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Using mixed precision within DL POLY’s force and energy

evaluations: long-range interactions and fast Fourier transforms

H. Sue Thorne12

ABSTRACT

DL POLY 4 is a molecular dynamics simulation code developed by CCP5. In this report, we consider the use of

a simple mixed-precision methodology within the Smoothed Particle Mesh Ewald (SPME) method for systems

with long-ranged ionic interactions. We show that such a method can be successfully used within DL POLY and

that, for some of the test problems, the overall execution time was reduced by 14%.
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1 Background and motivation

In the last two decades, huge developments were made in molecular dynamics simulation methods , particularly

in the ability to use large-scale parallel platforms. In this report, we consider the use of a mixed-precision

methodology within the Smoothed Particle Mesh Ewald (SPME) method [4] for systems with long-ranged forces.

In particular, our investigation hinges on the SPME implementation within DL POLY 4, which incorporates

the domain decomposition method with a 3D Fast Fourier Transform, known as the Daresbury Advanced

Fourier Transform (DAFT) [2]. In DL POLY 4, any real values are stored in double precision and operated

on using double precision arithmetic (IEEE Standard 754 is assumed). On modern high performance computing

architectures, there is normally the provision to use single precision arithmetic that is significantly faster than the

corresponding double precision operation [6]. Additionally, the communication of real data between processors in

a distributed system will normally be significantly faster when passing single precision data compared to double

precision data. However, the desire to speed-up the code must be balanced with the requirements of getting an

accurate solution. Indeed, if all real values are stored in single precision and operated on using single precision

arithmetic, then DL POLY is unstable. Thus, it will be necessary to use single precision in a restricted manner,

i.e., use mixed precision. In this report, we focus on using a mixed precision approach within part of the SPME

calculation, namely, the DAFT component will use single precision as much as possible.

In Section 2, the Smoothed Particle Mesh Ewald Method is reviewed. The Discrete Fourier transform and

DAFT are discussed in Section 3.1. Our mixed precision methodology is introduced in Section 4 and numerical

results from a number of test problems are provided in Section 5. Section 6 contains the conclusions from this

work.

2 The Smoothed Particle Mesh Ewald Method

In molecular dynamics, the conditionally convergent Coulomb sum is used to describe the system energy

contribution from ionic interactions in periodic charged systems. The Ewald Sum replaces this sum by three

distinct sums with guaranteed convergence:

E = ES + EL + ESELF ,

where ES , the real space sum, is cast in normal physical space and represents the short-range interactions; EL,

the reciprocal space sum, is cast in the reciprocal space of the unit cell and represents the long-range terms;

ESELF is the self interaction term. Suppose we have N ions in a vacuum at locations r1, r2, . . . , rN with point

charges q1, q2, . . . , qN , respectively. We define ǫ0 = 8.854 × 10−12C2N−1m−2 to be the electric constant (or

vacuum permittivity). Let the ions be subjected to periodic boundary conditions, which we describe using three

repeat vectors c1, c2, c3 : these form the supercell. Thus, if there is an ion with charge qi at location ri, then

there are also ions with charge qi at ri + n1c1 + n2c2 + n3c3, where n1, n2, and n3 are arbitrary integers. We

simplify the notation by writing an arbitrary repeat vector as nL, where L represents the supercell. If we further

assume that the charge distribution is of Guassian form with standard deviation σ and the supercell has volume

V, then ES , EL and ESELF are defined as

ES =
1

4πǫ0

1

2

∑

n

N
∑

i=1

N
∑

j=1
j 6=i

qiqj
|ri − rj + nL| erfc

( |ri − rj + nL|√
2σ

)

, (1)

EL =
1

2V ǫ0

∑

k 6=0

N
∑

i=1

N
∑

j=1

qiqj
k2

eik·(ri−rj)e
−σ2k2/2

, (2)
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2πσ

N
∑

i=1

q2i . (3)
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In this report, we focus on the calculation of EL. The calculation of ES is considered in [5]. The SPME

method improves the performance of the Ewald reciprocal space sum calculation by using (complex) Fast Fourier

Transforms (FFTs). See [2] for further details about the framework in which the FFT is used.

3 Discrete Fourier Transforms

Let y0, y1, . . . , yN−1 be complex numbers forming a one-dimensional array. The Discrete Fourier Transform

(DFT) is defined as

Yk =
N−1
∑

n=0

ynw
k,n
N , k = 0, . . . , N − 1, (4)

where

wk,n
N = e−i2πkn/N . (5)

Thus, a new one-dimensional array is formed. If we were to evaluate this Yk directly for each k, then O(N2)

operations would be required. A Fast Fourier Transform (FFT) computes all Yk using just O(N logN) operations.

3.1 Fast Fourier Transforms

Let a(x) be a polynomial of degree N − 1, where a(x) = a0 + a1x+ a2x
2 + . . .+ aN−1x

N−1. Define the b(x) and

c(x) to be polynomials of degrees ⌊(N − 1) /2⌋ and N−1−⌈N/2⌉, respectively, where b(x) = a0+a2x+a4x
2+ . . .

and c(x) = a1+a3x+a5x
3+ . Noting that a(x) = b(x2)+xc(x2) and that (4) is a polynomial with x = e−i2πk/N ,

then the time T (N) to calculate all Yk satisfies

T (N) = 2T (N/2) +O(N)

= O(N logN).

In DL POLY, a three-dimensional version of the DFT is used: for an array yn1,n2,n3
with nl = 0, 1, . . . , Nl−1

and l = 1, 2, 3, the three-dimensional DFT is defined as

Yk1,k2,k3
=

N1−1
∑

n1=0

wk1n1

N1

N2−1
∑

n2=0

wk2n2

N2

N3−1
∑

n3=0

wk3n3

N3
yn1,n2,n3

, kl = 0, 1, . . . , Nl−1, l = 1, 2, 3. (6)

Note that this is a sequence of 3 one-dimensional DFTs, i.e., Y can be calculated by performing a DFT along

the n3 dimension, then apply a DFT along the n2 directions and, finally, apply a DFT along the n1 direction.

Let N = N1N2N3, then it can be shown that the complexity of this approach is O (N logN) .

The Daresbury Advanced Fourier Transform (DAFT) [2] is a fully distributed parallel implementation of the

3D FFT, which makes use of the underlying domain decomposition, and is designed to maximise performance on

architectures with a large number of processors. Unfortunately, the nature of the DFT means that there needs to

be a lot of communication between the processors and if this communication can be done using single precision

data instead of double precision, then there should be an appreciable time/energy saving in communication costs.

This motivates our desire to investigate the use of mixed precision within the reciprocal SPME calculation and

DAFT.

4 Mixed precision within the reciprocal SPME calculation

Our method for using mixed precision within the reciprocal SPME calculation can be attributed to the work

presented in [3]. If the SPME method is called by DL POLY, then the SPME reciprocal space sum is computed

once during each time step. The DAFT is called twice during each calculation of the SPME reciprocal space

sum. In the current version of DL POLY, the values of wk,n
N are computed once in double precision, stored in

double precision and reused during each call to DAFT. All calculations within DAFT are carried out using double

precision arithmetic. Our proposed mixed precision method is as follows:
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• Compute wk,n
N using double precision arithmetic but store the resulting value using single precision. These

values are reused by each call to DAFT.

• Convert the input FFT data to single precision (complex) data.

• Form the FFT using single precision arithmetic, producing single precision (complex) output.

• Convert the output to double precision on-the-fly as needed by the SPME calculation.

In the original double precision version of DL POLY, we note that the first call to the 3D FFT function

within each reciprocal SPME call is preceded by the conversion of real double precision data to double precision

complex data, which then forms the input data to the FFT. In our proposed method, the real double precision

data is converted to single precision complex data.

5 Numerical results

All of our tests were run on the Hartree Centre’s Napier Compute System [1], which consists of 360 nodes

containing 2 x12 core Intel Xeon processors (IvyBridge E5-2697v2 2.7GHz) and 64GB RAM. The interconnect

is Infiniband from Mellanox (FDR Connect-IB 56 GB/s). In all our runs, 24 processes per node were requested.

DL POLY 4.09 was used as our base code and all double precision runs use this version. DL POLY was

compiled using Intel MPI (version 5.1.1) and its mpif90 wrapper, which points to the GNU compiler gfortran.

The flag -pg was used to enable profiling and we always set the environment variable GMON OUT PREFIX to

gmon.out-‘/bin/uname -n‘ to save the separate profiles for each MPI process.

For each test problem, number of MPI processes, np, and choice of precision used within the 3D FFT method,

five separate runs were performed and the gprof profiler was used to analyse the timing profiles across all of the

processes. In the following, we report times that are averaged (mean) across all five runs and all MPI processes.

We are particularly interested in

fft 3d the total time spent performing the 3D FFT kernel by an MPI process;

spme the total time spent performing the Ewald SPME kernel by an MPI process;

total the total DL POLY execution time for an MPI process.

5.1 Standard DL POLY test cases

As part of DL POLY, 28 small test problems are provided. Of these, 14 use the Ewald SPME method and we

also immediately discounted test problems 01 and 03 because total execution time for the SPME method on a

single processor was a fraction of a second. In Table 1, we list the test problems used and their attributes: the

problems are numbered as in the DL POLY Manual [7]. When comparing the use of the mixed precision and

double precision versions of DL POLY, we found that the mixed precision version that there was very little or

no loss in accuracy in the output from DL POLY.

In Table 2, we list the (mean) time spent by each MPI process in the various kernels (listed in Section 5)

when either the mixed precision or double precision versions of the DaFT are used within the DL POLY run.

The times in bold are those that are at most 2% larger than the best time.
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Problem Total system size Temperature(K) Description

02 51737 atoms 300 200 DMPC molecules in 9379 water molecules

04 99120 atoms 300 8 Gramacidin A molecules in 32096 water molecules

07 12428 atoms 300 Lipid bilayer in water

08 and 09 8000 charged points 3000 MgO with adiabatic and with relaxed shell model

and 4000 shells

10 500 ions and 300 Potential of mean force on K+ in water

39000 atoms

18 34992 atoms 25 SPC IceVII Water with constraint bonds

19 34992 atoms 25 SPC IceVII Water with rigid bodies

20 28816 atoms 295 64 NaCl ion pairs with 4480 water molecules represented

by constraint bonds and 4416 water molecules represented

by rigid bodies

21 29052 particles 295 7263 TIP4P rigid body water molecules

22 44352 ions 400 Ionic liquid dimethylimidazolium

23 23712 ions 310 600 molecules of calcite in 6904 water molecules

Table 1: Standard DL POLY test problems using the Ewald SPME Method and their attributes. Test problems

01 and 03 excluded due to them having very small execution times.
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fft 3d spme total fft 3d/total

Problem np mixed double ratio mixed double ratio mixed double ratio mixed double

02 1 4.15 5.26 0.79 8.59 9.67 0.89 45.65 46.85 0.97 0.091 0.112

02 2 1.97 2.31 0.85 4.19 4.55 0.92 23.63 24.03 0.98 0.083 0.096

02 4 0.87 1.10 0.79 2.05 2.29 0.90 12.16 12.44 0.98 0.072 0.088

02 8 0.45 0.52 0.87 1.00 1.08 0.92 6.25 6.34 0.99 0.072 0.082

04 1 0.77 0.75 1.03 6.46 6.43 1.00 54.25 53.80 1.01 0.014 0.014

04 2 0.37 0.36 1.03 3.21 3.19 1.01 28.16 28.06 1.00 0.013 0.013

04 4 0.18 0.16 1.13 1.70 1.69 1.01 14.61 14.51 1.01 0.012 0.011

04 8 0.09 0.08 1.13 0.78 0.78 1.00 7.51 7.50 1.01 0.012 0.011

07 1 3.31 3.31 1.00 10.01 10.11 0.99 31.69 31.67 1.00 0.104 0.105

07 2 1.71 1.72 0.99 5.06 5.14 0.98 16.80 16.88 1.00 0.102 0.102

07 4 0.85 0.95 0.89 2.65 2.78 0.95 9.36 9.45 0.99 0.091 0.101

07 8 0.45 0.57 0.79 1.41 1.54 0.91 4.90 5.02 0.98 0.092 0.114

08 1 0.12 0.14 0.86 0.85 0.89 0.96 2.81 2.81 1.00 0.043 0.050

08 2 0.05 0.06 0.83 0.40 0.42 0.95 1.51 1.55 0.97 0.033 0.039

08 4 0.02 0.03 0.67 0.21 0.21 1.00 0.83 0.84 0.99 0.024 0.036

08 8 0.01 0.02 0.50 0.12 0.12 1.00 0.43 0.44 0.98 0.023 0.046

09 1 1.19 1.49 0.80 9.05 9.29 0.97 28.74 28.95 0.99 0.0414 0.0515

09 2 0.62 0.63 0.98 4.16 4.23 0.98 15.96 15.94 1.00 0.039 0.040

09 4 0.28 0.33 0.85 2.18 2.24 0.97 8.73 8.77 1.01 0.032 0.038

09 8 0.15 0.13 1.15 1.19 1.21 0.98 4.34 4.39 0.99 0.035 0.030

10 1 0.24 0.22 1.09 2.49 2.50 1.00 19.65 19.70 0.99 0.012 0.011

10 2 0.12 0.11 1.09 1.32 1.34 0.99 10.52 10.57 0.99 0.011 0.010

10 4 0.07 0.07 1.00 0.62 0.61 1.02 5.38 5.42 0.99 0.013 0.013

10 8 0.03 0.04 0.75 0.33 0.33 1.00 2.85 2.85 1.00 0.011 0.014

18 1 1.59 1.34 1.19 14.84 14.59 1.02 56.95 56.42 1.01 0.028 0.024

18 2 0.77 0.70 1.10 7.77 7.77 1.00 30.09 30.04 1.00 0.026 0.023

18 4 0.38 0.34 1.12 3.62 3.58 1.01 15.27 15.24 1.00 0.025 0.022

18 8 0.19 0.17 1.12 1.90 1.88 1.01 8.38 8.40 1.00 0.023 0.020

19 1 0.34 0.34 1.00 3.37 3.31 1.02 14.27 14.21 1.00 0.024 0.024

19 2 0.19 0.14 1.35 1.78 1.73 1.03 7.56 7.49 1.01 0.025 0.019

19 4 0.09 0.08 1.13 0.81 0.82 0.98 3.81 3.81 1.01 0.024 0.021

19 8 0.05 0.03 1.67 0.44 0.43 1.02 2.00 1.99 1.01 0.025 0.015

20 1 0.30 0.35 0.86 4.33 4.40 0.98 24.65 24.71 1.00 0.012 0.014

20 2 0.13 0.16 0.81 2.17 2.18 1.00 12.82 12.78 1.00 0.010 0.013

20 4 0.07 0.08 0.88 1.06 1.08 0.98 6.63 6.63 1.00 0.011 0.012

20 8 0.03 0.03 1.00 0.59 0.58 1.02 3.52 3.51 1.00 0.009 0.009

21 1 0.51 0.44 1.16 7.38 7.28 1.01 41.43 41.32 1.01 0.012 0.011

21 2 0.27 0.25 1.08 3.37 3.36 1.00 21.10 21.10 1.00 0.013 0.012

21 4 0.12 0.14 0.86 1.79 1.81 0.99 11.09 11.11 1.00 0.011 0.013

21 8 0.07 0.06 1.17 1.00 1.00 1.00 5.83 5.82 1.00 0.012 0.010

22 1 0.40 0.43 0.93 3.15 3.18 0.99 13.67 13.63 1.01 0.029 0.032

22 2 0.21 0.20 1.05 1.58 1.58 1.00 7.17 7.13 1.01 0.029 0.028

22 4 0.10 0.11 0.91 0.75 0.75 1.00 3.78 3.79 1.00 0.027 0.029

22 8 0.06 0.06 1.00 0.40 0.40 1.00 2.08 2.07 1.00 0.029 0.029

23 1 0.04 0.05 0.80 1.53 1.52 1.01 12.80 12.93 0.99 0.003 0.004

23 2 0.02 0.04 0.50 0.82 0.83 0.99 6.77 6.81 0.99 0.003 0.006

23 4 0.02 0.02 1.00 0.37 0.37 1.00 3.46 3.48 0.99 0.006 0.006

23 8 0.01 0.01 0.99 0.20 0.21 0.95 1.82 1.83 0.99 0.006 0.006

Table 2: Average time (seconds) per MPI process spent doing FFT calculations (fft 3d), doing SPME

calcululations (spme)and executing DL POLY (total). Timings for both the mixed precision and double precision

versions are given and for 1,2,4 and 8 MPI processes.
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Figure 1: Ratio of the time spent performing the FFT calculations using mixed precision versus double precision.

In Figure 1, we look at the ratio of mean time spent by a process on the DaFT calculation when using mixed

precision versus double precision. We observe that, for some problems using one MPI process, the time dropped

by upto 20%. For one test problem, Test 08 with 8 MPI processes, there was a 40% drop in execution time

when mixed precision was used instead of double precision. However, there were also problems where the reverse

happened, for example, Test 19. For test problems 02 and 07, the DaFT kernel accounted for roughly 45% and

35% of the time in performing the Ewald SPME calculations. For the rest of the test problems, the DaFT kernel

accounted for roughly 5-15% of the Ewald SMPE time. As a result, the savings or gains in using mixed precision

for the SPME component are far more moderate when we consider the mean execution time across an MPI

process, see Figure 2. In fact, the maximum savings is close to 10% (Test 02) and the largest increase is 3%.

The Ewald SPME calculations are just part of the overall force calculations being performed within a run of

DL POLY and, hence, the time spent performing the FFT computations is generally a small fraction of the total

time. Therefore, the execution time gains/losses for the FFT computation will have an even smaller effect on

the total execution time for DL POLY. For test problems 02 and 07, roughly 10% of the time is spent on each

MPI process is the FFT calculation; for five of the problems (04, 10, 20, 21 and 23), less than 2% of the time is

spent in the FFT calculations.

It should be noted that, whilst these standard DL POLY tests are not generally FFT dominant, for

applications where the FFT is dominant, any savings in the FFT execution could be significant. Additionally,

the size of these test problems do not replicate the typical nature of the molecular dynamics problems run using

DL POLY.

5.2 Enlarged DL POLY test cases

In this section, we enlarge some of the test problems to enable us to examine the effect of communication between

processes for the 3D FFT component and give a better idea of the mixed precision behaviour. To enlarge the test

problems, we use DL POLY’s nfold facility. For test problem 02, we had to additionally alter the CONTROL
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Figure 2: Ratio of the time spent performing the Ewald SPME calculations using mixed precision versus double

precision.
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Figure 3: Ratio of the time spent running DL POLY using mixed precision versus double precision.
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file by appropriately scaling the maximum number of k-vector indices in the Ewald specification line. We append

“b” to the test problem number for problems that were expanded by doubling the x, y and z dimensions; “c” is

appended to the problem number for problems where the x, y and z dimensions are increased by a factor of 5.

The original problem is replicated 8 (125) times and shifted appropriately to fill the enlarged space. With the

enlarged systems, it is necessary to increase the number of MPI processes used to solve the problems.

fft 3d spme total fft 3d/total

Problem np mixed double ratio mixed double ratio mixed double ratio mixed double

02b 8 5.10 6.77 0.75 9.99 11.76 0.85 49.93 51.69 0.97 0.102 0.132

02b 16 2.75 4.13 0.67 5.48 6.93 0.79 26.36 27.77 0.95 0.104 0.149

02b 24 2.63 5.05 0.52 4.66 7.17 0.65 19.31 21.77 0.89 0.136 0.232

02b 32 1.38 2.30 0.60 2.81 3.79 0.74 13.78 14.77 0.93 0.100 0.156

04b 8 1.00 1.25 0.80 6.72 7.00 0.96 60.37 60.58 1.00 0.017 0.021

04b 16 0.49 0.84 0.58 3.45 3.81 0.91 32.49 32.72 0.99 0.015 0.026

04b 24 0.46 1.06 0.43 2.55 3.16 0.81 23.85 24.32 0.98 0.019 0.043

04b 32 0.24 0.44 0.55 1.80 2.02 0.89 16.76 16.89 0.99 0.014 0.026

07b 8 4.10 4.72 0.87 11.22 11.94 0.94 40.04 40.76 0.98 0.102 0.116

07b 16 2.51 3.71 0.68 6.46 7.72 0.84 23.3 24.42 0.95 0.108 0.152

07b 24 2.72 4.84 0.56 5.63 7.85 0.72 18.89 21.04 0.90 0.144 0.230

07b 32 1.40 2.31 0.61 3.55 4.51 0.79 12.74 13.66 0.93 0.110 0.169

10b 8 0.42 0.47 0.88 2.76 2.83 0.98 24.2 24.4 0.99 0.017 0.019

10b 16 0.23 0.30 0.79 1.50 1.57 0.95 13.1 13.2 0.99 0.018 0.023

10b 24 0.16 0.25 0.62 1.03 1.13 0.91 8.77 8.84 0.99 0.018 0.028

10b 32 0.11 0.13 0.87 0.72 0.74 0.98 6.65 6.76 0.98 0.017 0.019

18b 8 1.11 1.15 0.96 8.64 8.73 0.99 38.98 39.12 1.00 0.029 0.029

18b 16 0.58 0.65 0.90 4.66 4.75 0.98 20.76 20.88 0.99 0.028 0.031

18b 24 0.44 0.63 0.69 3.25 3.44 0.94 14.95 15.15 0.99 0.029 0.042

18b 32 0.31 0.34 0.91 2.29 2.32 0.99 11.12 11.13 1.00 0.028 0.031

19b 8 0.31 0.33 0.95 2.48 2.46 1.01 11.82 11.60 1.02 0.026 0.028

19b 16 0.17 0.18 0.92 1.29 1.30 0.99 6.19 6.16 1.00 0.026 0.029

19b 24 0.12 0.18 0.66 0.88 0.95 0.92 4.24 4.3466 0.97 0.028 0.041

19b 32 0.09 0.10 0.86 0.65 0.67 0.98 3.17 3.19 0.99 0.028 0.031

02c 48 27.66 46.10 0.60 45.00 63.67 0.71 174.11 192.76 0.90 0.159 0.239

02c 96 14.62 29.07 0.50 23.05 38.65 0.60 91.84 106.61 0.86 0.159 0.273

02c 144 9.83 17.22 0.57 15.00 22.58 0.66 62.68 70.22 0.89 0.157 0.245

04c 96 3.06 5.32 0.58 11.07 13.42 0.82 107.20 109.20 0.98 0.029 0.049

04c 144 2.37 4.27 0.56 7.76 9.71 0.80 72.34 73.84 0.98 0.033 0.058

04c 192 1.34 2.60 0.52 5.40 6.70 0.81 53.36 54.42 0.98 0.025 0.048

18c 48 2.16 4.01 0.54 8.76 10.69 0.82 56.48 58.48 0.97 0.038 0.069

18c 96 0.87 1.66 0.53 4.17 5.02 0.83 27.36 28.22 0.97 0.032 0.059

18c 144 0.57 1.38 0.41 2.81 3.64 0.77 17.07 17.89 0.95 0.033 0.077

Table 3: Average time (seconds) per MPI process spent doing FFT calculations (fft 3d), doing SPME

calculations (spme)and executing DL POLY (total). Timings for both the mixed precision and double precision

versions are given and for 1,2,4 and 8 MPI processes.

In Table 3, we list the (mean) time spent by each MPI process in the various kernels (listed in Section 5) when

either the mixed precision or double precision versions of the DaFT are used within the DL POLY run. The times

in bold are those that are at most 2% larger than the best time. As the size of the test problem is scaled up by a

factor 8 and then a factor of 125 (with respect to the original test problem), we observe that the mixed precision

value of fft 3d approaches 0.5 times that when double precision is used. As noted in Section 5.1, the affect on

the overall execution time depends on how dominant the FFT component is in the overall DL POLY run. We

note that, increasing the problem size has the effect of increasing the dominance of the FFT component. For the

“b” problems, switching from 24 to 32 processes leads to a decrease in the dominance but this corresponds to
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moving from using one to using two nodes. This need for off-node communication results in differing behaviours

for different components within DL POLY and, hence, different ratios. For the “c” test problem where the FFT

is most dominant (Test 02c), the (wall-clock) execution time is decreased by 14% when mixed precision is used in

the SPME calculation compared to using double precision; for the test problem where it is least dominant (Test

04c), there is a 2% decrease in execution: for large molecular dynamics problems taking many hours to run, this

can still be a useful gain.

6 Conclusions

We conclude that a simple modification to the DAFT algorithm allowed us to turn it into a mixed precision

method and halved the fast Fourier transform calculation in the larger test problems. There was little or no loss

in accuracy when comparing the output from DL POLY. For some of our test problems where the fast Fourier

transform is a dominant component within DL POLY, we were able to reduce the overall execution time of

DL POLY by 14%. The exact nature of the problem being solved will dictate the possible gains from using this

mixed precision approach.
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