
RAL-TR-2009-007

February 2009

J. A. Scott

A note on a simple constrained ordering
for saddle-point systems

c© Science and Technology Facilities Council

Enquires about copyright, reproduction and requests for additional
copies of this report should be addressed to:

Library and Information Services
SFTC Rutherford Appleton Laboratory
Harwell Science and Innovation Campus
Didcot
OX11 0QX
UK
Tel: +44 (0)1235 445384
Fax: +44(0)1235 446403
Email: library@rl.ac.uk

The STFC ePublication archive (epubs), recording the scientific output of the
Chilbolton, Daresbury, and Rutherford Appleton Laboratories is available
online at: http://epubs.cclrc.ac.uk/

ISSN 1358-6254

Neither the Council nor the Laboratory accept any responsibility for loss or
damage arising from the use of information contained in any of their reports
or in any communication about their tests or investigation

A note on a simple constrained ordering for

saddle-point systems1

by

Jennifer A. Scott

Abstract

A well-known problem with sparse direct solvers is that, if numerical pivoting is required, the number

of entries in the computed factors can be significantly greater than the number predicted on the basis of

the sparsity pattern alone. In this note, we review a simple constrained ordering recently proposed by

Bridson [1] for saddle-point systems. Bridson’s approach allows the factorization to be computed without

numerical pivoting but numerical experiments show that the computed factors are generally significantly

denser than those obtained by prescaling the matrix and then using an unconstrained ordering combined

with threshold partial pivoting.

Keywords: large sparse symmetric linear systems, direct solvers, pivoting, scaling.

1 This work was supported by the EPSRC grant EP/E053351/1.

Computational Science and Engineering Department,

Atlas Centre, Rutherford Appleton Laboratory,

Oxon OX11 0QX, England.

1 Introduction

It is well-known that it is challenging to design direct solvers to efficiently and accurately solve linear

systems Kx = b when K is of the form

K =

(

A BT

B C

)

, (1.1)

with A symmetric positive definite, B rectangular, and C symmetric positive semi-definite. Matrices

of the form (1.1) are often called saddle-point matrices or, in the special case C = 0, KKT matrices, in

reference to the Karush-Kuhn-Tucker first-order necessary optimality conditions for the solution of general

nonlinear programming problems. KKT matrices arise in equality and inequality constrained nonlinear

programming, sparse optimal control, and mixed finite-element discretizations of partial differential

equations.

For indefinite systems, direct methods compute a matrix factorization LDLT of a permutation of K,

where L is unit lower triangular and D is block diagonal with blocks of order 1 or 2. The solution process

is completed by performing forward and back substitutions (that is, by first solving a lower triangular

system and then an upper triangular system). An analyse phase normally chooses the permutation to

minimise the number of entries in L and works with the pattern of the matrix only. For stability, it is

generally necessary either to incorporate numerical pivoting within the factorization process or to modify

the matrix being factorized (or a combination of both). Important disadvantages of numerical pivoting are

that it adds a logistical overhead and since pivots that do not satisfy the threshold pivot test are delayed

(that is, used later than expected in the elimination order), there can be significant fill in the matrix factor

beyond that predicted by the analyse phase. This is particularly true for KKT systems (see, for example,

[4, 7]). On the other hand, modifying the matrix generally necessitates some kind of iterative process to

try and recover the required accuracy but convergence of such a process is not guaranteed. This has led to

interest in constrained orderings that are sufficient to guarantee the existence of the LDLT factorization.

The aim of a constrained ordering is to find a permutation Q such that QKQT can be factorized stably

without the need for numerical pivoting and without modifying the entries in K, while still limiting the

number of entries in L. This problem has been examined for special classes of matrices by a number of

authors. Of practical interest is the class of F matrices, where each column of B has exactly two entries

which sum to zero and C = 0. These arise in, for example, Stokes flow problems. Tuma [18] and De

Niet and Wubs [3] have presented methods for these problems and report positive results. Most recently,

Bridson [1] has proposed a constrained ordering for more general saddle-point problems where A is definite

and B has full rank.

In this note, we review the method of Bridson and illustrate its effectiveness for saddle-point problems

arising from practical applications. Our experiments show that, while the method generally works in

practice, it can lead to many more entries in the matrix factor than are obtained by prescaling of the

linear system and then using partial pivoting.

2 Simple constrained ordering

We use the terminology of Bridson [1] and divide the nodes of the adjacency graph of the matrix K into two

disjoint sets: those that correspond to the diagonal entries of A are known as A-nodes and the remaining

nodes as C-nodes. The ordering constraint proposed by Bridson [1] is extremely simple: a C-node can

only be ordered after all its A-node neighbours in the graph of K have been ordered. Bridson shows that,

provided A is definite and B is of full row rank, with this ordering the LDLT factorization exists. Moreover,

the pivots associated with the A-nodes are guaranteed to be positive and those associated with C-nodes are

guaranteed to be negative. By rescaling, L← L|D|1/2 and D ← sign(D) = diag(±1), the diagonal matrix

is fully determined in advance by the structure of the problem, independent of numerical values. Bridson

refers to this as the signed Cholesky factorization of K. It allows him to modify a Cholesky factorization

1

code to perform the factorization of the indefinite matrix K with no numerical pivoting. A stability

analysis is lacking but Bridson reports that numerical experiments indicate the constrained ordering is

generally sufficient to avoid numerical pivoting. The hope is that, if an initial ordering is chosen to reduce

fill in L, the constrained ordering will be sufficiently close that the additional fill will be modest. If it is

close to the initial ordering, the benefits include a potentially faster factorization and, importantly, the

analyse phase of the direct solver can accurately predict the size of the factors and other data structures

required during the numerical factorization.

Bridson proposes two approaches to computing a constrained ordering. The first modifies the minimum

degree algorithm (or one of its variants) to incorporate the constraint within it. An alternative approach

is to post process a given fill-reducing ordering to satisfy the constraint. If a C-node is the next node in

the supplied ordering it is only included in the modified ordering once all its A-node neighbours have been

ordered (that is, a C-node is postponed until after all its A-node neighbours). For many large problems,

orderings based on nested dissection are frequently recommended in preference to those based on minimum

degree (see, for example [8]). The advantages of the post processing approach are that it can be applied to

any fill-reducing ordering and it is very cheap and straightforward to implement. Since Bridson reports that

neither approach consistently outperforms the other and we want to be able to modify both approximate

minimum degree (AMD) and nested dissection orderings computed using the graph partitioning package

Metis [14, 15], in our experiments we use post processing

We remark that if, in the constrained ordering, an A-node is followed by one of its C-node neighbours,

the two may be flagged as a 2×2 candidate pivot. In particular, if C = 0, the candidate pivot will be a tile

pivot (see [4]). Note also that when an A-node is ordered there may be more than one C-node neighbour

waiting to be ordered. We have chosen to include these C-nodes in the constrained ordering in the same

relative order as originally. Our numerical results were not found to be very sensitive to this choice.

3 Numerical experiments

3.1 Test problems and test environment

We have recently designed and developed a new sparse direct solver for symmetric positive definite and

indefinite problems. The code, which is called HSL MA77, is available within the mathematical software

library HSL [13]. HSL MA77 implements a multifrontal algorithm and offers the option of holding the matrix

data, the computed factors, and some of the intermediate work arrays in direct-access files, thus allowing

the solution of much larger problems than would otherwise be possible. The algorithms used by HSL MA77

together with details of the user interface and numerical experiments that illustrate its performance are

presented in [16, 17]. HSL MA77 offers the user a number of options, some of which can be used to tune

the performance on a particular platform or class of problems. Unless stated otherwise, in our tests we

use HSL MA77 with its default settings. The pivot sequence passed to HSL MA77 is computed using either

an AMD algorithm or Metis (which ordering is used for each problem is chosen on the basis of the order

of the system and its sparsity as proposed by Duff and Scott [8]).

Our test problems are listed in Table 3.1 They are all available from the University of Florida Sparse

Matrix Collection [2] and are a subset of those used in the study by Gould, Hu and Scott [10]. Those in

the top part of the table are KKT systems while those in the lower part are saddle-point problems with

C of the form −δI , where δ is a small positive constant.

All reported experiments were performed using double precision reals on a Dell Precision T5400 with

two Intel E5420 quad core processors running at 2.5 GHz backed by 8 GB of RAM. We used the Goto

BLAS [9] and gfortran-4.3 compiler with the -O3 option. All reported times are CPU timings in seconds.

For each test on an individual problem we impose a CPU time limit of 300 seconds.

The right-hand side b is chosen so that the solution is xi = 1 for all i. We measure accuracy of the

2

Table 3.1: Test problems. n denotes the order of K, m the order of C, nz the number of entries in K (in

thousands).

n m nz

bloweya 30.0 10.0 150.0

cont-201 80.6 40.2 438.8

cont-300 180.9 90.2 988.2

cvxqp3 17.5 7.5 115.0

darcy003 389.9 155.7 2097.6

k1 san 67.8 20.8 560.0

ncvxqp1 12.1 5.0 74.0

ncvxqp3 75.0 25.0 500.0

ncvxqp5 62.5 12.5 425.0

olesnik0 88.3 27.2 744.3

qpband 20.0 5.0 45.0

sit100 10.2 3.1 61.0

stokes128 50.0 16.4 558.6

turon m 189.9 56.1 1690.9

c-59 41.2 13.6 480.5

c-62 41.7 17.5 559.3

c-68 64.8 28.3 566.0

c-70 68.9 29.6 659.0

computed solution using the scaled residual:

‖Kx− b‖

‖K‖‖x‖+ ‖b‖

with the infinity norm ‖x‖∞ = maxi |xi| and its induced matrix norm ‖K‖∞ = maxi

∑

j |(K)ij |.

Unless stated otherwise, in all our experiments, the constrained ordering uses u = 0.0 and the

unconstrained ordering uses u = 0.01 (the default setting for HSL MA77).

3.2 Initial results

In Tables 3.2 and 3.3 we present results for the unconstrained and constrained orderings. For the

unconstrained ordering, we report the predicted and actual numbers of entries in the factor (which we

denote by nz(Lp) and nz(La), respectively) and the number of delayed eliminations Note that if a variable

is delayed at more than one step of the computation, it will be counted more than once. For the constrained

ordering, the predicted and actual statistics are the same. For both orderings we give the factorization

time and, in Table 3.3, we report the scaled residuals before and after two steps of iterative refinement.

Incomplete results are given for the unconstrained ordering for problems bloweya, ncvxqp3, ncvxqp5, and

ncvxqp7 since our CPU time limit of 5 minutes was exceeded. Where the unconstrained ordering did

complete, we observe that for many of the problems (including cont-300, cvxqp3, and c-62), a large

number of eliminations are delayed and this results in nz(La) being significantly larger than nz(Lp). For a

number of test problems (particularly those for which the unconstrained ordering leads to a large number

of delayed eliminations) the constrained ordering outperforms the unconstrained ordering in terms of the

sparsity of L and factorization time but for others (such as turon m, c-68 and c-70) the converse is true.

In terms of accuracy, for several problems (including cvxqp3 and c-59) using the constrained

ordering (and hence no pivoting) leads to significantly larger scaled residuals than are obtained using the

unconstrained ordering. However, with the exception of bloweya, after two steps of iterative refinement

the scaled residual is order 10−15 or less.

3

Table 3.2: Comparison of the unconstrained and constrained orderings when used with the direct solver

HSL MA77. NS indicates our CPU time limit was exceeded.

Unconstrained Constrained

nz(Lp) nz(La) ndelay factor nz(L) factor

∗106
∗106

∗103 time ∗106 time

bloweya 0.21 NS NS NS 0.27 0.05

cont-201 4.64 11.05 88.3 1.45 9.89 1.57

cont-300 11.75 21.43 148.8 3.41 21.01 4.30

cvxqp3 3.13 35.72 59.7 62.6 11.03 15.0

darcy003 8.31 9.18 46.1 1.09 28.28 3.46

k1 san 3.27 3.46 7.0 0.35 11.02 1.26

ncvxqp1 1.68 11.80 312.1 20.2 5.54 4.56

ncvxqp3 18.99 NS NS NS 57.46 105

ncvxqp5 12.04 NS NS NS 23.82 19.9

olesnik0 4.58 4.86 9.2 0.50 15.64 1.96

qpband 0.05 0.05 0 0.01 0.05 0.01

sit100 0.45 0.47 0.8 0.04 1.27 0.13

stokes128 2.93 4.77 31.0 0.46 5.96 0.54

turon m 13.71 14.35 19.1 1.72 53.35 10.7

c-59 5.11 5.19 0.6 2.08 36.23 57.7

c-62 8.21 34.23 108.9 80.6 35.80 50.1

c-68 8.88 9.52 6.3 6.00 102.8 271

c-70 4.89 5.00 1.2 1.30 56.99 81.2

Table 3.3: Comparison of the scaled residuals for unconstrained and constrained orderings when used with

the direct solver HSL MA77. Scaled residuals are reported before and after 2 steps of iterative refinement.

NS indicates our CPU time limit was exceeded.

Unconstrained Constrained

Before After Before After

bloweya NS NS 5.6 ∗ 10−12 1.2 ∗ 10−12

cont-201 3.6 ∗ 10−11 1.2 ∗ 10−16 2.7 ∗ 10−14 1.2 ∗ 10−16

cont-300 4.7 ∗ 10−11 1.2 ∗ 10−16 3.6 ∗ 10−14 1.6 ∗ 10−16

cvxqp3 6.3 ∗ 10−16 2.0 ∗ 10−16 1.1 ∗ 10−9 1.9 ∗ 10−16

darcy003 2.1 ∗ 10−14 1.3 ∗ 10−16 1.8 ∗ 10−15 1.1 ∗ 10−16

k1 san 1.1 ∗ 10−15 4.0 ∗ 10−17 3.3 ∗ 10−15 5.8 ∗ 10−17

ncvxqp1 1.0 ∗ 10−18 2.5 ∗ 10−17 7.3 ∗ 10−17 2.8 ∗ 10−17

ncvxqp3 NS NS 4.4 ∗ 10−11 2.3 ∗ 10−16

ncvxqp5 NS NS 2.1 ∗ 10−9 2.3 ∗ 10−16

olesnik0 1.1 ∗ 10−15 2.3 ∗ 10−17 1.0 ∗ 10−16 8.9 ∗ 10−17

qpband 1.0 ∗ 10−16 0.0 3.4 ∗ 10−17 3.3 ∗ 10−17

sit100 6.0 ∗ 10−15 2.0 ∗ 10−15 7.0 ∗ 10−16 1.5 ∗ 10−15

stokes128 9.3 ∗ 10−16 2.3 ∗ 10−16 4.2 ∗ 10−15 6.5 ∗ 10−15

turon m 9.7 ∗ 10−16 1.4 ∗ 10−16 7.2 ∗ 10−15 1.2 ∗ 10−15

c-59 1.9 ∗ 10−16 2.1 ∗ 10−16 1.5 ∗ 10−11 3.9 ∗ 10−16

c-62 6.2 ∗ 10−16 1.3 ∗ 10−17 4.8 ∗ 10−11 1.2 ∗ 10−17

c-68 3.9 ∗ 10−17 3.2 ∗ 10−17 4.5 ∗ 10−14 3.3 ∗ 10−17

c-70 3.1 ∗ 10−15 9.9 ∗ 10−19 3.1 ∗ 10−13 1.1 ∗ 10−17

4

3.3 Effect of scaling

The experiments so far were performed using the matrix data as supplied. However, a number of recent

studies (including those of Duff and Pralet [6] and Hogg and Scott [12]) have highlighted the potential

benefits of scaling on the performance of direct solvers. In addition to sometimes reducing the scaled

residual, prescaling the system matrix can help from a purely computational standpoint by reducing the

number of delayed pivots and hence the memory required by the solver, the size of the computed factors,

and total solution time. How to find a good scaling is still an open question, but a number of scalings have

been proposed and are being successfully used. Here we use the symmetrized version of the HSL routine

MC64 [5]. MC64 finds a maximum matching of an unsymmetric matrix such that the largest entries are

moved on to the diagonal; this leads to an unsymmetric scaling such that the scaled matrix has all ones

on the diagonal and the remaining entries are of modulus less than or equal to one. The approach can

be symmetrized by the method of Duff and Pralet [6], which essentially amounts to initially ignoring the

symmetry of the matrix and then averaging the relevant row and column scalings from the unsymmetric

permutation.

In Tables 3.4 and 3.5 we repeat the results of the previous section but for prescaled K. We only

include results for the problems on which scaling has a significant effect when the unconstrained ordering

is used (the size of the factors and the times for the constrained ordering are unchanged since they are

independent of the numerical values of the entries in K). We observe that, for this subset, prescaling

substantially reduces both the number of delayed pivots and the difference between nz(Lp) and nz(La);

this in turn leads to important reductions in the factorization times. Notable examples include the ncvxqp

matrices that were previously not solved within the CPU time limit (although for these problems, the

actual number of entries in L still exceeds the prediction by more than 10 per cent). If we compare the

unconstrained and constrained orderings, we see that for well-scaled matrices, the unconstrained ordering

is generally faster and produces much sparser factors than the constrained ordering. This suggests that the

modifications made to the initial ordering to ensure a C-node is not ordered before its A-node neighbours

leads to a substantially different ordering which can be of much poorer quality.

Table 3.4: Comparison of the unconstrained and constrained orderings when used with the direct solver

HSL MA77 and K is prescaled.

Unconstrained Constrained

nz(Lp) nz(La) ndelay factor nz(L) factor

∗106
∗106

∗103 time ∗106 time

bloweya 0.21 0.24 3.3 0.18 0.27 0.05

cvxqp3 3.13 4.88 26.0 2.28 11.03 15.0

ncvxqp1 1.68 2.26 10.3 0.77 5.53 4.57

ncvxqp3 18.99 25.16 65.3 16.2 57.46 105

ncvxqp5 12.04 13.41 11.8 5.29 23.82 19.9

c-62 8.21 8.36 0.6 3.13 35.80 50.3

c-68 8.88 9.26 3.3 5.80 102.8 274

If we look at the scaled residuals in Table 3.5, there appears to be little difference in the quality of

the solution produced using the different orderings. For the constrained ordering, for our test examples

scaling does not consistently lead to smaller initial residuals. However, it is very straightforward to

construct examples for which the constrained ordering fails to give any accuracy in the computed solution

without suitable prescaling. For example, large entries in the matrix B can lead to instability.

5

Table 3.5: Comparison of the scaled residuals for unconstrained and constrained orderings when used with

the direct solver HSL MA77 with K prescaled. Scaled residuals are reported before and after 2 steps of

iterative refinement.

Unconstrained Constrained

Before After Before After

bloweya 3.9 ∗ 10−14 3.0 ∗ 10−14 1.1 ∗ 10−12 2.9 ∗ 10−17

cvxqp3 5.7 ∗ 10−11 2.2 ∗ 10−16 9.4 ∗ 10−10 1.9 ∗ 10−16

ncvxqp1 6.3 ∗ 10−14 1.5 ∗ 10−17 1.3 ∗ 10−16 1.9 ∗ 10−17

ncvxqp3 5.3 ∗ 10−9 2.5 ∗ 10−16 7.9 ∗ 10−11 2.4 ∗ 10−16

ncvxqp5 2.7 ∗ 10−11 2.4 ∗ 10−16 1.5 ∗ 10−9 2.3 ∗ 10−16

c-62 3.0 ∗ 10−14 2.4 ∗ 10−18 9.2 ∗ 10−12 4.4 ∗ 10−18

c-68 5.0 ∗ 10−17 4.0 ∗ 10−17 1.5 ∗ 10−14 3.9 ∗ 10−17

3.4 Relaxing the constraint

Since waiting to order a C-node until all its A-node neighbours have been ordered can lead to significantly

denser factors, an obvious approach is to try relaxing the constraint. In particular, we could require that

at least one of the A-node neighbours of the C-node has already been ordered. During the modification

of the initial ordering, this will clearly have the effect of postponing fewer C-nodes and those that are

postponed will be brought back into the ordering sooner. However, there is now no guarantee that the

LDLT factorization will exist without pivoting (numerical tests quickly confirm the factorization will

generally breakdown) and thus the main advantage of the constrained ordering has been lost. We have

rerun our experiments using the relaxed constrained ordering with partial pivoting (threshold u = 0.01).

We found that nz(Lp) may increase beyond that of the unconstrained ordering but the changes we observed

were small and led to only small changes in nz(La). Thus for some examples the difference between the

predicted and actual number of entries in L is reduced but the reduction is modest. Furthermore, the total

number of delayed eliminations is not necessarily reduced. Indeed, it can increase significantly, suggesting

some pivots are delayed for a large number of steps of the factorization. Our findings are illustrated by

the results reported in Table 3.6 (here the matrix K is prescaled using the symmetrized MC64).

Table 3.6: Comparison of the unconstrained and relaxed constrained orderings when used with the direct

solver HSL MA77 with partial pivoting (u = 0.01).

Unconstrained Relaxed Constrained

nz(Lp) nz(La) ndelay nz(Lp) nz(La) ndelay

∗106
∗106

∗103
∗106

∗106
∗103

cvxqp3 3.13 4.88 26.0 3.75 4.78 62.4

ncvxqp1 1.68 2.26 10.3 1.86 2.24 18.6

ncvxqp3 18.99 25.16 65.3 21.00 25.02 151.0

ncvxqp5 12.04 13.41 11.8 12.79 13.40 16.1

c-62 8.21 8.36 0.6 8.40 8.43 0.4

c-68 8.88 9.26 3.3 9.78 9.90 3.5

4 Concluding remarks

We have examined the performance of the constrained ordering proposed by Bridson. Although we were

able to compute the factorization of the saddle point systems without numerical pivoting, the computed

6

factors were almost always denser than those obtained by prescaling the matrix with MC64 and then using

an unconstrained ordering combined with partial pivoting.

One of the motivations for the work of Bridson was that it was simpler to modify an existing Cholesky

factorization to perform a signed Cholesky factorization than to develop a general purpose indefinite solver

that employs partial pivoting. Our situation is different since our solver HSL MA77 is already designed to

efficiently solve both positive definite and indefinite problems. Moreover, Reid and Scott [16] report that, in

general, the code loses little performance in treating a positive definite problem as indefinite. Nevertheless,

strategies that do not use pivoting are of interest for parallel factorizations on multicore architectures (see,

for example, [11] and the references therein). On a multicore machine it may be faster as well as more

convenient to use an ordering that does not require pivoting even if it leads to denser factors and so it may

be advantageous to exploit the approach of Bridson (and to develop other constraint ordering strategies)

in a parallel sparse code.

All the HSL codes referred to in this report are part of HSL 2007. Use of HSL requires a licence.

Licences are available without charge to individual academic users for their personal (non-commercial)

research and for teaching; for other users, a fee is normally charged. Details of how to obtain a licence

together with information on all HSL packages are available at www.cse.clrc.ac.uk/nag/hsl/.

References

[1] R. Bridson. An ordering method for the direct solution of saddle-pont matrices. Preprint available

from http://www.cs.ubc.ca/∼rbridson/kktdirect/.

[2] Tim Davis. The University of Florida Sparse Matrix Collection. Technical Report, University of

Florida, 2007. http://www.cise.ufl.edu/ davis/techreports/matrices.pdf.

[3] A.C. de Niet and F.W. Wubs. Numerically stable LDLT -factorization of F-type saddle point matrices.

IMA Journal of Numerical Analysis, 29:208–234, 2009.

[4] I.S. Duff, N.I.M. Gould, J.R. Reid, J.A. Scott, and K. Turner. Factorization of sparse symmetric

indefinite matrices. IMA Journal of Numerical Analysis, 11:181–2044, 1991.

[5] I.S. Duff and J. Koster. On algorithms for permuting large entries to the diagonal of a sparse matrix.

SIAM J. Matrix Analysis and Applications, 22(4):973–996, 2001.

[6] I.S. Duff and S. Pralet. Strategies for scaling and pivoting for sparse symmetric indefinite problems.

SIAM Journal on Matrix Analysis and Applications, 27:313 – 340, 2005.

[7] I.S. Duff and S. Pralet. Towards a stable static pivoting strategy for the sequential and parallel

solution of sparse symmetric indefinite systems. SIAM Journal on Matrix Analysis and Applications,

29:1007–1024, 2007.

[8] I.S. Duff and J.A. Scott. Towards an automatic ordering for a symmetric sparse direct solver. Technical

Report RAL-TR-2006-001, Rutherford Appleton Laboratory, 2006.

[9] Kazushige Goto and Robert van de Geijn. High performance implementation of the level-3 BLAS.

ACM Trans. Mathematical Software, 35:4:1–4:14, 2008.

[10] N.I.M. Gould, J.A. Scott, and Y. Hu. A numerical evaluation of sparse direct solvers for the solution

of large, sparse, symmetric linear systems of equations. ACM Trans. Mathematical Software, 33, 2007.

Article 10, 32 pages.

[11] J.D. Hogg. A DAG-based parallel Colesky factorization for multicore systems. Technical Report

RAL-TR-2008-029, Rutherford Appleton Laboratory, 2008.

7

[12] J.D. Hogg and J.A. Scott. The effects of scalings on the performance of a sparse indefinite solver.

Technical Report RAL-TR-2008-007, Rutherford Appleton Laboratory, 2008.

[13] HSL. A collection of Fortran codes for large-scale scientific computation, 2007. See

http://www.cse.scitech.ac.uk/nag/hsl/.

[14] G. Karypis and V. Kumar. METIS: Unstructured graph partitioning and sparse matrix ordering

system. Technical Report TR 95-035, University of Minnesota, 1995.

[15] G. Karypis and V. Kumar. METIS - family of multilevel partitioning algorithms, 1998. See

http://glaros.dtc.umn.edu/gkhome/views/metis.

[16] J.K. Reid and J.A. Scott. An efficient out-of-core sparse symmetric indefinite direct solver. Technical

Report RAL-TR-2008-024, Rutherford Appleton Laboratory, 2008.

[17] J.K. Reid and J.A. Scott. An out-of-core sparse Cholesky solver. ACM Trans. Mathematical Software,

36(2), 2009. To appear.

[18] M. Tuma. A note on the LDLT decomposition of matrices from saddle-point problems. SIAM J.

Matrix Analysis and Applications, 23:903–925, 2002.

8

