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Abstract.

Hypersonic hybrid hydrodynamic-molecular gas flow solvers are required to satisfy the two essential requirements of any
high-speed reacting code, these being physical accuracy and computational efficiency. The James Weir Fluids Laboratory at the
University of Strathclyde is currently developing an open-source hybrid code which will eventually reconcile the direct simula-
tion Monte-Carlo method, making use of the OpenFOAM application called dsmcFoam, and the newly coded open-source two-
temperature computational fluid dynamics solver named hy2Foam. In conjunction with employing the CVDV chemistry-vibration
model in hy2Foam, novel use is made of the QK rates in a CFD solver. In this paper, further testing is performed, in particular with
the CFD solver, to ensure its efficacy before considering more advanced test cases. The hy2Foam and dsmcFoam codes have shown
to compare reasonably well, thus providing a useful basis for other codes to compare against.

INTRODUCTION

Hypersonic hybrid hydrodynamic-molecular gas flow solvers need to satisfy the two essential requirements of any
high-speed reacting code, these being physical accuracy and computational efficiency. Available hybrid solvers were
reviewed by Schwartzentruber and Boyd [1] and are essentially in-house codes, whilst the James Weir Fluids Labora-
tory at the University of Strathclyde is currently developing an open-source hybrid code [2].

The newly coded open-source two-temperature computational fluid dynamics (CFD) solver hy2Foam has been
developed to tackle the highly complex flow physics of the hypersonic planetary atmospheric entry [3]. Implemented
within the OpenFOAM framework [4], the code has the capability to model physical phenomena relative to the
high-speed, chemically-reacting environment surrounding a spacecraft. The non-equilibrium conditions are treated
by making the distinction between the trans-rotational and multiple vibrational-electronic energy pools. This allows
the modelling of energy exchanges between the pools and the introduction a chemistry-vibration source term into the
Navier-Stokes-Fourier (NSF) equations. hy2Foam has been extensively validated for a 5-species air using fundamental
zero-dimensional benchmark cases.

The purpose of this work is to compare the results given by the hy2Foam and dsmcFoam solvers. The flow-
field around a Mach 20 circular cylinder in the bottom range of the continuum-transition regime is investigated with
emphasis being made on the importance of considering chemical reactions to correctly estimate the aerothermal loads.

METHODOLOGY

Conventional computational fluid dynamics

The computation of transient hypervelocity reacting flows in the continuum regime traditionally employs the non-
equilibrium Navier-Stokes-Fourier equations. These are shown below in flux-divergence form using a Cartesian coor-
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dinate system for a mixture composed of N; species, including N,, molecules [5]
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The vector of conserved quantities, U, is defined as
U = (p, ps, pu, pv, pw, Eyen, E)' s €Ny, me N, 2

where u, v, and w are the components of the velocity vector. p is the mass density of the fluid and p; is the partial
density of species s. The flux vectors are split into inviscid and viscous contributions and are written as follows

pU; 0
PslUi _js,i
puju+6;1p Til
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where the index i refers to one of the three dimensions of space and ¢ is the Kronecker delta. E is the total energy
per unit volume while E,,,, and e,. ,, represent respectively the vibrational energy per unit volume and the vibrational
energy per unit mass for species m. h; is the enthalpy per unit mass of species s, while the pressure, p, is recovered
from the partial pressures using Dalton’s law. J ; are the components of the species mass diffusion vector and 7;;
represents the components of the viscous stress tensor.

The source term vector, W , is written as

. T
W=(0, @5, 0,0,0, & 0) 5N, meN, )
where «@; is the net mass production of species s and w,,,,, for m € N,,, is given by

a)v,m = Qm,v_r + Qm,v_v + Qm,c_v (6)

In order of appearance in Equation 6, the source terms represent vibrational-translational (V-T) energy exchange,
vibrational-vibrational (V-V) energy transfer and the vibrational-electronic energy added or removed by reactions
to the species m. The default configuration assumes that the electronic mode is disabled. V-T energy exchange is
modelled by the Landau-Teller equation [6]. The relaxation times are evaluated using either the Millikan and White
[7] semi-empirical correlation with the correction of Park [8], and denoted as MWP in the following, or by the
SSH theory named after Schwartz, Slawsky, and Herzfeld [9]. The coefficients of this latter model are taken from
the work of Thivet [10] and a blended model is created with the MWP formulation for molecule-atom collisions.
The formulation that has been implemented to account for V-V energy transfer is the one of Knab ef al. [11, 12].
Finally, the vibration-chemistry source term is handled either by the Park TTv model [8] or by the coupled vibration-
dissociation-vibration (CVDV) model of Marrone and Treanor [13, 14].

In hy2Foam, species thermal properties follow the Blottner [15] and Eucken [5, 16] formulas while mixture
properties are recovered using the Armaly and Sutton mixing rule, as prescribed in the review from Palmer and Wright
[17]. Other mixing rules such as those of Wilke [18] or Gupta [19] are also implemented but will not be considered
in this work. The diffusion fluxes are governed by Fick’s law with a correction term to ensure mass conservation [20].
The binary diffusion coefficient model is the one of Hirschfelder [21].

hy2Foam uses the central-upwind interpolation schemes of Kurganov and Tadmor [22]. The non-equilibrium
boundary conditions employed at the wall are the first-order Smoluchowski temperature jump [23] and the Maxwell
velocity slip [24].

The direct simulation Monte Carlo method

The direct simulation Monte Carlo (DSMC) method developed by Bird [25] is a particle-based methodology that is
particularly well-suited for computing high Knudsen number flows, typically above 0.05. The DSMC code used in
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this work is the OpenFOAM solver dsmcFoam [26]. It inherently has three temperatures: translational, rotational and
vibrational. The vibrational mode has been included in the latest release as a serial application of the quantum Larsen-
Borgnakke procedure. Thus, the vibrational energy can only take discrete quantum values and V-T energy exchanges
rely mostly on microscopic gas information. Following on from this, the implementation of the quantum kinetic (QK)
method to describe chemical reactions in a 5-species air model has been made possible.

Departure from the continuum regime

The local gradient-length Knudsen number initially proposed by Boyd [27] has extensively been used as a breakdown
parameter in the literature (e.g. in [28, 29, 30, 31]). This is computed to identify the regions where the continuum
assumption does not hold. For a local macroscopic flow quantity ¢, it is defined as

A
Kngri—¢ = ’ Vol @)

where A is the local mean free path of the gas molecules and in which ¢ can either be the gas density, the temperature,
or the magnitude of the velocity vector |U| (or max (|U|, a) in the denominator where a is the speed of sound for
low-speed regions [32]). The degree of local continuum breakdown is then evaluated as the maximum for all the
aforementioned flow quantities

Kngu = max(Kngri-p, Kngri-t,» Knri .. Kngriw) ®)

This parameter will be informative in the subsequent simulations.

RESULTS

The hypersonic flow over a two-dimensional circular cylinder of radius R = 1 m is being considered for analysis. The
free-stream fluid is pure nitrogen. The geometry models the upper half of the domain thus taking advantage of the
symmetry of the problem. The streamwise extent of the computational domain spans from -1.8 m to 5 m.

The initial conditions are listed in Table 1. The case is run at a free-stream velocity of 6,047 m s~ and pressure
of 0.89 Pa. The free-stream temperature T, = 220 K is high enough to result in a vibrationally-excited flow-field. The
cylinder wall is held at a uniform temperature of 1,000 K. The overall Knudsen number, equal to 0.0022, lies in the
bottom range of the continuum-transition regime but locally the gas may lie into the transition regime.

TABLE 1. Initial conditions for the Mach 20 cylinder

Quantity Value Unit
Free-stream velocity, Us, 6,047 ms™!
Free-stream pressure, pe, 0.89 Pa
Free-stream density, po, 1.363 x 107 kgm™
Free-stream temperature, T, 220 K
Free-stream mean-free-path, 1,  4.45 X 1073 m

Overall Knudsen number, Kn,, 0.0022 -
Wall temperature, T, 1,000 K

CFD set-up

The mesh used in this investigation consisted of 40,000 cells and the first spacing at the cylinder wall was taken as 2
microns. The simulations make the use of the Maxwell velocity slip and Smoluchowski temperature jump boundary
conditions with accommodation coefficients equal to 1.

Both MWP and SSH formulations are successively used for V-T energy transfer for comparison purposes. The
different set-ups are summarised in Table 2 together with a run identification number.
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TABLE 2. CFD simulations performed

Run number  V-T transfer Electronic mode Rates

1 MWP no -
2 SSH no -
3 MWP yes -
4 MWP no QK
5 SSH no QK

The two chemical reactions being considered in Run number 4 and 5 are the irreversible molecule-molecule and
molecule-atom dissociation of nitrogen

N, + N, — 2N + N,
N, + N — 2N + N

The Arrhenius rate constants are shown in Table 3 in which the units of A and T, are given in m® mol~! s~! and
Kelvin, respectively. They are derived from the QK theory [26]. Finally, the CVDV model is retained for each reacting
computation.

TABLE 3. Parameters for the evaluation of the forward rate constant

Reaction rate Reaction Arrhenius law constants
colliding partner A B T,
0K N, 247 x10"®  -0.62 113,500
N 6.02x 10"  -0.68 113,500
DSMC set-up

The variable hard sphere model is adopted with a temperature exponent of viscosity of 0.74, and a reference tem-
perature of T,,, = 273 K. The particles impinging the cylinder wall are reflected diffusely with an accommodation
coefficient equal to 1. Good DSMC practice have been satisfied for the mesh and the time-step. The cell size is equal
to a third of the mean-free-path and a spline was used to minimize the region being modelled upstream the bow shock.
The DSMC mesh then consisted of 5.5 million cells. Each cell was filled with approximately 15 equivalent DSMC
particles which resulted in simulations using over 80 million particles. The DSMC time-step was set to 1/5 of the
mean-free-time.

Analysis
Non-reacting case scenarios

The regions where the flow departs significantly from local thermodynamic equilibrium are highlighted in Fig. 1(a)
using the local gradient-length Knudsen number and later shown in Fig. 2. This indicates that the CFD solver will
be unlikely to provide satisfactory results within the bow shock and in the near-wake of the cylinder, as shown by
Kngpr values above 0.05. In particular, the low density region for 8 ~ 130 deg is driving the Kngz, beyond 10. For
the reacting case scenario, a very similar picture of Kngyy is observed.

As expected, the bow shock is more diffuse using the DSMC method as shown in Fig. 1(b). The downstream
shock position is nearly identical using both solvers. The temperature fields in Fig. 1(c) and 1(d) are correctly ap-
proximated using hy2Foam for x < 0, which corresponds to the region where the fluid undergoes compression. In the
wake of the cylinder however, T}, is overall smaller and T, overall greater using CFD when compared with DSMC.
These discrepancies show a lack of V-T energy redistribution in the expansion region, in which T, exceeds 7},. Indeed,
the quantum Larsen-Borgnakke method promotes a better energy harmonisation between the energy modes when 7',
is low and 7, is large when compared either with the SSH or with the Millikan-White semi-empirical correlation
corrected by Park, models that are widespread in current CFD codes.
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FIGURE 1. CFD-DSMC flow-field comparisons for Run number 2 (non-reacting).

Figure 2(a) - 2(c) compares the stagnation line profiles of temperature, number density, and Mach number
provided by hy2Foam and dsmcFoam for the run number 2. They are all in very good agreement outside of the
Kngrp > 0.1 band.

Effect of chemical reactions

Figure 2(d) - 2(f) now include the effect of the two dissociation reactions considered. The shock stand-off distance is
reduced from 0.29 m to 0.25 m. Due to the significantly thin bow shock using CFD, the steep increase in 7', is delayed
and the small production of atomic nitrogen within the shock is thus not captured, as seen in Fig. 2(d). The vibrational
temperature profile is less accurately estimated as compared with the non-reacting case.

The surface properties for pressure coefficient, skin friction and heat transfer are shown in Fig. 3 for both non-
reacting (NR) and reacting (QK) simulations. There is a reasonable agreement between the CFD and DSMC solvers.

Global aerothermodynamic coefficients for each simulation are given in Table 4. The drag coefficient estimated
by hy2Foam presents less than 1.5 % error and the reacting environment does not affect noticeably its value. The
integrated heat flux however is nearly halved when considering the two dissociation reactions. The agreement remains
satisfactory between the two solvers. Finally, the inclusion of the electronic mode in Run number 3 has shown to have
very little effect on the global aerothermodynamic coefficients.
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FIGURE 2. Stagnation line profiles for the run numbers 2 and 5.
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FIGURE 3. Surface quantities around the cylinder (run numbers 2 and 5).

TABLE 4. Global aerothermodynamic coefficients

C D (pressure contribution) C H [kW]
CFD run number gy, DSMC  CFD DSMC
1 1.3 (96.8%) ‘ 115
2 1296 vosy 207D 109 1S
3 1.308 (96.8%) X 114 X
4 1.3 (96.8%) 66.5
5 1296 wosey  ZAOTID Gon 633

CONCLUSIONS

The hy2Foam and dsmcFoam results have shown to be in reasonable concordance, thus verifying the implementation
of hy2Foam for two-dimensional geometries in a reacting and neutral environment. The use of the CVDV model
for chemistry-vibration coupling together with reaction rates derived from Quantum-Kinetics -through the use of
dsmcFoam- has shown to be an appropriate choice. Hence, it is thought that the verification case scenario presented in
this paper provides a useful basis for other codes to compare against. Future work will focus on simulating this same
geometry at higher Knudsen numbers using air and thus including more chemical reactions.
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