13)
with out self-forces is a linear system, the unperturbed PSD
is Gaussian at eachand thus the Lab frame charge density
in (19) is Gaussian. This fact speeds up the field calcula-
tion considerably. We define afs;} grid along the ref-
erence orbit and 7, X) grid at eachs, which contains
the bunch and is based on the evolution of the unperturbed
charge density. We then calculate the self-forces (14) on*™"
this grid. We could integrate the Liouville equation using
the method of local characteristics discussed below. To date
we have proceeded as follows. We generate an initial en-
semble of beam frame phase space points. We then move
the points froms; to s; 1 using (15) with the self-forces at
s;. We interpolate to determine the self-forces at points off
the (Z, X) grid.

The UPS model is not self-consistent nor is it the first 5.

c algorithm and contrast it with the PIC method used in
asov-Poisson codes.

We generate an ensemble of IID phase space points
from the densityf5(z, x, p., p.; 0) using the rejection
method. As an improvement we investigate a Quasi-
Monte Carlo approach “which seeks to construct a set
of initial points that perform significantly better than
the average of a Monte Carlo approach”, see [7]. A
similar procedure could be used in a PIC code.

We create alobally smooth lab frame charge den-
sity from the scattered beam frame phase space points.
We fit the data with a finite Fourier series where the
Fourier coefficients are calculated, as in Monte Carlo
integration, from the scattered data. This is a tech-
nigue used in statistical estimation, see e.g., [8]. We
have found that a smooth representation is quite im-
portant as Borland found for Elegant before us. Note
that this is a meshless proceedure in contrast to the
charge deposition of a PIC code.

We calculate the fields from the history of the Fourier
coefficients using our field formula in (10). In a PIC
code the Poisson equation is solved at this step (of
course, the history of the beam is not needed).

We use 3) to advance the particles in the interaction
picture of (15). In a PIC code 3) is also used to ad-
vance the particle positions.

The procedure is iterated going back to 2.

term in a systematic perturbation expansion in the size Qf/e note that our approach can treat a Vlasov-Poisson sys-
the self-forces. Nevertheless, it has been helpful in the dgsm, a5 a special case. Also, our method is not a macropar-
velopment of our self-consistent code because it is a goqgtie method in the sense of modeling Anparticle bunch
testing ground for our numerical and approximation proy;ith 1/ <« N macroparticles and letting them interact as
cedures and computation with a Gaussian is fast. FUfgint particles. We assume the electron bunch is well ap-
thermore, it may give a good approximation to the selfy oximated by a continuum evolved by the Viasov equa-

consistent case in some parameter range, [4, 5, 6].

tion and hope that our algorithm approximates the true

Two particular points are worth mentioning. Our studyVlasov dynamics. This is analogous to Monte Carlo inte-
of the UPS has given us insight into how to construct gration where convergence follows from the strong law of

space-time grid for the SCMC algorithm described belowarge numbers and the central limit theorem and we hope to
In addition, we have found that for certain parameters, e.gprove convergence. However, even though we expect con-
a small uncorrelated energy spread, a moving grid will b&ergence, the calculation of the PSD is probably beyond

necessary for the PSD.
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A parallel code has been developed and results for expected big differences &0 MeV because collective ef-
bunch compressor are presented in [6]. fects should be stronger, and while we find significant dif-
ferences, the UPS calculation is still a worthwhile first ap-
proximation to the SCMC results. For these comparisons
we had a Gaussian source with linear chirp, evolving under

The beam frame Vlasov equation is given by lattice dynamics. We have preliminary results for the same

with nonlinear chirp and a parabolic densityzin

Osf+2'0.f +2'0uf +p.0p. [ + 0,0, f =0, (21) Our biggest strategic challenge at present is to develop

the Vlasov technique for single-pass systems, with 4D
using (13-14). The basic idea of the method of local charphase space and energy chirp. Vlasov solutions in 4D have
acteristics for an arc length step from— s + A is quite  already been done by Sobol [13], for the coherent beam-
simple: (i) let values of (14) on the interval s+ A] bethe  beam interaction. There the meshing problems and com-
value ats. Thus the Vlasov equation becomes a Liouvilleplexity of the distribution are not severe, and programming
equation on that interval, (i) The Liouville equation canthe force calculation (by a Poisson solver) is much simpler.
then be solved on that interval by the standard method @n the other hand, the time of integration is very much
characteristics, which integrates (13) backward feomA  longer. We hope that in our single-pass problem the rela-
to s. It's hard to imagine a better approach, as long as thively short time of integration, combined with coordinate
collective force is not rapidly varying, since this approactchanges and the interaction picture, will lead to feasible
preserves the geometry of the solutions. calculations. Since a large time is required for the force

We implement this method as follows. Assume that;at calculation, we must devote more work to optimizing that
we have a phase space grid containing the bunch, the P$@rt of the algorithm. For that the 1D source model [14]
on the grid and the self-fields on the projected spatial gridnay provide insights as well as fast force evaluations for
We then determine a phase space grig.at, integrate exploratory work.
these points back te; and place them in the grid at;.
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