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ABSTRACT

The Conjugate Gradient method can be successfully used in solving the symmetric

and positive definite normal equations obtained from least-squares problems. Taking

into account the results of Hestenes and Stiefel (1952), Golub and Meurant (1997),

and Strakoš and Tichy (2002), which make it possible to approximate the energy

norm of the error during the conjugate gradient iterative process, we adapt the stop-

ping criterion introduced by Arioli (2005). Moreover, we show how the energy norm

of the error is linked to the statistical properties of the least-squares problem and

to the χ2-distribution and to the Fisher-Snedecor distribution. Finally, we present

the results of several numerical tests that experimentally validate the effectiveness

of our stopping criteria.
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1 Introduction

The least-squares method can be used to compute reliable realizations of the minimum-

variance unbiased estimates for linear regression models, and the conjugate gradient method

is a very effective iterative algorithm for solving the related normal equations system.

In this paper, we want to obtain reliable stopping criteria for the conjugate gradient

algorithm when it is applied to the normal equations of a least-squares problem in order

to compute the realizations of the estimators related to a linear regression model.

We will take advantage of the stochastic properties of the linear regression model in

order to introduce stopping criteria that, given an a-priori probability η, will stop the

conjugate gradient method when the current iteration and the norm of the corresponding

residual are reliable realizations with probability η. We will focus only on stopping criteria

based on the energy norm: ||x||2AT A = xTATAx where A ∈ IRm×n is a full rank n matrix.

Moreover, we will explain the link between the energy norm of the error and the χ2 and F

distribution and use it to define reliable probabilistic thresholds in the stopping criteria.

Recently, several authors have proposed rules that compute error bounds for the con-

jugate gradient method (Ashby, Holst, Manteuffel and Saylor 2001, Axelsson and Ka-

porin 2001, Calvetti, Morigi, Reichel and Sgallari 2000, Calvetti, Morigi, Reichel and

Sgallari 2001, Golub and Meurant 1997, Golub and Strakos 1994, Meurant 1997, Meurant

1999a, Meurant 1999b, Strakoš and Tichy 2002). Some of these rules compute estimates of

the error in Euclidean norm, and others compute estimates related to the energy norm. In

their historical paper, Hestenes and Stiefel 1952 proposed a method to estimate the energy

norm of the error that uses the values computed during the conjugate gradient method.

Strakoš and Tichý 2002, 2005, studied the relations between the estimates proposed by

Hestenes and Stiefel (1952), Golub and Meurant (1997), Golub and Strakos (1994), Meu-

rant (1997), Meurant (1999a), and Meurant (1999b) and proved that the Hestenes-Stiefel

estimate (1952) is numerically stable. The results of the previous papers have been used

to introduce reliable stopping criteria for the conjugate gradient method when the linear

systems arise from the approximation of elliptic variational problems. We will show that

the results presented in the literature can be used in order to numerically evaluate our

probabilistic stopping criteria.

We shall first summarise the principal properties of the linear regression model in Sec-

tion 2. In Section 3, we discuss some relations between statistical tests and perturbed

solutions of a least-squares problem. Then, in Section 4, we will use the recent results

of Arioli (2005), Strakoš and Tichy (2002), Strakoš and Tichy (2002), Strakos and Tichý

(2005) to build reliable stopping criteria and to analyse their properties. Finally, in Sec-

tion 5 and Section 6, we will present the numerical experiments we performed on selected

ill-conditioned test problems, and, in Section 7, we will present our conclusions.

In the following, we will denote stochastic variables by bold symbols. We also warn the

reader that we will normally make a distinction between random variables, their estima-

tions, and their realizations. The first two are stochastic but the latter ones are numbers.
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2 Problem description

2.1 Linear regression

In this section, for any random vector z, we denote by E[z] its mean and by V [z] = E[(z−
E[z])(z − E[z])T ] its covariance matrix. The notation z ∼ N

(

z, C
)

means that z follows

a Gaussian distribution with mean z and covariance matrix C. Let A ∈ IRm×n, m ≥ n,

with Rank(A) = n. We consider the linear regression model

y = AX + e, (2.1)

where E[e] = 0 and V [e] = σ2Im. We point out that A defines a given model and X is an

unknown deterministic value. The best minimum-variance unbiased (MVU) estimator of

X is related to y by the Gauss-Markov theorem

Theorem 2.1. For the linear model (2.1) the minimum-variance unbiased estimator of X

is given by

x∗ = (ATA)−1ATy.

The variance of the estimation error V [x∗] satisfies V [x∗] = σ2(ATA)−1. If in addition,

e ∼ N
(

0, σ2Im
)

, and if we set

s2 =
1

m− n
||r||22, (2.2)

where ||r||2 = ||y −Ax∗||2, we have

x∗ ∼ N
(

x, σ2(ATA)−1
)

,

and

s2 ∼ σ2

m− n
χ2(m− n).

Moreover, the predicted value ŷ = Ax∗ and the residual r are independently distributed as

ŷ ∼ N
(

Ax∗, σ2A(ATA)−1AT
)

and r ∼ N
(

0, σ2(I − A(ATA)−1AT )
)

Proof. See Theorem 3.1 and Corollary 3.1 in (Hocking 1996, Ch 3, pp 69–70) or (Magnus

and Neudecker 1999).

2.2 Least squares problem

The best minimum-variance unbiased (MVU) estimators of X and σ2 are closely related to

the solution of the least-squares problem (LSP),

min
x

||y −Ax||22 (2.3)

where y is a realization y. The least-squares problem (LSP) has a unique solution

x∗ = (ATA)−1ATy,

2



and the corresponding minimum value is achieved by the square of the euclidean norm of

r = y − Ax∗ = (I − P )y

where the matrix I −P = I −A(ATA)−1AT is the orthogonal projector onto Ker(AT ) and

P is the orthogonal projector onto Range(A).

We remark here that the solution of LSP is deterministic and, therefore, supplies only

a realisation of the MVU x∗ and of s2 the corresponding estimator of σ2.

The vector x∗ is also the solution of the normal equations, i.e. it is the unique stationary

point of ||y −Ax||22:

ATAx∗ = ATy. (2.4)

We will denote in the following by

R(x) = AT (y −Ax)

the residual of (2.4). Given a vector x̃ ∈ W, the following relations are satisfied:

(

I − P
) (

y −Ax̃
)

=
(

I − P
)

y
(

y −Ax̃
)

=
(

y − Ax∗
)

+ A(ATA)−1AT
(

y − Ax̃)

=
(

y − Ax∗
)

+ A(ATA)−1R(x̃),

and, then, we have

||y −Ax̃||22 = ||y − Ax∗||22 + ||R(x̃)||2(AT A)−1 , (2.5)

owing to the orthogonality between y − Ax∗ and A(ATA)−1R(x̃).

From the orthogonality of the projector P , the following are satisfied

y = Py+
(

I − P
)

y

||y||22 = ||Py||22 + ||
(

I − P
)

y||22
||y||22 − ||Py||22 = ||

(

I − P
)

y||22 = ||y − Ax∗||22.

(2.6)

Moreover, we have

||Py||22 = yTA
(

ATA
)−1

ATy = x∗TATAx∗,

and, then, from (2.5) and (2.6) we conclude that

||y||22 − ||x∗||2AT A = ||
(

I − P
)

y||22 = ||y −Ax∗||22. (2.7)

Finally, it is easy to verify that, given x̃ as an approximation of x∗,

δy = −A(ATA)−1R(x̃) (2.8)
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is the minimum norm solution of

min
w

||w||22 such that ATAx̃ = AT (y + w). (2.9)

Moreover, using R(x̃) = AT (y − Ax̃) = ATA(x∗ − x̃), we have

||δy||22 = ||R(x̃)||2(AT A)−1 = ||x∗ − x̃||2AT A. (2.10)

Remark 1. Owing to our focus on linear regression, we must assume that the perturba-

tions are only relative to the vector y. Any perturbation of the matrix defining the linear

regression model would be related to the study of a Total Least Squares Problem (TLSP).

3 Statistical tests and perturbation theory

In this section, we summarize some results in the statistical significance test theory. Our

aim is to identify when a solution of a perturbed LSP can be interpreted as a faithful

realization of the stochastic variable X.

Furthermore, we would like to identify a subspace of Range(A) where the solution of a

perturbed LSP is again a realization of X with an assigned probability.

In order to achieve these two goals, we will confine our analysis to the χ2 distribution

test and to the overall F-test.

3.1 χ2 distribution test

Introducing perturbations in the right-hand side, we can interpret any approximate solution

x̃ of the LSP as being an exact solution of a perturbed LSP

min
x

||y −Ax+ δy||2. (3.11)

Among other possible choices, the vector δy defined by δy = −(y − Ax̃) is such that

x̃ exactly solves (2.9). Notice that for any u orthogonal to Range(A), the perturbation

δy = −(y − Ax̃) + u is also such that x̃ exactly solves (2.9). To assess the quality of x̃ as

an approximate solution of (2.1) it is reasonable to consider x̃ as a satisfactory solution

if there exists a δy such that δy does not dominate, in some sense to be determined, the

Gaussian noise e ∼ N (0, σ2In). Therefore, we can assume that δy be a sample of the

stochastic variable e, and that δy is dominated by e if for some small enough η,

Prob(‖e‖2
2 ≥ ‖δy‖2

2) ≥ 1 − η.

where the random variable
‖e‖2

2

σ2 follows a centered χ2 distribution with m degrees of free-

dom. Thus, we can formulate our criterion as

pχ

(‖δy‖2
2

σ2
, m

)

≡ Prob

(‖e‖2
2

σ2
≤ ‖δy‖2

2

σ2

)

≤ η,

where, since e is a Gaussian distribution with covariance matrix σ2I , the value of pχ (., m)

is the so-called cumulative distribution function of the χ2 distribution.
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3.2 The overall F-test

In this section, we summarize and prove a few results on F-distribution and F-test that

appear in the literature but in a format inconsistent with our notation. We hope that this

will help some of the readers unfamiliar with Statistics in understanding our approach.

Given the model (2.1) and assuming that e ∈ N
(

0, σ2In
)

we denote by Ω = Range(A)

the n-dimensional subspace generated by the columns of A. For any realization y of y,

the corresponding realisation of the MVU estimator, that is x∗ = (ATA)−1ATy, belongs

to R
n. We would like to know whether it is statistically reasonable to look for x in the

smaller subspace {z ∈ R
n, QT z = 0}, where Q is a given n× (n−k) orthogonal matrix; we

shall see that this problem is equivalent to the problem of truncating the CG iterations.

Back to statistics, we want to test whether the following assumption is reasonable in the

model (2.1) :

(H) : QT
X = 0.

We will use the theory of statistical inference to accept or reject assumption (H). In this

framework, we denote by RSS the residual sum of squares for the (full) model (2.1), as

it is obtained when the MVU solution is considered. We have RSS = ‖Ax∗ − y‖2
2 =

‖(Im − P )y‖2
2.

Let now RSSH be the residual sum of squares for the model under the (H) assumption.

Let Q be an orthogonal matrix such that the columns of [Q,Q] form an orthonormal basis

of R
n. We set

X =
[

Q Q

]





X1

X2



 . (3.12)

The decomposition (3.12) gives the linear model

y = A[Q,Q]





X1

X2



+ e, and X2 = 0,

which can be rewritten

y = AQX1 + e, and X = QX1. (3.13)

Under assumption (H), we call (3.13) the reduced linear model. The corresponding MVU

estimator is x∗
H

= Q(QTATAQ)−1QTAy and the reduced residual sum of squares is

RSSH = ‖(I − PH)y‖2 where PH = AQ(QTATAQ)−1QTA is the orthogonal projector

onto span(AQ).

Our procedure for testing whether (H) holds relies on a comparison between RSSH

and RSS.

Lemma 3.1. In the framework of the minimum-variance unbiased estimation, the residual

sum of squares RSS and RSSH of models (2.1) and (3.13) satisfy

RSSH − RSS = yTA†TQ
(

QT (ATA)−1Q
)−1

QTA†y.
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Proof. From the definition of RSS and RSSH, and the relations (I − P )2 = (I − P ) and

(I − PH)2 = (I − PH), we get

RSSH − RSS = yT (I − PH)y − yT (I − P )y

= yT (P − PH)y

= yTA
(

(ATA)−1 −Q
(

QTATAQ
)−1

QT
)

ATy

Setting W1 = (ATA)
1
2Q and W2 = (ATA)−

1
2Q, we obtain

RSSH −RSS =

yTA(ATA)−
1
2

(

In −W1

(

W T
1 W1

)−1
W1

)

(ATA)−
1
2ATy.

(3.14)

From QTQ = 0 it follows that the two matrices W1, and W2 are orthogonal, which shows

that In − W1

(

W T
1 W1

)−1
W1 = W2

(

W T
2 W2

)−1
W2, and substituting this expression into

(3.14), we get

RSSH − RSS = yTA(ATA)−
1
2W2

(

W T
2 W2

)−1
W2(A

TA)−
1
2ATy,

and using W2 = (ATA)−
1
2Q gives the final result.

Using Lemma 3.1, we prove some properties of RSSH −RSS in the following proposition.

Proposition 3.1. Consider the residual sum of squares RSS and RSSH of models (2.1)

and (3.13) respectively.

1. We have that E[RSS] = (m− n)σ2 and that

E[RSSH −RSS] = (n− k)σ2 + X
TQ
(

QT (ATA)−1Q
)−1

QT
X

≥ (n− k)σ2.
(3.15)

2. Suppose the (H) assumption holds. We have that

E[RSSH −RSS] = (n− k)σ2,

and if, in addition, e ∼ N
(

0, σ2Im
)

, then the following probability distributions hold

RSSH − RSS ∼ σ2χ2(n− k) and RSS ∼ σ2χ2(m− n).

Proof. For the first part of the proposition, starting from x∗ = A†y, we get from Lemma 3.1

that

RSSH −RSS = x∗TMx∗,
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and

RSSH −RSS = (x∗ − X)TM(x∗ − X) + 2X
TM(x∗ − X) + X

TMX,

where M = Q
(

QT (ATA)−1Q
)−1

QT . By using the fact that x∗ is an unbiased estimation

of X, (i.e. E[x∗ − X] = 0), we get

E[RSSH −RSS] = E[(x∗ − X)TM(x∗ − X)] + X
TMX. (3.16)

Using the linearity of the trace and of the mathematical expectation, and the definition of

the variance Q[x∗] of the estimation, we have that

E[(x∗ − X)TM(x∗ − X)] = E[trace(M(x∗ − X)(x∗ − X)T )]

= trace(ME[(x∗ − X)(x∗ − X)T ]) = trace(MV [x∗])

Using Theorem 2.1, we know that V [x∗] = σ2(ATA)−1, which yields

E[(x∗ − X)TM(x∗ − X)] = σ2trace(Q
(

QT (ATA)−1Q
)−1

QT (ATA)−1])

= σ2trace(In−k) = σ2(n− k).

Substituting this last expression into (3.16) completes the proof of (3.15).

For the second part, under the (H) assumption, we have QT
X = 0, and also MX = 0,

and, then, E[RSSH−RSS] = σ2(n−k). Using MX = 0, and A†AX = X, we getMA†AX = 0

and letting PH = A†TMA†, we have that RSSH−RSS = (y−AX)TPH(y−AX) = eTPHe.

Denoting by W1 = A†TQ, we obtain that

PH = W1

(

W T
1 W1

)−1
W T

1 .

This shows that PH is the orthogonal projection onto Range(W1). Since Ker(W1) =

Ker(W T
1 W1) = Ker(QT (ATA)−1Q) = {0}, W1 is a full rank matrix and rank(PH) = n− k.

Therefore from e ∼ N
(

0, σ2Im
)

, we get that

RSSH −RSS

σ2
=

eTPHe

σ2
∼ χ2(n− k).

Similarly from RSS = ‖y − Ax∗‖2 = ‖(Im − P )y‖2, we get, since (Im − P )AX = 0, that

RSS = eT (I−P )e. As before,because I−P is an orthogonal projector of rank m−n and

e ∼ N
(

0, σ2Im
)

, we get that

RSS

σ2
=

eT (Im − P )e

σ2
∼ χ2(m− n).

We are now in position to propose our test for assumption (H). Using Proposition 3.1 is

is clear that when (H) is true, E[RSSH−RSS] = σ2(n−k), therefore the ratio RSSH−RSS

σ2(n−k)

will be close to 1. When (H) is not true, we know from (3.15) that this ratio will be larger
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than 1. In practical situations, σ is not always known, and we replace this quantity by its

MVU estimation. From Theorem 2.1, we get the following ratio:

F =
RSSH−RSS

n−k
RSS

m−n

.

Under assumption (H) F is the ratio of the two χ2 distributions χ2(n− k) and χ2(m− n)

divided by their degrees of freedom n−k and m−n. Therefore (see Hocking, 1996, Chapter

3.3), under the (H) assumption, F follows a Fisher-Snedecor distribution with n − k and

m−n degrees of freedom. We explain now the principle of the F-test. Using the realization

y of Y, we compute two realizations RSS and RSSH of the residual sum of squares, and

forming their ratio

f =
RSSH−RSS

n−k
RSS
m−n

,

we compare the value of f with what can be obtained from a Fisher-Snedecor distribution

with n − k and m − n degrees of freedom (i.e. with what we should have if assumption

(H) holds). If the realization f is very different from what should be expected (i.e. is too

large), assumption (H) is rejected.

More precisely, let us denote by pFS(., n − k,m − n) the Fisher-Snedecor cumulative

distribution function, that is associated with F if the assumption (H) is true. In the analysis

of statistical significance tests, a (usually small) value η > 0 is introduced, that is called the

level of significance of the test. A value f0 is computed such that pFS(f0, n−k,m−n) = η,

and the region {F > f0} is then called the critical region of the test. The assumption

(H) is rejected whenever f is such that f > f0 ; η therefore represents the probability of

rejecting (H) when (H) is true (because f is considered to be too large). In the alternative

case, f ≤ f0, (H) is accepted (there is no statistical reason for rejecting it).

Remark 2. We point out that the F-test can be seen as a test on a possible model reduction

of the original problem (2.1). The test aims to validate if the original number of parameters

n can be drastically reduced.

4 Stopping criteria for CGLS

If we use the conjugate gradient method in order to compute the solution of (2.4), it

is quite natural to have a stopping criterion which takes advantage of the minimization

property of this method and of the stochastic properties of the underpinning problem

(2.1). Our analysis is based on the results of (Hestenes and Stiefel 1952, Strakoš and Tichy

2002, Strakos and Tichý 2005, Meurant 1999b, Arioli 2005) that are relative to the solution

of linear systems arising in the approximation of PDEs.

At each step k the conjugate gradient method minimizes the energy norm of the error

δx(k) = x∗ − x(k) on a Krylov space x(0) + Kk (Greenbaum 1997):

min
x(k)∈ x(0)+Kk

δx(k)TATAδx(k), (4.17)

8



where Kk = span(ATy, (ATA)AT y, . . . , (ATA)k−1ATy). Let R(k) = AT
(

y − Ax(k)
)

denote

the normal equations residual at step k. Moreover, using ATAδx(k) = AT (y−Ax(k)) = R(k),

the value ‖δx(k)‖AT A is equal to the dual norm of the residual ‖R(k)‖(AT A)−1 (2.10). The

conjugate gradient iterates satisfy the following relations (Meurant 1999a):

x(k) = x(k−1) + αk−1q
(k−1), αk−1 =

R(k−1)TR(k−1)

q(k−1)TATAq(k−1)
,

R(k) = R(k−1) − αk−1A
TAq(k−1) ,

q(k) = R(k) + βk−1q
(k−1), βk−1 =

R(k)TR(k)

R(k−1)TR(k−1)
,

where x(0) = 0 and R(0) = q(0) = y. The quantity αk−1 gives the step-size on the direction

q(k−1) during the conjugate gradient algorithm. Therefore, in exact arithmetic, we have

the final value

x∗ =

n−1
∑

j=0

αjq
(j) ,

and taking into account that

q(j)TATAq(i) = 0, i 6= j,

the energy norm of the error δx(k) = x∗ − x(k) is

‖δx(k)‖2
AT A = e

(k)
A =

n−1
∑

j=k

αjR
(j)TR(j), (4.18)

and the energy norm of x∗ is

‖x∗‖2
AT A =

n−1
∑

j=0

αjR
(j)TR(j), (4.19)

Under the assumption that e
(k+d)

AT A
<< e

(k)

AT A
, where the integer d denotes a suitable delay,

the Hestenes and Stiefel estimate ξk of the energy-norm of the error (4.18) will be then

computed by the formula

ξk =
k+d−1
∑

j=k

αjR
(j)TR(j). (4.20)

When the conjugate gradient method is applied to systems related to the approximation

of PDEs, d = 10 is indicated as a successful compromise in order to compute a faithful

estimate of (4.18) and (4.19) (Golub and Meurant 1997), and numerical experiments sup-

port this conclusion (Golub and Meurant 1997, Arioli 2005). In Section 6, we will indicate

that the cheaper choice d = 5 can be reliable if a good preconditioner is available, and

we will experimentally compare several choices for the value of d when the matrix A is ill

conditioned. In this latter case, we may choose a larger value for d.
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Finally, we must estimate ‖y −Ax∗‖2. It follows from (4.19) that

‖x∗‖2
AT A ≥

k−1
∑

j=0

αjR
(j)TR(j) = νk.

Therefore, from (2.7) we have the following upper bound

‖y −Ax∗‖2
2 ≤ ‖y‖2

2 − νk. (4.21)

Introducing a preconditioner, we want to speed up the convergence rate of the conjugate

gradient method but this will change the matrix and, therefore, the energy norm. However,

we still want to estimate e
(k)
A . In (Meurant 1999b, Arioli 2005) it is proved that the energy

norm of the preconditioned problem is equal to e
(k)
A . Moreover, when finite precision

arithmetic is used, the Hestenes and Stiefel approach is stable (Strakoš and Tichy 2002,

Strakos and Tichý 2005).

Finally, if we denote by M the preconditioner, we obtain the variant of the precon-

ditioned conjugate gradient algorithm for normal equations CGLS2 (Björck, Elfving and

Strakoš 1998) described in Figure 4.1, which incorporates a general stopping criteria, that

will be specified in the following sections, for a suitable choice of d. However, our analysis

can be extended to other algorithms based on Krylov spaces approximation where the

normal equations are not explicitly computed such as LSQR (Paige and Saunders 1982).

4.1 Energy norm stopping criterion

In (Meurant 1999b, Arioli 2005), a stopping criterion such as the following was introduced:

IF ‖R(k)‖(AT A)−1 ≤ η‖y − Ax∗‖2 THEN STOP , (4.22)

with η < 1 an a-priori threshold fixed by the user.

Taking into account (4.20) and (4.21), we could replace ‖y − Ax∗‖2 with its upper

bound at the step k of the conjugate gradient method. Therefore, we can replace (4.22)

with the implementable:

IF ξk ≤ η(‖y‖2
2 − νk) THEN STOP. (4.23)

4.2 χ2 stopping criteria for CG

To detect the convergence as early as possible and avoid over-solving in the LSP, we

consider a δy0 with minimum Euclidean norm such that x̃ exactly solves (3.11). Using the

(2.8), (2.9) and (2.10), we see that ||δy0||22 = ||R(x̃)||2(AT A)−1 = ‖δx(k)‖AT A. Finally, using

the estimation (4.20), we propose the following stopping criterion,

IF pχ

(

ξk
σ2
, m

)

≤ η THEN STOP . (4.24)
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Preconditioned CGLS2 (PCGLS)

Given an initial guess x(0), compute R(0) = AT
(

y − Ax(0)
)

,

and solve Mz(0) = R(0). Set q(0) = z(0), β0 = 0, α−1 = 1,

ν0 = 0, χ1 = R(0)T z(0), and ξ0 = ∞.

k = 0

while z(ξk−d, ‖y‖2
2 − νk, σ

2) > η do

k = k + 1;

q(k−1) = Aq(k−1);

αk−1 = χk/||q(k−1)||22;
ψk = αk−1χk; νk = νk−1 + ψk;

x(k) = x(k−1) + αk−1q
(k−1);

R(k) = R(k−1) − αk−1A
T q(k−1);

Solve Mz(k) = R(k);

χk+1 = R(k)T z(k) ;

βk = χk+1/χk;

q(k) = zk + βkq
(k−1);

if k > d then

ξk−d =
k
∑

j=k−d+1

ψj ;

else

ξk−d = ξk−1;

endif

end while.

Figure 4.1: Preconditioned Conjugate Gradient Algorithm Normal Equations (PCGLS2)

Alternatively, we can substitute σ2 with its estimator s2 and, then, approximate this by

||y||22 − νk using (4.21). Thus, we have the alternative stopping criterion

IF pχ

(

ξk
||y||22 − νk

, m

)

≤ η THEN STOP . (4.25)

Formula (4.25) can be seen as a non-linear version of the stopping criterion (4.23).

4.3 An F-test stopping rule for CG

In this framework, the k-th iterates of the conjugate gradient method belongs to the Krylov

subspace

Kk = span(ATy, (ATA)ATy, . . . , (ATA)k−1ATy).

The finite termination property of the conjugate gradient method, implies that the best

linear unbiased estimate of x∗ belongs to Kn. It is also well known that
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• the Krylov spaces Kk form a sequence such that

K0 ⊂ K1 ⊂ · · · ⊂ Kk ⊂ Kn ⊂ Range(ATA),

and (see (Greenbaum 1997)) there exists Qj ∈ IRn×k k = 1, . . . , n such that

Kk = Range(Qk)

ATAQk = Qk+1Tk

QT
kQk = I ∀k
Qk+1 =

[

Qk; q
(k+1)

]

,
(

q(k+1)TQk = 0
)

;

where Tk ∈ IR(k+1)×k has the following structure

Tk =





Tkk

γeT
k





with Tkk symmetric positive definite tridiagonal matrix;

• the orthogonal projector Pk on ωk = AKk can be expressed as

Pk = AQk

(

Tkk

)−1
QT

kA
T .

Let us denote by Qk = [q(n−k+1), . . . q(n)]. Stopping the CG iterations reduces to decid-

ing whether the hypothesis

(H): Q
T
k X = 0

is statistically reasonable under the linear model assumptions y = AX+e. In practice, using

the realization y of the random variable y, the F-test sets the following residual sum of

squares definitions, RSS = yT (I−P )y = ‖(I−P )y‖2, and similarly RSSk = ‖(I−Pk)y‖2

and considers the quantity

fk =
(RSSk − RSS)/(n− k)

RSS/(m− n)
.

More precisely, we decide to accept the hypothesis, if fk is small enough, so that the

probability of rejecting (H) when (H) is true is small enough, i.e if

Prob(F ≤ fk) ≤ η.

By definition of the cumulative distribution function pFS(., n − k,m − n), the criterion

would read

IF pFS (fk, n− k,m− n) ≤ η THEN STOP . (4.26)

To implement this criterion in practice, we must find reasonable approximations for the

realizations of RSS and RSSk. Clearly,

RSS = ‖(I − P )y‖2
2 = ‖y − A(ATA)−1AT y‖2

2 = ‖y − Ax∗‖2
2.
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Similarly,

RSSk = ‖(I − AQk

(

Tkk

)−1
QT

kA
T )y‖2

2 = ‖y − Axk‖2
2.

Therefore, we have

fk =
(‖y −Axk‖2

2 − ‖y −Ax∗‖2
2)/(n− k)

‖y −Ax∗‖2
2/(m− n)

,

and using (2.6), we get

IF pFS

(

‖R(k)‖2
(AT A)−1/(n− k)

||y −Ax∗||22/(m− n)
, n− k,m− n

)

≤ η THEN STOP . (4.27)

As for the χ2 test, using ξk and ||y||22 − νk to respectively approximate ‖R(k)‖2
(AT A)−1 and

||y − Ax∗||22, we get our F-test based stopping criterion

IF pFS

(

(m− n

n− k

) ξk
||y||22 − νk

, n− k,m− n

)

≤ η THEN STOP . (4.28)

Remark 3. The values of pχ (., m) and pFS(., n−k,m−n) can be computed using standard

algorithms (Abramowitz and Stegun 1964, sec. 6.5 and sec.26.5). The cost of the numerical

computation of the integrals involved is normally negligible compared to the cost of matrix

by vector products performed during the conjugate gradient method. Moreover, reliable

software exists in Matlab and in IMSL and NAG FORTRAN libraries.

4.4 Choice of η

The choice of η will depend on the properties of the problem that we want to solve, and,

in the practical cases, η can be frequently much larger than ε , the roundoff unit of the

computer finite precision arithmetic.

The stopping criterion (4.23) depends on an η that it is quite difficult to choose. A

priori there is not an evident link between η and the statistical nature of the original

problem. The only reasonable choices could be related to roundoff perturbations and this

implies that η = ǫ or η =
√
ǫ where ǫ ≈ 10−16 is the machine precision. The stopping

criterion (4.25) can be seen as a nonlinear statistical version of (4.23). In this case the

choice of η is related to the probability the user would like to fix. The same probabilistic

interpretation holds for stopping criteria (4.24) and (4.28). In both these cases the user

can choose the value of η as a probability. In practice, η ≤ 10−3 is a suitable choice.

5 Test problems

5.1 Dense tests

In order to illustrate the behaviour of the stopping criteria proposed for CG on the model

(2.1), we propose academic test cases. We consider the m× n matrix A that is given from

its singular value decomposition A = UΣV T , where, using the Matlab notation:
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• The m ×m and n × n orthogonal matrices U and V are obtained in Matlab as Q

factors in the QR decomposition of a random matrix (i.e. for the computation of V ,

X=rand(n,n); and [V,R]=qr(X);)

• The entries of the diagonal matrix Σ are nearly equally spaced between 1 and an

assigned κ(A) (i.e. Sigma=diag(linspace(1,κ(A),n))).

We set m = 200 and n = 40, and vary the condition number of the problem by considering

κ(A)=102, 103 and 104 and precondition CG using one step of symmetric Gauss-Seidel

iterative method. The particular realization of the right-hand side of the linear model is

defined by y = AX+ e, where X = (cos(1), . . . , cos(n))T , and e is obtained from the Matlab

command randn, which means that e is a realization of a pseudo-random vector drawn

from a Gaussian distribution with mean zero and a standard deviation equal to one as

obtained from the Marsaglia’s Ziggurat algorithm, see help randn in Matlab.

5.2 Data assimilation test

Data assimilation problems constitute an important class of regression problems (Tshi-

manga, Gratton, Weaver and Sartenaer 2008). Their purpose is to reconstruct the initial

conditions at t = 0 of a dynamical system based on knowledge of the system’s evolution

laws and on observations of the state at times ti. More precisely, consider a linear dy-

namical system described by the equation u̇ = f(t, u) whose solution operator is given by

u(t) = M(t)u0. Assume that the system state is observed (possibly only in parts) at times

{ti}N
i=0, yielding observation vectors {yi}N

i=0, whose model is given by yi = Hu(ti) + ǫ,

where ǫ is a noise with covariance matrix Ri = σ2I. We are then interested in finding u0

which minimizes
1

2

N
∑

i=0

‖HM(ti)u0 − yi‖2
R−1

i

.

We consider here the case where the dynamical system is the linear heat equation in a

two-dimensional domain, defined on S2 = [0, 1] × [0, 1] by

∂u

∂t
= −∆u in S2, u = 0 on ∂S2, u(., 0) = u0 in S2 (5.29)

The system is integrated with timestep dt, using an implicit Euler scheme. In the

physical domain, a regular finite difference scheme is taken for the Laplace operator, with

same spacing h in the two spatial dimensions. The data of our problem is computed by

imposing a solution u0(x, y, 0) computing the exact system trajectory and observing Hu

at every point in the spatial domain and at every time step. In our application, m = 8100,

n = 900 = 302, dt = 1, h = 1/31, N = 8 and H = diag((11.5, 21.5, . . . , n1.5). The

observation vector y is obtained by imposing u0(x, y, 0) = 1
4
sin(1

4
x)(x − 1) sin(5y)(y − 1),

and by adding a random measurement error with Gaussian distribution with zero mean

and covariance matrix Ri = σ2In, where σ = 10−3. In our numerical experiments, we use

CGLS2 without a preconditioner.
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6 Numerical experiments

In the next series of experiments, rather than implementing a particular stopping criterion

we run the PCGLS2 until the n-th step is reached, and report on the values taken by the

various stopping criteria considered in this paper at xk:

1. µ1 = pFS

((

m−n
n−k

)

ξk

||y||22−νk

, n− k,m− n
)

(see Equation (4.28)),

2. µ2 = pχ

(

ξk

σ2 , m
)

(see Equation (4.24)),

3. µ3 = pχ

(

(m−n)ξk

‖y‖2
2−νk

, m
)

, (see Equation (4.25)).

The value of pFS and pχ are respectively computed by the Matlab functions fcdf, and

chis cdf and gammainc that implement the algorithms presented in (Abramowitz and

Stegun 1964). In all our numerical experiments, we choose η = 10−6 in all our stopping

criteria.

In Table 6.1, we report the iteration index for which each stopping criterion achieves

convergence, both for d = 5 and d = 10 and for all out test problems.

d = 5 d = 10

Test problem µ1 µ2 µ3 µ1 µ2 µ3

Dense2 (κ(A) = 102) 12 6 6 14 6 6

Dense3 (κ(A) = 103) 25 14 10 26 16 12

Dense4 (κ(A) = 104) 28 26 14 28 26 26

Data assimilation (κ(A) = 103) 24 15 10 25 16 10

Table 6.1: Number of iterations for each stopping criterion setting the parameter η = 10−6.

The results of Table 6.1 indicate that the stopping criteria depend very mildly on the

value of d. Because ζk =
‖y‖2

2−νk

m−n
overestimates σ2 (in our case σ2 = 1), the stopping

criterion µ3 accepts large residuals from CG, because the right hand side y is assumed to

have a larger standard deviation. This explains why µ3 detects convergence before µ2. The

criterion µ1 based on the Fisher-Snedecor distribution is more conservative and seems to

detect convergence after the two first stopping criteria. Moreover, the stopping criterion

µ3 stops the process too early and in the case of the dense test problem with κ = 104 the

convergence oscillates quite dramatically as Figure 6.2 illustrates.

Our stopping criteria rely on the knowledge of an approximation ξk of the square of the

energy norm of the error, that in turn relies on a suitable choice of the delay parameter

d. In order to assess the quality of the approximation, we represent on the one hand ξ
1/2
k
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Figure 6.2: Stopping criteria versus CG iteration count for κ = 104

obtained with d = 5, and on the other hand, an approximation of the energy norm of the

error, that we denote by δ
1/2
k . The quantity δk is just (xk − x∗)T (ATA)(xk − x∗), where

x∗ is approximated from the direct solution of the least squares problem from the Matlab

backslash expression, i.e., from the QR method for least-squares. Note therefore that δk is

subject to round-off errors in particular in the computation of the exact solution x∗ = A†y.

However, we observe on Figure 6.3 that ξ
1/2
k is a reasonable approximation of the energy

norm of the error δ
1/2
k . If the standard deviation σ is unknown, we use Equation (2.2),

and Equation (4.21), and approximate σ2 by ζk =
‖y‖2

2−νk

m−n
. In Figure 6.4, we represent ζ

1/2
k

along the CG iterations. The number of steps required in order to converge to σ2 = 1

depends on the condition number of the problem and ζ
1/2
k decreases monotonically. In

order to decide if our stopping criteria give relevant information on the convergence of our

parameter estimation, we inspect the residual rk = y − Axk obtained at step k. Ideally,

when the process has converged, i.e. when k = n in exact arithmetic, the corresponding

residual should be r∗ = y − Ax∗ = A(X − x∗) + e. Therefore, if x∗ is close to the true X

of the linear model, and if xk is sufficiently close to x∗, rk should be a possible realization

of a Gaussian vector. Figure 6.5 shows the residual histograms for 3 iteration numbers

corresponding to the convergence detected by µ3, µ1 and to an iteration far away from

the one where we stopped in case (d). In particular, we have represented the Gaussian

with zero mean and standard deviation 1 in solid line. We see that at iteration 14 (middle

graph in Figure 6.5(c)), the iterate has converged according to µ3 (see Table 6.1), and the

residual histogram is very far from being Gaussian.

It appears clearly in Figure 6.2 that of µ2, which differs from µ3 from the fact that the

exact value of the variance is used, exhibit a smoother behaviour than µ3. The criterion

µ1, that is relying on the F-test, and that does not assume that the variance is known,

again gives a smoother behaviour than µ3, and should be preferred. These observations
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Figure 6.3: Energy norm of the error (d=5): (a) dense problem κ(A) = 102 (b) dense

problem κ(A) = 103, (c) dense problem κ(A) = 104, (d) data assimilation problem.

are supported by all the convergence curves we obtained, even by those not reported in the

present numerical section. Finally, we also observed that when the iterations are carried

out until µ1 is below 10−3, the final residual rk is close to a Gaussian vector.

Remark 4. In the dense case, we experimented with several other distributions of the

singular values. We used distributions such that the entries Σi on the diagonal of Σ are

log10 Σi = ±c
(

i− 1

n− 1

)γ

,

and the results are similar to the ones described in the Section above.

7 Conclusions

Using available results on the energy norm for least-squares problems, we have proposed

three possible choices for a stopping criterion based on statistical considerations.
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Figure 6.4: Representation of ζk (d=5): (a) dense problem κ(A) = 102 (b) dense problem

κ(A) = 103, (c) dense problem κ(A) = 104, (d) data assimilation problem.

The slightly more conservative choice µ1 (4.28) is the most reliable one. It will normally

stop the conjugate gradient method after a number of iterations greater than the other

choices µ2 (4.24) and µ3 (4.25). However, the numerical experiments show that the final

residual has a distribution which fits the original Gaussian distribution more accurately.

In particular, values of η close to 10−2 stop the PCGLS2 algorithm with a satisfactory

residual rk when µ1 (4.28) is used and this is not always the case for the choices µ2 and

µ3.

We want to stress the importance of using a robust preconditioner. The delay index

d and the robustness of the stopping criteria depend on it. Our choice of the symmetric

Gauss-Seidel preconditioner is not optimal, however, it is sufficient to allow for a value

of d = 5 in our problems, and the residual histograms computed by using the stopping

criterion µ1 show a good fit with a Gaussian distribution.

Finally, our general conclusion is that for any iterative method, information on the

accuracy of the data has to be taken into account to design best possible stopping criteria
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Figure 6.5: Residual histograms (d=5): (a) dense problem κ(A) = 102 (b) dense problem

κ(A) = 103, (c) dense problem κ(A) = 104, (d) data assimilation problem.

that avoid both over- and under-solving, that respectively result in a too expensive or

too inaccurate solution method. Owing to the variational properties of the conjugate

gradients method for least-squares problems, and to the Gaussian nature of the residual at

convergence, we propose stopping rules that rely on statistical tests involving the energy

norm of the error. Further work could consist in comparing this approach with other tests

of the Gaussianity of the residual, such as the periodogram technique (Rust 2000, Rust

and O’Leary 2008).
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