
Improved second-order evaluation
for unconstrained nonlinear optimization
using high-order regularized models 
 
AC Cartis, NIM Gould, PH L Toint
 

August 2017
 
Submitted for publication in SIAM Jounal on Optimization  

   Preprint 
RAL-P-2017-006



RAL Library 
STFC Rutherford Appleton Laboratory 
R61 
Harwell Oxford 
Didcot 
OX11 0QX 
 
Tel: +44(0)1235 445384 
Fax: +44(0)1235 446403 
email: libraryral@stfc.ac.uk 
 
Science and Technology Facilities Council preprints are available online 
at: http://epubs.stfc.ac.uk 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ISSN 1361- 4762 
 
 
 
Neither the Council nor the Laboratory accept any responsibility for 
loss or damage arising from the use of information contained in any of 
their reports or in any communication about their tests or 
investigations. 

mailto:libraryral@stfc.ac.uk�
http://epubs.stfc.ac.uk/�


Improved second-order evaluation complexity for

unconstrained nonlinear optimization using

high-order regularized models

Coralia Cartis1, Nicholas I. M. Gould2,3 and Philippe L. Toint4

ABSTRACT

The unconstrained minimization of a sufficiently smooth objective function f(x) is considered, for

which derivatives up to order p, p ≥ 2, are assumed to be available. An adaptive regularization

algorithm is proposed that uses Taylor models of the objective of order p and that is guaranteed

to find a first- and second-order critical point in at most O

(

max

(

ǫ
− p+1

p

1 , ǫ
− p+1

p−1

2

))

function and

derivatives evaluations, where ǫ1 and ǫ2 > 0 are prescribed first- and second-order optimality

tolerances. Our approach extends the method in Birgin et al. (2016) to finding second-order

critical points, and establishes the novel complexity bound for second-order criticality under

identical problem assumptions as for the first-order case, namely, that the p-th derivative tensor

is Lipschitz continuous and that f(x) is bounded from below. The evaluation-complexity bound

for second-order criticality improves on all such known existing results.
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1 Introduction

A question of general interest in computational optimization is to know how many evaluations

of the functions that define a given problem are needed for an algorithm to find an estimate of a

local minimizer. Considerable advances have been made on this topic, both for convex problems

[15] and nonconvex ones [6]. Although much of this research has been devoted to the important

issue of finding approximate first-order critical points, some authors have addressed the case

where higher-order necessary optimality conditions must also be satisfied.

We consider the unconstrained minimization of a C2 objective function f : IRn → IR. It is,

of course, well known that a finite minimizer x∗ of f necessarily satisfies the first- and second-

order criticality conditions ∇xf(x∗) = 0 and λleft(∇
2f2(x∗)) ≥ 0, where λleft denotes the leftmost

eigenvalue of its symmetric matrix argument. Thus a reasonable requirement might be to find a

point xk for which

‖∇xf(xk)‖ ≤ ǫ1 and λleft

(

∇2
xf(xk)

)

≥ −ǫ2 (1.1)

for given, small ǫ1, ǫ2 > 0 and suitable norm ‖ · ‖.

The earliest analysis we are aware of that provides both first- and second-order evaluation

complexity guarantees considers cubic regularization methods and shows that at most

O
(

max
(

ǫ
−3/2
1 , ǫ−3

2

))

(1.2)

evaluations of f are required to satisfy (1.1) so long as the objective function is bounded from

below, and its Hessian is Lipschitz continuous [16]. Adaptive cubic regularization variants with in-

exact subproblem solves and similar guarantees were proposed in [4, 5]. Under similar conditions,

many trust-region (TR) algorithms require at most O
(

max
(

ǫ−2
1 , ǫ−3

2

))

evaluations. Crucially, ex-

amples are known for which such order estimates are tight both for trust-region and regularization

methods [5]. Of late, more sophisticated trust region methods and quadratic regularization ones

have been proposed that echo the order of the ARC estimates [9, 14, 2]. At the same time, other

methods [10, 12] have been shown to mirror the TR-like evaluation estimate in a more general

or simplified way, respectively.

The fact that the best-known evaluation bound for ARC is essentially tight, suggests that in

order to do better, one needs to add further ingredients. A similar picture emerged for evaluation

bounds for first-order critical points: improved bounds of order O

(

ǫ
− p+1

p

1

)

, p ≥ 2, were obtained

in [1] for p-times continuously differentiable functions using regularization methods that employ

higher-order local models. This will be the theme here. In order to improve upon the estimate

(1.2) for second-order criticality, we will use a higher-order model and regularization. The model

minimization conditions however, are approximate and local, for both first- and second-order

criticality.

In §2, we define terminology and propose our new algorithm, while in §3, we provide a

convergence analysis that indicates an improved complexity bound. We provide further comments

and perspectives in §4.
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2 A regularized p-th order model and algorithm

Let p ≥ 2. Consider the optimization problem

min
x∈IRn

f(x), (2.1)

where we assume that f ∈ Cp,1(IRn), namely, that:

• f is p-times continuously differentiable;

• f is bounded below by flow

• the p-th derivative of f at x, the p-th order tensor

∇p
xf(x) =

[

∂pf(x)

∂xi1 . . . ∂xip

]

ij∈{1,...,n},j=1,...,p

is globally Lipschitz continuous, that is, there exists a constant L ≥ 0 such that, for all

x, y ∈ IRn,

‖∇p
xf(x)−∇p

xf(y)‖[p] ≤ (p− 1)!L‖x − y‖. (2.2)

In (2.2), ‖ · ‖[p] is the tensor norm recursively induced by the Euclidean norm ‖ · ‖ on the space

of p-th order tensors, which is given by

‖T‖[p]
def
= max

‖v1‖=···=‖vp‖=1
|T [v1, . . . , vp]|, (2.3)

where T [v1, . . . , vj ] stands for the tensor of order p − j ≥ 0 resulting from the application of the

p-th order tensor T to the vectors v1, . . . , vj
1. Let Tp(x, s) be the Taylor series of the function

f(x+ s) at x truncated at order p

Tp(x, s)
def
= f(x) +

p
∑

j=1

1

j!
∇j

xf(x)[s]
j , (2.4)

where the notation T [s]j stands for the tensor T applied j times to the vector s.

We shall use the following crucial bounds.

Lemma 2.1 [See Appendix A.1]. Let f ∈ Cp,1(IRn), and Tp(x, s) be the Taylor approxima-

tion of f(x+ s) about x. Then for all x, s ∈ IRn,

f(x+ s) ≤ Tp(x, s) +
L

p
‖s‖p+1, (2.5)

‖∇1
xf(x+ s)−∇1

sTp(x, s)‖[1] ≤ L‖s‖p (2.6)

and

‖∇2
xf(x+ s)−∇2

sTp(x, s)‖[2] ≤ (p− 1)L‖s‖p−1. (2.7)

1Note that ‖ · ‖[1] = ‖ · ‖, the usual Euclidean vector norm.



Evaluation complexity for second-order criticality using higher-order models 3

In order to describe our algorithm, we define the regularized Taylor series model

m(x, s, σ) = Tp(x, s) +
σ

p+ 1
‖s‖p+1, (2.8)

whose gradient and Hessian are

∇1
sm(x, s, σ) = ∇1

sTp(x, s) + σ‖s‖p
s

‖s‖
(2.9)

and

∇2
sm(x, s, σ) = ∇2

sTp(x, s) +
σ

p+ 1
∇2

s

(

‖s‖p+1
)

, (2.10)

where

∇2
s

(

‖s‖p+1
)

= (p+ 1)
[

(p− 1)‖s‖p−3ssT + ‖s‖p−1I
]

. (2.11)

Note that

m(x, 0, σ) = Tp(x, 0) = f(x). (2.12)

For the objective function f , we define first- and second-order criticality measures as

χf,1(x)
def
= ‖∇1

xf(x)‖ (2.13)

and

χf,2(x)
def
= max

[

0,−λf (x)
]

= max
[

0,− min
‖y‖=1

∇2
xf(x)[y]

2
]

(2.14)

where λf (x)
def
= λleft[∇

2
xf(x)]. Similarly, for the model (2.8), we consider the measures

χm,1(x, s, σ)
def
= ‖∇1

sm(x, s, σ)‖ (2.15)

and

χm,2(x, s, σ)
def
= max

[

0,−λm(x, s, σ)
]

= max
[

0,− min
‖y‖=1

∇2
sm(x, s, σ)[y]2

]

(2.16)

where λm(x, s, σ)
def
= λleft[∇

2
sm(x, s, σ)].

The minimization algorithm we consider is now described in detail in Algorithm 2.1. Note

that if the second-order conditions are removed – namely, the conditions for i = 2 in (2.18) and

(2.20) – then this method reduces to the ARp algorithm in [1].

Algorithm 2.1: ARp

Step 0: Initialization. An initial point x0 and an initial regularization parameter σ0 >

0 are given, as well as an accuracy levels ǫ1, ǫ2 and ǫ3. The constants θ, η1, η2, γ1,

γ2, γ3 and σmin are also given and satisfy

θ > 0, σmin ∈ (0, σ0], 0 < η1 ≤ η2 < 1 and 0 < γ1 < 1 < γ2 < γ3. (2.17)

Compute f(x0) and set k = 0.
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Step 1: Test for termination. Evaluate {∇i
xf(xk)}

2
i=1. If

χf,i(xk) ≤ ǫi for i = 1, 2, (2.18)

terminate with the approximate solution xǫ = xk. Otherwise compute derivatives

of f from order 3 to p at xk.

Step 2: Step calculation. Compute the step sk by approximately minimizing the

model m(xk, s, σk) with respect to s in the sense that the conditions

m(xk, sk, σk) < m(xk, 0, σk) (2.19)

and

χm,i(xk, sk, σk) ≤ θ‖sk‖
p+1−i, (i = 1, 2) (2.20)

hold.

Step 3: Acceptance of the trial point. Compute f(xk + sk) and define

ρk =
f(xk)− f(xk + sk)

Tp(xk, 0) − Tp(xk, sk)
. (2.21)

If ρk ≥ η1, then define xk+1 = xk + sk; otherwise define xk+1 = xk.

Step 4: Regularization parameter update. Set

σk+1 ∈











[max(σmin, γ1σk), σk] if ρk ≥ η2,

[σk, γ2σk] if ρk ∈ [η1, η2),

[γ2σk, γ3σk] if ρk < η1.

(2.22)

Increment k by one and go to Step 1 if ρk ≥ η1 or to Step 2 otherwise.

Each iteration of this algorithm requires the approximate minimization of m(xk, s, σk), and we

note that conditions (2.19) and (2.20) are always achievable as they are satisfied at a second-order

critical point of m(x, s, σ). Indeed, existing algorithms, such as the standard second-order trust-

region method [8, §6.6] and ARC [3] will find such a point as the regularized Taylor model is both

sufficiently smooth and bounded from below.2 Moreover, this approximate minimization does not

involve additional computations of f nor its derivatives at points other than xk, and therefore the

precise method used, and the resulting effort spent, in Step 2 have no impact on the evaluation

complexity3. Finally note that the second condition in (2.20) disappears if λleft(∇
2
xTp(x, s)) ≥ 0.

Iterations for which ρk ≥ η1 (and hence xk+1 = xk + sk) are called “successful” and we

denote by Sk
def
= {0 ≤ j ≤ k | ρj ≥ η1} the index set of all successful iterations between 0

and k. We also denote the complement, Uk, of Sk in {0, . . . , k}, that corresponds to the index

set of “unsuccessful” iterations between 0 and k. Note that, before termination, each successful

2When p is even, m(x, s, σ) is smooth everywhere but at the origin, but a step from s = 0 in the steepest-

descent/eigen direction will move to a region for which the model is always smooth.
3We implicitly assume here that derivatives at xk can be stored explicitly.
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iteration requires the evaluation of f and its first p derivatives, while only the evaluation of f is

needed at unsuccessful ones.

3 Complexity analysis

As it is typical for a complexity analysis of (regularization and other) methods, we proceed by

showing lower bounds on the Taylor model decrease and on the length of the step at each iteration.

The proofs of the next three lemmas is very similar to corresponding results in [1] and hence we

defer the proofs to the appendix (but still include them for completeness, as the algorithm has

changed).

Lemma 3.1 The mechanism of Algorithm 2.1 guarantees that, for all k ≥ 0,

Tp(xk, 0)− Tp(xk, sk) ≥
σk

p+ 1
‖sk‖

p+1, (3.1)

and so (2.21) is well-defined.

We next deduce a simple upper bound on the regularization parameter σk.

Lemma 3.2 Let f ∈ Cp,1(IRn). Then, for all k ≥ 0,

σk ≤ σmax
def
= max

[

σ0,
γ3L(p+ 1)

p (1− η2)

]

. (3.2)

Our next move, very much in the line of the theory proposed in [4, 1], is to show that the

step cannot be arbitrarily small compared with the gradient of the objective function at the trial

point xk + sk.

Lemma 3.3 Let f ∈ Cp,1(IRn). Then, for all k ≥ 0,

‖sk‖ ≥

(

χf,1(xk + sk)

L+ θ + σk

)
1
p

. (3.3)

Next we show that the step cannot also be arbitrarily small compared to the second order

criticality measure (2.14) at the trial point xk + sk. This is the crucial novel ingredient of the

paper, that is essential to the improved second-order complexity results.



Evaluation complexity for second-order criticality using higher-order models 6

Lemma 3.4 Let f ∈ Cp,1(IRn). Then, for all k ≥ 0,

‖sk‖ ≥

(

χf,2(xk + sk)

(p− 1)L+ θ + pσk

)
1

p−1

. (3.4)

Proof. Using (2.8) and the fact that minz[a(z) + b(z)] ≥ minz[a(z)] + minz[b(z)], we find

that

λf (xk + sk) = min
‖y‖=1

∇2
xf(xk + sk)[y]

2

= min
‖y‖=1

(

∇2
xf(xk + sk)−∇2

sTp(xk, sk)−
σk

p+ 1
∇2

s‖sk‖
p+1 +∇2

sm(xk, sk, σk)

)

[y]2

≥ min
‖y‖=1

(

∇2
xf(xk + sk)−∇2

sTp(xk, sk)
)

[y]2 +
σk

p+ 1
min
‖y‖=1

(

−∇2
s‖sk‖

p+1
)

[y]2+

min
‖y‖=1

∇2
sm(xk, sk, σk)[y]

2

Considering each term in turn, and using (2.3) and (2.7), we see that

min
‖y‖=1

(

∇2
xf(xk + sk)−∇2

sTp(xk, sk)
)

[y]2

≥ min
‖y1‖=‖y2‖=1

(

∇2
xf(xk + sk)−∇2

sTp(xk, sk)
)

[y1, y2]

≥ − max
‖y1‖=‖y2‖=1

∣

∣

(

∇2
xf(xk + sk)−∇2

sTp(xk, sk)
)

[y1, y2]
∣

∣

= −‖∇2
xf(xk + sk)−∇2

sTp(xk, sk)‖[2]
≥ −(p− 1)L‖sk‖

p−1,

and using (2.11), we find that ∇2
s

(

‖sk‖
p+1

)

[y]2 = (p+1)[(p−1)‖sk‖
p−3(sTk y)

2+‖sk‖
p−1‖y‖2],

and so

min
‖y‖=1

(

−∇2
s(‖sk‖

p+1)
)

[y]2 = − max
‖y‖=1

∇2
s(‖sk‖

p+1)[y]2 = −p(p+ 1)‖sk‖
p−1.

Recalling (2.16), we have min‖y‖=1 ∇
2
sm(xk, sk, σk)[y]

2 = λm(xk, sk, σk). This, and the last

two displayed equations imply that

−λf (xk + sk) ≤ (p− 1)L‖sk‖
p−1 + pσk‖sk‖

p−1 −min[0, λm(xk, sk, σk)]. (3.5)

As the right hand side of (3.5) is nonnegative, the bound (3.5) can be re-written as

max[0,−λf (xk + sk)] ≤ [(p− 1)L+ pσk] ‖sk‖
p−1 +max[0,−λm(xk, sk, σk)].

Combining the above with (2.14) and (2.16), and with (2.20) with i = 2, we conclude

χf,2(xk + sk) ≤ ((p − 1)L+ pσk)‖sk‖
p−1 + χm,2(xk, sk, σk)

≤ ((p − 1)L+ θ + pσk)‖sk‖
p−1

and (3.4) follows. ✷
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We now bound the number of unsuccessful iterations as a function of the number of successful

ones and include a proof in the Appendix.

Lemma 3.5 [4, Theorem 2.1] The mechanism of Algorithm 2.1 guarantees that, if

σk ≤ σmax, (3.6)

for some σmax > 0, then

k + 1 ≤ |Sk|

(

1 +
| log γ1|

log γ2

)

+
1

log γ2
log

(

σmax

σ0

)

. (3.7)

Using all the above results, we are now in position to state our main evaluation complexity

result.

Theorem 3.6 Let f ∈ Cp,1(IRn). Then, given ǫ1 > 0 and ǫ2 > 0, Algorithm 2.1 needs at

most
⌊

κs(f(x0)− flow)max

(

ǫ
− p+1

p

1 , ǫ
− p+1

p−1

2

)⌋

+ 1

successful iterations (each involving one evaluation of f and its p first derivatives) and at

most
⌊

κs(f(x0)− flow)max

(

ǫ
− p+1

p

1 , ǫ
− p+1

p−1

2

)⌋(

1 +
| log γ1|

log γ2

)

+
1

log γ2
log

(

σmax

σ0

)

+ 1

iterations in total to produce an iterate xǫ such that ‖∇1
xf(xǫ)‖ ≤ ǫ1 and λleft

(

∇2
xf(xǫ)

)

≥

−ǫ2, where σmax is given by (3.2) and where

κs
def
=

p+ 1

η1σmin
max

(

(L+ θ + σmax)
p+1
p , ((p− 1)L+ θ + pσmax)

p+1
p−1

)

.

Proof. At each successful iteration k before termination, either the first order or the second

order approximate optimality condition must fail (at the next iteration), namely,

χf,1(xk+1) > ǫ1 or χf,2(xk+1) > ǫ2, (3.8)

and we also have the guaranteed decrease

f(xk)− f(xk+1) ≥ η1(Tp(xk, 0)− Tp(xk, sk)) ≥
η1σmin

p+ 1
‖sk‖

p+1 (3.9)

where we used (2.21), (3.1) and (2.22). For any successful iteration for which the first condition

in (3.8) holds, we deduce from (3.9), (3.3) and (3.2) that

f(xk)− f(xk+1) ≥ κ1ǫ
p+1
p

1 where κ1
def
=

η1σmin

p+ 1

(

1

L+ θ + σmax

)
p+1
p

. (3.10)
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Similarly, for any successful iteration for which the second condition in (3.8) holds, we deduce

from (3.9), (3.4) and (3.2) that

f(xk)− f(xk+1) ≥ κ2ǫ
p+1
p−1

2 where κ2
def
=

η1σmin

p+ 1

(

1

(p − 1)L+ θ + pσmax

)
p+1
p−1

. (3.11)

Thus on any successful iteration until termination we can guarantee the minimal of the two

decreases in (3.10) and (3.11), and hence, since {f(xk)} decreases monotonically,

f(x0)− f(xk+1) ≥ min[κ1, κ2]min

[

ǫ
p+1
p

1 , ǫ
p+1
p−1

2

]

· |Sk|.

Using that f is bounded below by flow, we conclude

|Sk| ≤
f(x0)− flow

min[κ1, κ2]
max

[

ǫ
− p+1

p

1 , ǫ
− p+1

p−1

2

]

until termination, from which the desired bound on the number of successful iterations follows.

Lemma 3.5 is then invoked to compute the upper bound on the total number of iterations.

✷

Observe that we may modify the algorithm to seek only first-order points by restricting (2.20)

to i = 1. The corresponding complexity is then

O

(

ǫ
− p+1

p

1

)

,

which coincides with the bound in [1]. Moreover the same complexity result holds if, by chance,

λleft

(

∇2
xf(xk)

)

≥ −ǫ2 for all iterations. By contrast, if ǫ1 is so large that ‖∇1
xf(xk)‖ ≤ ǫ1 at

every iteration, the complexity is

O

(

ǫ
− p+1

p−1

2

)

to find a point with a sufficiently large leftmost eigenvalue.

4 Final comments

Our goal has been to devise an algorithm that can guaranteed to find an approximate first- and

second-order critical point in fewer evaluations than the best known current champions. The new

algorithm we have designed finds such a point in at most

O

(

max

(

ǫ
− p+1

p

1 , ǫ
− p+1

p−1

2

))

function and derivative evaluations under suitable differentiablity and Lipschitz continuity con-

ditions. When p = 2, we recover the standard best bound (1.2), while for p = 3, this improves

to O
(

max
(

ǫ
−4/3
1 , ǫ−2

2

))

function and derivative evaluations, and approaches O
(

max
(

ǫ−1
1 , ǫ−1

2

))

evaluations as p increases to infinity. Of course, this comes at an increased cost of requiring

derivatives of order up to p, and of needing to approximately solve a potentially harder step

subproblem. Note though, that the conditions (2.19) and (2.20) for model minimization are only
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local ones, and that the improved second-order approximate criticality result is achieved under

the same problem assumptions as the first order one (in [1] and here).

In practice, the test (2.18) for termination in Step 1 of Algorithm 2.1 would be arranged to

check one of the pair of required inequalities, and only to check the other if the first holds (the

order is immaterial). One could imagine a variant of the algorithm in which failure of one (but not

both) of (2.18) might influence the requirement for the next step calculation/model minimization.

Specifically, if χf,1(xk) > ǫ1, one might simply require that χm,1(xk, sk, σk) ≤ θ‖sk‖
p rather than

(2.20) as this alone would aim to improve first-order criticality. However, though this decoupling

is possible both in practice and in the analysis, it is not as straightforward as in the case of

say, trust-region methods [12], as the lower bounds on the step in (3.3) and (3.4) depend on the

objective’s gradient and Hessian value at the next trial point/iterate, not the current xk. Also,

one might modify the ARp algorithm to check the optimality measures (2.18) at every trial point,

not just successful ones. This may allow earlier termination but possibly at an unsuccessful step

and at increased first- and second-derivatives evaluation cost.

While one might be tempted to try to provide bounds for an algorithm that guarantees

approximate third- and higher-order necessary optimality conditions, we have not, as yet, been

able to do so. The main sticking point has been that third-order necessary conditions involve

the behaviour of the third-order term of the Taylor series in the nullspace of the Hessian (if it

exists) and that this (typically proper) subspace of IRn is highly sensitive. Its use or the use

of an approximating set is therefore open to miss-diagnosis. Higher-order criticality becomes

successively trickier; the critical spaces are then no longer subspaces but cones [7].

Extending the approach here to the constrained case, even convex constraints, also seems

challenging as the connection between model eigenvalues and function eigenvalues in a set is no

longer straightforward. Another aspect for future work is quantifying the cost of the subproblem

solution in a similar vein to recent works [11, 13], where there is particular interest due to

large scale applications, in quantifying the number of derivative actions required per iteration

as derivatives cannot be stored/called explicitly. More generally, finding efficient ways to solve

higher order polynomial models would bring ARp methods closer to practical use.
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Appendix A

A.1 Proof of Lemma 2.1

As in [7], consider the Taylor identity

φ(1) − τk(1) =
1

(k − 1)!

∫ 1

0
(1− ξ)k−1[φ(k)(ξ)− φ(k)(0)] dξ (A.1)

involving a given univariate Ck function φ(α) and its k-th order Taylor approximation

τk(α) =

k
∑

i=0

φ(i)(0)
αi

i!

expressed in terms of the value φ(0) = φ and ith derivatives φ(i), i = 1, . . . , k. Then, picking

φ(α) = f(x+ αs) and k = p, the identity

∫ 1

0
(1− ξ)k−1 dξ =

1

k
, (A.2)

(2.2), (2.3) and (A.1) imply that, for all x, s ∈ IRn,

f(x+ s) ≤ Tp(x, s) +
L

p
‖s‖p+1

[7, (2.8) with Lf,p = (p − 1)!L] since τp(1) = Tp(x, s), which is the required (2.5).

Likewise, for an arbitrary unit vector v, selecting instead φ(α) = ∇1
xf(x+αs)[v] and k = p−1,

it follows from (A.1) that

(∇1
xf(x+ s)−∇1

sTp(x, s))[v]

= 1
(p− 2)!

∫ 1

0
(1− ξ)p−2(∇p

xf(x+ ξs)−∇p
xf(x))[s]

p−1[v] dξ
(A.3)

since τp−1(1) = ∇1
sTp(x, s)[v]. Thus, using the symmetry of the derivative tensors, picking v

to maximize the absolute value of the left-hand side of (A.3) and using (A.2), (2.3) and (2.2)

successively, we obtain that

‖∇1
xf(x+ s)−∇1

sTp(x, s)‖[1]

= 1
(p− 2)!

∣

∣

∣

∣

∣

∫ 1

0
(1− ξ)p−2(∇p

xf(x+ ξs)−∇p
xf(x))[v]

[

s

‖s‖

]p−1

‖s‖p−1dξ

∣

∣

∣

∣

∣

≤ 1
(p− 2)!

[
∫ 1

0
(1− ξ)p−2dξ

]

max
ξ∈[0,1]

∣

∣

∣

∣

∣

(∇p
xf(x+ ξs)−∇p

xf(x))[v]

[

s

‖s‖

]p−1
∣

∣

∣

∣

∣

‖s‖p−1

≤ 1
(p− 1)!

max
ξ∈[0,1]

max
‖w1‖=···=‖wp‖=1

|(∇p
xf(x+ ξs)−∇p

xf(x))[w1, . . . , wp]| ‖s‖
p−1

= 1
(p− 1)!

max
ξ∈[0,1]

‖∇p
xf(x+ ξs)−∇p

xf(x)‖[p]‖s‖
p−1

≤ L‖s‖p

which gives (2.6).
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Finally, for arbitrary unit vectors v1 and v2, choosing φ(α) = ∇2
xf(x+αs)[v1, v2] and k = p−2,

the identity τp−2(1) = ∇2
sTp(x, s)[v1, v2] and (A.1) together show that

(∇2
xf(x+ s)−∇2

sTp(x, s))[v1, v2]

= 1
(p− 3)!

∫ 1

0
(1− ξ)p−3(∇p

xf(x+ ξs)−∇p
xf(x))[v1, v2][s]

p−2 dξ.
(A.4)

As before, picking v1 and v2 to maximize the absolute value of the left-hand side of (A.4),

‖∇2
xf(x+ s)−∇2

sTp(x, s)‖[2]

= 1
(p− 3)!

∣

∣

∣

∣

∣

∫ 1

0
(1− ξ)p−3(∇p

xf(x+ ξs)−∇p
xf(x))[v1, v2]

[

s

‖s‖

]p−2

‖s‖p−2 dξ

∣

∣

∣

∣

∣

≤ 1
(p− 3)!

[
∫ 1

0
(1− ξ)p−3dξ

]

max
ξ∈[0,1]

∣

∣

∣

∣

∣

(∇p
xf(x+ ξs)−∇p

xf(x))[v1, v2]

[

s

‖s‖

]p−2

‖s‖p−2

∣

∣

∣

∣

∣

≤ 1
(p− 2)!

max
ξ∈[0,1]

max
‖w1‖=···=‖wp‖=1

|(∇p
xf(x+ ξs)−∇p

xf(x))[w1, . . . , wp]‖ s‖
p−2

= 1
(p− 2)!

max
ξ∈[0,1]

‖∇p
xf(x+ ξs)−∇p

xf(x)‖[p]‖s‖
p−2

≤ (p− 1)L‖s‖p−1

again using (2.2), (2.3) and (A.2). which provides (2.7).

A.2 Proof of Lemmas in Section 3

Proof of Lemma 3.1 (See [1, Lemma 2.1]) Observe that, because of (2.19) and (2.8),

0 < m(xk, 0, σk)−m(xk, sk, σk) = Tp(xk, 0)− Tp(xk, sk)−
σk

p+ 1
‖sk‖

p+1

which implies the desired bound. Note that sk 6= 0 as long as we can satisfy condition (2.19),

and so (3.1) implies (2.21) is well defined. ✷

Proof of Lemma 3.2 (See [1, Lemma 2.2]) Assume that

σk ≥
L(p+ 1)

p (1− η2)
. (A.5)

Using (2.5) and (3.1), we may then deduce that

|ρk − 1| ≤
|f(xk + sk)− Tp(xk, sk)|

|Tp(xk, 0)− Tp(xk, sk)|
≤

L(p+ 1)

p σk
≤ 1− η2

and thus that ρk ≥ η2. Then iteration k is very successful in that ρk ≥ η2 and σk+1 ≤ σk. As a

consequence, the mechanism of the algorithm ensures that (3.2) holds. ✷

Proof of Lemma 3.3 (See [1, Lemma 2.3]) Using the triangle inequality, (2.6), (2.9) and



Evaluation complexity for second-order criticality using higher-order models 13

(2.20) for i = 1, we obtain that

χf,1(xk + sk) ≤ ‖∇1
xf(xk + sk)−∇1

sTp(xk, sk)‖+

∥

∥

∥

∥

∇1
sTp(xk, sk) + σk‖sk‖

p sk
‖sk‖

∥

∥

∥

∥

+σk‖sk‖
p

= ‖∇1
xf(xk + sk)−∇1

sTp(xk, sk)‖[1] + χm,1(xk, sk, σk) + σk‖sk‖
p

≤ L‖sk‖
p + χm,1(xk, sk, σk) + σk‖sk‖

p

≤ [L+ θ + σk] ‖sk‖
p

and (3.3) follows. ✷

Proof of Lemma 3.5. The regularization parameter update (2.22) gives that, for each k,

γ1σj ≤ max[γ1σj, σmin] ≤ σj+1, j ∈ Sk, and γ2σj ≤ σj+1, j ∈ Uk.

Thus we deduce inductively that

σ0γ
|Sk|
1 γ

|Uk|
2 ≤ σk.

We therefore obtain, using (3.6), that

|Sk| log γ1 + |Uk| log γ2 ≤ log

(

σmax

σ0

)

,

which then implies that

|Uk| ≤ −|Sk|
log γ1
log γ2

+
1

log γ2
log

(

σmax

σ0

)

,

since γ2 > 1. The desired result (3.7) then follows from the equality k + 1 = |Sk|+ |Uk| and the

inequality γ1 < 1 given by (2.17). ✷
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