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While historically many quantum-mechanical simulations of molecular dynamics have relied on the Born-
Oppenheimer approximation to separate electronic and nuclear behavior, recently a great deal of interest has arisen
in quantum effects in nuclear dynamics as well. Due to the computational difficulty of solving the Schrödinger
equation in full, these effects are often treated with approximate methods. In this paper, we present an algorithm
to tackle these problems using an extension to the many-interacting-worlds approach to quantum mechanics.
This technique uses a kernel function to rebuild the probability density, and therefore, in contrast with the
approximation presented in the original paper, it can be naturally extended to n-dimensional systems. This opens
up the possibility of performing quantum ground-state searches with steepest-descent methods, and it could
potentially lead to real-time quantum molecular-dynamics simulations. The behavior of the algorithm is studied
in different potentials and numbers of dimensions and compared both to the original approach and to exact
Schrödinger equation solutions whenever possible.

DOI: 10.1103/PhysRevE.97.053311

I. INTRODUCTION

Since its introduction [1], ab initio molecular dynamics
has been widely used to study a range of different systems.
Historically, these simulations have always relied on the Born-
Oppenheimer approximation [2] to separate electronic and
nuclear motions, treating the first with quantum mechanics
and the latter with classical Newtonian mechanics. In recent
years, however, interest has arisen in the relevance of quantum
effects in nuclear motions, as advances in computational
technology have made their calculation more practical. Many
calculations and experiments show that nuclear quantum ef-
fects, especially involving the motion of hydrogen nuclei, are
relevant to fully describe the behavior of water and ice [3,4]
in strongly hydrogen-bonded systems [5] and in biological
macromolecules [6]. Simulating these effects is no easy feat.
One of the most popular approaches is that of path-integral
molecular dynamics (PIMD) [7], which allows one to approx-
imate quantum statistical distributions by replacing a single
nucleus with many copies of it organized as beads in a closed
loop, all behaving classically except for a fictitious harmonic
potential term linking them together. Since the dynamics of a
system defined in this way is not necessarily physical anymore,
different conventions can be adopted for the effective masses
of its various vibrational modes depending on the quantities
of interest [8], such as centroid molecular dynamics (CMD)
[9], ring polymer molecular dynamics (RPMD) [10], and the
one that is most commonly referred to as PIMD proper. This
technique has been used successfully to explore problems such
as the behavior of hydrogen atoms shared by molecules in
water monolayers on metal surfaces [3], the quantum nature of
the hydrogen bond [11], and bimolecular reaction rates [12],
using both ab initio methods and parametrized potentials. Hall,
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Deckert, and Wiseman proposed a possible interpretation of
quantum mechanics that shares many features with PIMD [13].
In that approach, which the authors called many interacting
worlds (MIW), quantum-mechanical behavior emerges from
many copies of the same particle all interacting with each
other through a potential that has no classical equivalent. As
opposed to PIMD, however, this potential is repulsive, which
means MIW could describe a quantum ground state as an
equilibrium configuration; in addition, MIW is theoretically an
approximation to full quantum dynamics, meaning it should
be able to simulate time-dependent quantum evolution. This
makes it a promising avenue to explore for the development
of new computational techniques for the treatment of nuclear
quantum effects. However, while the theory presented in [13]
is general, the practical implementation proposed in the paper
can be applied only to one-dimensional systems. In this paper,
we develop a different approach that is naturally extensible to
higher dimensions and could therefore be put to practical use
in molecular-dynamics simulations.

II. THE MANY-INTERACTING-WORLDS APPROACH

A. Theory

The MIW approach, as presented in [13], can be considered
as a discretization of the Holland-Poirier hydrodynamical
approach to QM [14,15] or it can be derived from the well-
known de Broglie–Bohm pilot wave interpretation [16,17].
For the full derivation, we direct the reader to the original
paper. Here we just give an outline of the fundamentals of
this approach. The system to be described is represented by a
number of worlds N , with a multiworld configuration at time t ,

X(t) = {x1(t),x2(t), . . . ,xN (t)} (1)

with every xn(t) = [x1,n(t),x2,n(t), . . . ,xK,n(t)] being the total
classical configuration of world n, namely an array of the K

degrees of freedom of the system. For a generic D-dimensional
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system containing Q particles, it will be K = QD. It is easy to
see then how the probability density to find the system in a con-
figuration q, equivalent to the square modulus of the wave func-
tion in the usual Schrödinger’s picture, can be approximated as

P (q,t) = |�(q,t)|2 ∼
N∑

n=1

δ(q − xn(t)) (2)

using the Dirac δ distribution. The dynamics of the system
are governed by the usual laws of Newtonian mechanics. The
classical Hamiltonian can be written as

HMIW(X) =
N∑

n=1

[
K∑

k=1

1

2
mkẋ

2
k,n + V (xn)

]
+ UMW(X), (3)

where the quantities with index k (masses, coordinates, etc.)
correspond to each individual particle, and the potential
is a function of the entire world’s configuration. One can
distinguish a term that operates on each world configuration
separately (with the classical potential V also including any
regular interactions among particles, like electrostatic forces)
and an interworld potential UMW, which is nonclassical
in nature and introduces quantum effects. For example,
delocalization is the consequence of UMW being repulsive
and preventing all particles from finding an equilibrium in the
potential minimum, and energy indeterminacy is the conse-
quence of energy being exchanged between worlds thanks to
the interworld coupling and therefore not being conserved in
each separate world (while the overall many-world ensemble
is indeed conservative). The general form of UMW is

UMW(X) =
N∑

n=1

K∑
k=1

1

2mk

[
gk

N (xn; X)
]2

, (4)

where

gk
N (q; X) ≈ h̄

2

1

P (q; X)

∂P (q; X)

∂qk

. (5)

Here P represents the distribution describing the probability
of finding the system in a given configuration q, as in Eq. (2),
but its dependence from the configuration of the “world
particle” X is made explicit. From Eqs. (4) and (5) it is clear that
to run a simulation based on the MIW approach, it is necessary
to rebuild the probability density function P (q; X) in some
approximated way for a given multiworld configuration. This is
implied in the choice of only writing an “approximate” equality
in Eq. (5). Equation (2) suggests one way to do this, but it is
obvious that in practical computation, where limits on available
power and time will force one to use a small number of worlds
N , this method would fail rather badly. In [13], the authors
propose for the 1D case of a single particle an approximation

P (xn) ≈ 1

N (xn+1 − xn)
. (6)

Here xn has become a scalar, since each world has only
one degree of freedom. This equation holds whenever the
distance between the same particle in adjacent worlds is
slowly varying and by enforcing that xn+1 > xn all the time,
and it does indeed produce good results. This leads to an
interworld potential depending overall on five worlds—the
world of interest n and its first and second neighbors. It has,

however, two problems that prevent it from being applicable to
general purpose simulations, namely that it cannot be naturally
extended to more than one dimension and that it features
a divergent potential that makes numerical integration very
sensitive to the time step used when any two world particles
happen to be close enough. In this paper, we suggest a different
method to compute the probability density, which overcomes
these problems using the technique known as kernel density
estimation (KDE) [18,19]. The idea is simply to apply a kernel
distribution K to Eq. (2), so that

P (q) =
N∑

n=1

K(q − xn). (7)

In this way, and with a good choice of function K,
P (q) is continuous and differentiable on all space, which
leads to a natural way of computing the quantum forces,
and can be defined similarly for any dimensionality. A very
similar approach has been proposed in parallel to this work
by Herrmann and the authors of the original MIW paper
in [20]. In that, a more natural multidimensional extension
of the original method by using Delaunay triangulations is
explored as well, but it is found to be inconvenient for practical
applications due to the discontinuities it introduces in the
dynamics. When using KDE, an obvious choice is to make
the kernel function Gaussian, which, including the necessary
normalization conditions, returns:

P (q) = 1

N (
√

πb)D

N∑
n=1

exp

[
− (q − xn)2

b2

]
(8)

with b a free kernel bandwidth parameter and D the number
of dimensions of the system. It is then possible to derive
analytically the potential and the forces. While the process
is not especially complex, the calculations are long, and they
are reported in Appendix A. The Gaussian kernel, however,
has the potential to give rise to a problem. Let us consider
the case of a simulation of a single quantum particle. From
now on, it must be clear that when we talk about “particles”
we mean in fact multiple classical copies of the same particle
across worlds interacting only through the interworld potential,
and not effectively different particles interacting classically.
Due to the appearance of the derivative of P in Eq. (5), one
can see after deriving the forces that it will give rise to no
repulsion when two particles are close enough or overlapping.
This runs counter to physical intuition: since the interworld
potential must reproduce the effects of what we could call
“quantumness” on the system, it should be generally repulsive
to avoid the wave function collapsing in a single spot and losing
position indeterminacy. This is a property of any symmetric and
smooth kernel, as its derivative in the center will always be null.
Therefore, if the particles happened to get closer than a certain
distance during the simulation, they might end up coalescing,
and this artifact would compromise the final result. For this
reason, we test also a different kernel, with a discontinuous,
nonzero derivative in the origin:

P (q) = �(D/2)

2N (D − 1)!(
√

πb)D

N∑
n=1

exp

[
−|q − xn|

b

]
, (9)
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FIG. 1. Many-world potential for N = 2 and for the cases of
Gaussian and exponential kernels. It can be seen how the former
features a minimum for the case of overlapping particles where the
latter has a cusp. Units are arbitrary.

where the proper normalization factor has been inserted in
front (with � denoting the Gamma function). Since this factor
is less obvious, proof of how it is derived is provided in
Appendix B. Figure 1 compares the UMW for two particles
as the distance between them varies for both kernels and
highlights the problem and the way the exponential kernel
solves it. Potential and forces can be found for this kernel
similarly to what has been seen with the Gaussian one, and
they are written out in Appendix A as well.

In Sec. III we will proceed to test the MIW method in
some numerical simulations on toy models and compare its
results with both solutions obtained by traditional methods
based on diagonalization of the Hamiltonian and, for the case of
1D problems, MIW simulations carried out with the potential
derived from Eq. (6).

B. Comparison with methods of the PIMD family

Given the similarities between the two techniques, it is
worth the effort to explore a bit more the analogies and
differences between MIW and PIMD-like methods (PIMD,
CMD, and RPMD) to better evaluate the potential applicability
of this approach. From now on, I will refer to all these
latter three methods as PIMD unless specified otherwise. As
mentioned already, MIW and PIMD share a fundamental sim-
ilarity in their approach to simulating quantum effect, as both
use a number of classical simulations coupled by a fictitious
potential to reproduce quantum statistics. The potential that
couples PIMD beads, however, is harmonic and works only
between next-neighbor worlds, which in turn allows us to treat
the dynamics by separating independent harmonic modes. This
is not possible in kernel MIW, where the potential is strongly
nonlinear and couples all worlds with all others. Nevertheless,
the formal similarities mean that for a lot of existing software
packages implementing MIW dynamics could probably be a
relatively easy task, as it could reuse much of the PIMD code.
With regard to performance, these two methods tend to be com-
plementary, and that makes it hard to set up a direct comparison.
A key feature of PIMD methods is that the number of beads
required to converge a calculation increases dramatically as the
temperature approaches 0 K [21]. Therefore, PIMD methods
tend to perform better at higher temperatures. Conversely, the

theory behind MIW simulations justifies best their use for
searching the ground state, and therefore the low-temperature
limit. In addition, the harmonic potential featured in PIMD is
attractive; the equilibrium configuration for the beads would
be one where they all sit in the same potential minimum,
and therefore the dynamical simulation is vital to actually
sample quantum statistics. The MIW potential, on the other
hand, is repulsive, and its equilibrium should correspond to
an approximation of the quantum ground state. This means
that it should be possible to find ground-state densities using
not only molecular dynamics, but even common optimization
algorithms such as BFGS [22]. While, as seen in the next
section, MIW calculations seem to require slightly higher
numbers of worlds than a typical room-temperature PIMD
simulation (for which 16 or 32 beads are common values), the
increased calculation load can be amply compensated by re-
placing a costly and long molecular-dynamics simulation with
a simple geometry optimization. This strategy is explored in
the next section. Finally, there’s the issue of real-time quantum
dynamics. While PIMD technically computes an evolution in
imaginary time, and thus cannot be directly interpreted as a
dynamical process, it is possible with both CMD and RPMD
to compute quantum time correlation functions [8,23]. Ideally,
MIW simulations should be able to achieve a similar result in
a more immediate way, as they represent evolution in real time
instead. However, the accuracy of this evolution is limited by
how well the quality of the reconstructed density is preserved,
and errors accumulating through time will probably cause time
correlation functions to be accurate only on a short time scale.

III. SIMULATION DETAILS

Numerical simulations were carried out on a personal
computer using PYTHON and the scientific libraries Numpy and
Scipy for matrix diagonalizations and optimization operations
[24,25].

When necessary, the exact solution results in 1D were
obtained by building a Hamiltonian based on a matrix Numerov
method [26]. This approach was then expanded to higher
dimensionality; the details are explained in Appendix C. Since
this method uses a direct space basis set, all potentials are
treated effectively as if they were enclosed in an infinite well.
Whenever harmonic potentials appear, the known analytical
solutions for ground-state energies and wave functions are
used. For the MIW method, the equations of motion were
integrated using a standard velocity Verlet algorithm, and
a Langevin thermostat was used for thermalization when
required. In addition, an adaptive time step has been used,
where at any given step i,

dti = min

(
dt0

max(|F0|)
max(|Fi |) ,dtmax

)
, (10)

so that dt scales with the maximum force present in the system.
Particular attention, of course, must be paid to the initial
estimate of the bandwidth parameter, b, which controls the
radius of the interaction. This is a common problem in kernel
density estimation, well known in statistics. Given the particle
positions, one has to find the kernel width that best fits the
target probability distribution. For cases in which the initial
desired probability distribution is known (for example, when
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initializing a simulation with knowledge of the ground state),
the AMISE method was used. For those where instead only
an educated guess was possible, the Silverman method was
employed. Both of these methods are described in [27].

IV. RESULTS

A. Energy

In these tests, we focus on the performance of the MIW
approach in dealing with the ground state of a proton in a
few example potentials. We initialize the MIW system by
using the known ground-state probability density obtained
from diagonalizing the Hamiltonian, and we consider the error
in the energy so obtained in order to compare the different
kernels and dimensionalities in ideal conditions. The potentials
used are of two types. One is a simple harmonic potential of
the form

Vharm(x) = k

2
x2 (11)

while the other is a multidimensional Lennard-Jones potential
with an angular term of the form

Vlj (x) = �Vr

[( |x − x0|
r0

)−12

− 2

( |x − x0|
r0

)−6
]

+�Vα

(
1 − x − x0

|x − x0| · î

)
, (12)

where î is the versor of the x axis. This was chosen to represent
a crude approximation of a chemical bond. In this part we use
three such potentials, which from now on we will label harm1,
harm10, and lj1. The first two are defined by Eq. (11) with

k = 1 and k = 10 eV/Å
2
, respectively. The third uses Eq. (12)

with �Vr = 1 eV, x0 = −2.5î Å, r0 = 1 Å, and �Vα = 10 eV.
It should be noted that the origin for the LJ potential was
chosen because all simulations were run in box-shaped grids
ranging from −2 to 2 Å. The grids had 200, 40, and 15 points
of side, respectively, for 1D, 2D, and 3D. The wave function
is considered zero outside of this space. Thus, this choice
allows us to have the minimum of the potential inside the box
without including the singularity, which could cause problems.
The initial particle positions were generated in two different
ways. The first method was to distribute the particles so that
each grid element contains just the right amount to match the
target distribution as closely as possible. The second instead
employed a simple Monte Carlo method to randomly distribute
them, following the target distribution but allowing for random
fluctuations.

When calculating the energy within the MIW approxima-
tion in order to compare it to the energy found by diagonalizing
the Hamiltonian, care needs to be taken. In the basic approach,
forces are calculated on the hypothesis of perfectly pointlike
particles, and they would in fact be exact for an infinite number
of particles with infinitesimally small spacing. When using
kernels, each particle contributes to the overall density with
a distributed density. This can be interpreted as each particle
representing, in fact, a large or infinite number of particles
distributed according to that function and moving around

rigidly. This brings forth two main consequences for energy
calculations:

(i) The ith particle’s contribution to potential energy, Vi ,
should in theory not be calculated in a pointlike manner, V (xi),
but rather as the integral

Vi =
∫
RD

V (x)K(x)dx. (13)

This might not always be possible in actual calculations. In
that case, the pointlike approximation is accurate to first order,
since the kernel is symmetric. If one has access to the second
derivative of the potential, it is possible to expand it in Taylor
series and find a third-order approximation, which also depends
on b.

(ii) There is an “internal energy” correction for each particle,
consisting of the many-world-interaction energy of the parti-
cles constituting the Gaussian distribution kernel itself. This
is a constant term and can be calculated by applying Eq. (4),
replacing the probability density in Eq. (5) with the kernel
function and the sum over n with an integral over all space.
Luckily, it is rather easy to calculate for both kernels:

U (Gauss)
corr = h̄2

4m

D

b2
, U (exp)

corr = h̄2

8m

D

b2
. (14)

It should be remarked that this term is not required when com-
paring two MIW simulations with the same parameters, being
constant; it becomes necessary, however, when considering
simulations of different kinds or with different b.

The total energy is therefore computed as

Etot = UMW(X) + U (kernel)
corr +

N∑
i

(
Vi + 1

2
mv2

i

)
(15)

though effectively the kinetic energy term at the end is zero
for nondynamical calculations like this one and the search for
the ground state presented in the next subsection. Figure 2
shows the error in energy calculated with the MIW approach
for the various potentials and dimensionalities tested. A few
observations are in order. Convergence is overall satisfactory in
all cases, with various degrees of success. The 1D case shows
obviously the advantages of the kernel approximation com-
pared to the one given in Eq. (6). For the kernel approximation,
both with Gaussian and exponential kernels, increasing the
number of worlds used tends to reliably improve convergence,
which eventually reaches a limit value. As a general rule, it
seems that for these systems using any more than 50 worlds
does not really bring any improvement in the approximation of
the energy. The simpler method, on the other hand, converges
only initially to then immediately diverge again when the
density of worlds becomes too high, as its dependency on the
inverse of the distance between world particles makes it far
more sensitive to numerical errors. This is even more obvious
for Monte Carlo generated particle configurations. This means
that there is a nontrivial optimal amount of worlds to use,
which in any real-world application would be another variable
to consider when deciding the parameters for a calculation.
In the 2D and 3D cases, random Monte Carlo initialization
provides a better average approximation but also greater noise,
whereas uniform distributions quickly converge to a slightly
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FIG. 2. Logarithmic plots of the MIW energy error with an ideal distribution vs number of worlds for various potentials and dimensionalities.
Ideal energies were computed with a matrix Numerov algorithm using grids of 200, 40, and 15 points of side, respectively, for 1D, 2D, and 3D.
Circles represent the Gaussian kernel, triangles the exponential one, and squares the method from the original paper (only applicable to 1D).
Filled dots represent uniformly distributed particles, empty ones the Monte Carlo distributed ones. Legend: (a), (b), and (c) are 1D potentials;
(d), (e), and (f) are 2D; (g), (h), and (i) are 3D. By potential type, (a), (d), and (g) use the harm1 potential; (b), (e), and (h) use harm10; (c), (f),
and (i) use lj1. The same labels apply to Figs. 3 and 4.

biased value. This is probably the effect of such distributions
being dependent on the underlying grid, which introduces
artefacts.

B. Ground-state convergence

Now we move on to investigating a method of finding the
ground state of a potential by using the MIW approach. This is
straightforward: we generate a system of a number of worlds
(in all cases here, N = 50 was used) in some configuration
that we consider a reasonable starting point, then we use some
optimization routine to converge it down to a point where all
forces are in equilibrium. Here we try two different approaches
to this process. In addition to that, since it is possible that
particles might get stuck in nonphysical configurations or

local minima, the simulation is periodically reinitialized by
computing the density and using it to redistribute the particles.
This was done using the uniform distribution method, which
is found to give the better results. When a reinitialization is
performed, the bandwidth is newly calculated, too, using the
AMISE method. Here two methods were used. The first is a
simple molecular-dynamics simulation, with a strong damping
achieved by using a Langevin thermostat with T = 0 K and
γ = 1015 s−1. For this simulation, 10 sequences of 1000 time
steps with dtmax = 5×10−17 s (3×10−17 s for the 3D case)
were used, with one reinitialization between each sequence.
The second uses the Scipy implementation of the BFGS
optimization algorithm, using 10 sequences of a maximum
of 40 iterations, with a tolerance of 1×10−5 eV/Å on the
forces. The initial configuration was chosen to be a completely
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FIG. 3. Energy convergence during the relaxation process for different potentials and dimensionalities. Continuous lines represent the
Gaussian kernel, dot-dashed lines the exponential one, and dashed lines the method from [13] converged with damped Langevin MD. Empty
circles and triangles represent, respectively, the Gaussian and exponential kernels converged with the BFGS algorithm. For the labels, refer to
the caption in Fig. 2.

uniform distribution for the harmonic potentials and a Gaussian
centered on the minimum for the Lennard-Jones ones for
the 1D and 2D cases. This choice was made because the
latter, being much flatter on the long distance, risked causing
convergence problems to an ensemble of particles that is too
spread out. In the 3D case, a Gaussian of arbitrary width
was used for all three potentials. This was not considered a
problem as it seems reasonable to expect that in all practical
applications similar assumptions could be made, and the
classical minimum of the potential would likely be known from
previous simulations.

The results of the calculation can be seen in Figs. 3 and 4 for
convergence of energy over time and the root sum square (RSS)
of the probability density error on the grid, which we label as χ .
For energies obtained with the damped MD method, all points
throughout all iterations are provided. For every other quantity,

only the final values of each of the 10 iterations is recorded
instead. Energies and densities were compared to the known
analytical solutions for harmonic potentials, and to numerically
computed solutions for the Lennard-Jones one. For damped
MD, the energy error clearly displays dents corresponding to
each reinitialization, but after the first few iterations it generally
falls back to its converged value. As a general rule, one can
see the exponential kernel performing generally slightly better,
except for the lj1 2D case, where the energy seems to diverge.
For BFGS the behavior is often rather similar, with a few
exceptions (for example, the energy and density of the 3D
lj1 case with the exponential kernel have a bigger error than
any other approach). In terms of performance, the damped MD
method requires by definition 10 000 evaluations for both the
energy and the forces of the entire system. By comparison, the
BFGS runs required a number of energy and force evaluations
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FIG. 4. Ground-state density error RSS convergence during the relaxation process for different potentials and dimensionalities. Circles
represent the Gaussian kernel, and triangles represent the exponential one. Full markers represent damped MD, whereas empty ones represent
BFGS. It was not possible to compute the quantity for the original method as it does not provide a continuous approximation for the density.
For the labels, refer to the caption in Fig. 2.

both approximately comprised between 600 and 1800. From
these results, one can see how the latter seems definitely much
more computationally convenient, while producing results that
are comparable to damped MD. This would be a unique
advantage of this approach over the existing path-integral based
techniques, which require a full MD run to produce results even
for the ground state. In general, this approach to a ground-state
search appears to be promising but potentially sensitive to
the choices of parameters made. Periodically reinitializing the
configuration or other corrective approaches can be used to
prevent it from developing artefacts.

C. Finite-temperature effects

We now move on to examining a simple example of
possible application of MIW simulations to the realm of
finite-temperature quantum dynamics. While the original MIW
theory does not explicitly mention temperature, there is no

reason to think that it should not be possible to simulate
incoherent finite-temperature quantum dynamics by simply
plugging one of the well-known MD thermostats into a MIW
simulation. This is a consequence of the fact that thermostats
approximate the system’s interaction with the environment,
and classical interactions between different particles in a MIW
simulation are perfectly equivalent to the ones in a regular
simulation. An interesting question is whether the thermostats
should be correlated or coupled across worlds. Intuitively,
correlated thermostats would represent an environment that is
concentrated in a relatively small region of the phase space and
evolves coherently in time, whereas uncorrelated thermostats
would represent an environment widely dispersed in phase
space and decohered. While there may be some interesting
insights to be gained from exploring this matter, for the time
being we will settle for fully uncorrelated thermostats, which
seem to paint a much more realistic portrait of the situation,
especially for high temperatures.
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FIG. 5. Top: Many-interacting-world trajectories at different temperatures and computed value of
√

〈x2〉 up to 2000 K for a particle in a
harmonic oscillator with k = 1 eV/Å2, using N = 30 MIW worlds and an exponential kernel. Bottom: standard deviation for theoretical and
computed densities with Gaussian and exponential kernels as a function of temperature.

Figure 5 gives us a simple insight into how MIW simulations
can reproduce thermal effects. The full bundle of trajectories,
from the starting configuration to the end of a molecular-
dynamics simulation, are shown for three different tempera-
tures. The 0 K case is a perfect example of a damped MIW
system converging to its ground state, with the contraction
(driven by the external potential) being eventually countered by
the repulsion due to the MIW potential, finding an equilibrium.
It should be remarked, however, that while these are an
approximation to “true” Bohmian trajectories, they are affected
by the limits of the method. Specifically, at this temperature an
artefact can be seen since at the fringes of the configuration the
particles tend to “bunch up” instead of spreading more, as they
should. This tends to happen even more when using a Gaussian
kernel, which is affected by the problems described in Sec. II A.
At the higher temperatures, the trajectories get scrambled and
the system expands, which reduces the importance of this
coalescence effect as well. The collisions may transfer further
energy among particles so that fluctuations will be bigger
than they would be in a noninteracting ensemble, and may
allow particles to overcome barriers that should be impassable
(thus allowing tunneling). Ultimately, when the temperature is
high enough, the MIW potential’s contribution becomes tiny
compared to the thermostat forces, and the system reaches the
classical limit.

The system chosen for testing whether the MIW approach
can reproduce temperature-dependent quantum tunneling rates
is a simple double well built by joining two harmonic potentials
along a plane, as seen in Fig. 6. This system has been studied
by Bell [28], and its tunneling rate temperature dependence is
known. We choose a potential formed by two harmonic wells of
k = 10 eV/Å2 with x0 = 0.2 Å. This leads to a potential
barrier of �E = kx2

0/2 = 0.2 eV and turning points situated

FIG. 6. Double harmonic well potential as described by Bell in
[28]. The barrier height is �E, x0 is the distance of the minimum from
the barrier, and a is the distance of the turning point, namely the point
where the potential exceeds the zero point energy of the particle.
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at a ∼ 0.06 Å. The Arrhenius classical jumping rate is

νc = ν0 exp

(
− �E

kBT

)
, (16)

whereas the Bell quantum corrected version is

νq = ν0
1

β − �E
kBT

[
β exp

(
− �E

kBT

)
− �E

kBT
exp(−β)

]
(17)

with

β = aπ
√

2m�E

h̄
∼ 1.77. (18)

Three separate simulations were run with N = 50 worlds:
one with a Gaussian kernel, one with an exponential kernel,
and one with no kernel forces at all, making it effectively 50
decoupled classical simulations. A Langevin thermostat with
γ = 1014 s−1 was used. Here a little digression is in order. It
is common wisdom that Langevin thermostats should not be
used when computing diffusion rates; however, there is reason
to believe this is justified in this specific case. The rationale for
not using it in ordinary MD simulations is that a Langevin ther-
mostat fully couples each individual particle to the heat bath,
and this is unrealistic for, e.g., molecules in a fluid. However,
this is not the case here: we are effectively simulating only one
particle, and each copy we do simulate is in fact fully coupled,
classically, to its own heat bath, namely the rest of its world.
There is no doubt, of course, that the chosen γ will control the
time scale of the process (in fact, it seems hardly a coincidence
that as seen later we will find ν0 = γ ). However, since we
are interested in comparing jumping rates, and how the MIW
potential enhances them, rather than in their absolute values,
this is not necessarily a problem. For multiparticle simulations
of course the usual considerations would apply, and a Nosé-
Hoover thermostat would be more suited to the task at hand.
Tunneling was calculated by measuring the fraction of the
density inside the starting well and fitting an exponential decay
curve to it as it fell from its initial value of almost 1 (some leak-

 10000

 1x106

 1x108

 1x1010

 1x1012

 1x1014

 0  500  1000  1500  2000  2500  3000

ν 
(s-1

)

T (K)

Arrhenius model
Bell model
No kernel
Gaussian

Exponential

FIG. 7. Jumping rates in a MIW simulation on a double harmonic
well potential. The fitted parameters are shown with error bars (though
most of them are so small as to be invisible) and overlapped with the
Arrhenius and Bell models.

age due to the tails of the distributions is present) to the equi-
librium value of 0.5. The no-kernel simulation was used as a
benchmark to fit the value of ν0, using Eq. (16), which was then
plugged into Eq. (17) to estimate the quantum jumping rate.

Figure 7 shows the final result. The Arrhenius model was fit-
ted with ν0 = 1014 s−1, and the result applied to the Bell model.
The rates originated from the exponential kernel simulations
follow it closely, showing that the quantum MIW potential does
indeed enhance the jumping process and reproduce the correct
tunneling dynamics. The Gaussian kernel simulations behave
closer to the ones without a kernel at the beginning and then
catch up with the quantum model around T = 750 K. This
is probably due to the already mentioned issue with particles
“bonding” when using a smooth kernel, and the problem is
overcome once the system has enough kinetic energy to break
those pairs. The calculation suggests that it is indeed possible
to simulate finite-temperature quantum-dynamical effects with
the MIW method.

V. CONCLUSIONS AND FUTURE PROSPECTS

An extension to the many-interacting-worlds description
of QM first introduced in [13] that makes use of kernel
density estimation has been proposed. The method appears to
give promising results in reproducing the solutions of simple
quantum problems with an ensemble of coupled classical sim-
ulations, and it can pave the way to real-time finite-temperature
quantum dynamics for ab initio molecular dynamics and the
study of quantum nuclear effects. Some details of the method
need to be better understood before applying it to molecular-
dynamics problems. For example, the Gaussian kernel has
been shown often to perform worse than the exponential one
due to its smoothness; however, the same quality makes it
ideal to approximate the true density distribution. A way to
overcome the smoothness problem would be desirable. One
possibility would be to make the kernel width b a dynamical
variable, allowing kernels to squeeze when two particles come
too close so that their repulsion grows and they never get to the
point of overlapping. This would make the calculations more
complex, but it would also add more degrees of freedom to the
system and possibly make it better at approximating the true
wave function. A recent work [29] also suggests a connection
between the choice made for probability density reconstruction
and which quantum state the particles effectively approximate.
The logic is hard to translate to the kernel method used here,
but if possible it might shed some light on a way to simulate
excited states specifically. The work done in [20] shows how
this can effectively work in 1D, provided that the positions of
the nodes of the wave function are known beforehand. Finally,
the analogies between the MIW and the PIMD methods are
striking and suggest that a deeper connection between the two
might exist. Studying that might bring new insights into how to
mitigate each method’s weaknesses by mixing it with the other.
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APPENDIX A: CALCULATION OF QUANTUM FORCES
WITH GAUSSIAN AND EXPONENTIAL KERNELS

We now show how Eq. (4) and its derivatives can be
computed efficiently assuming the probability is constructed
with a Gaussian kernel, as seen in (7). This formalism is
designed to make for especially compact code when working
with languages that allow for elementwise array operations
such as FORTRAN or PYTHON+Numpy. Let us consider the case
of a single quantum particle represented with N worlds in D

dimensions. The coordinate of the particle in world i along
dimension k is written as x

(k)
i . Let us also consider a kernel of

fixed bandwidth b. Then we define

r
(k)
ij = x

(k)
i − x

(k)
j , r2

ij =
∑

k

(
r

(k)
ij

)2
,

Pij = 1

N (
√

πb)D
exp

(
− r2

ij

b2

)
, (A1)

P
′(k)
ij = − 2

b2
r

(k)
ij Pij , P ′′

ij = − 2

b2

(
1 − 2

b2
r2
ij

)
Pij .

In this formalism, Pij represents the contribution of particle
j to the density probability at the position of particle i, P ′

ij is
its gradient with respect to the position of particle i, and so on.
It should be noted that, while we included the normalization
factor in Eq. (A1), this is not really relevant for the final forces
as it disappears in the formulation of UMW, which contains a
ratio between the kernel and its derivative. Computing the total
quantities, summed over all particles, requires a bit more care.
If we define

Pi =
∑

j

Pij (A2)

as the total density probability at the position of particle i, then
its derivatives are

dPi

dx
(l)
n

=
{

P ′(l)
n , n = i,

−P
′(l)
in , n �= i,

(A3)

and the second ones are

dP
′(k)
i

dx
(l)
n

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

P ′′(l)
n , n = i,l = k,

−P
′′(l)
in , n �= i,l = k,

− 2
b2

∑
j r

(k)
nj P

′(l)
nj , n = i,l �= k,

2
b2 r

(k)
in P

′(l)
in , n �= i,l �= k,

(A4)

where the quantities with only one index (P ′
n,P

′′
n ) represent

sums over j as seen in Eq. (A2). Using these relationships, it
is straightforward, if rather tedious, to compute the interworld
potential and the forces. We can rewrite Eq. (4) for this kernel
using the new formalism:

g
(k)
i = h̄

2

P
′(k)
i

Pi

, U = 1

2m

∑
i,k

[
g

(k)
i

]2
. (A5)

Then the full derivative with respect to the particle positions
can be written as

dU

dx
(l)
n

= 2g(l)
n

[
− 1

P 2
n

(
P ′(l)

n

)2 + 1

Pn

P ′′(l)
n

]

+
∑
i �=n

2g
(l)
i

[
1

P 2
i

P
′(l)
in P

′(l)
i − 1

Pi

P
′′(l)
in

]

+
∑
k �=l

2g(k)
n

[
− 1

P 2
n

P ′(k)
n P ′(l)

n − 2

b2Pn

∑
j

r
(k)
nj P

′(l)
nj

]

+
∑

i �=n,k �=l

2g
(k)
i

[
1

P 2
i

P
′(k)
in P

′(l)
i + 2

b2Pi

r
(k)
in P

′(l)
in

]
, (A6)

where it should be noted that the two bottom summation terms
are always going to be zero in the one-dimensional case, which
therefore noticeably simplifies the expression. The forces of
course are going to be equal to this expression with a minus
sign. Now we consider the case of an exponential kernel.
A lot of the passages are similar, but we need to take into
account the different form of the derivatives. In this case,
we have

rij =
√∑

k

(
r

(k)
ij

)2
,

Pij = �(D/2)

2N (D − 1)!(
√

πb)D
exp

(
− rij

b

)
,

P
′(k)
ij = −1

b

r
(k)
ij

rij

Pij ,

P ′′
ij = −1

b

1

rij

[
1 −

(
r

(k)
ij

)2

r2
ij

− 1

b

(
r

(k)
ij

)2

rij

]
Pij . (A7)

With these new assignments, Eq. (A3) still holds for first
derivatives, whereas second derivatives become

dP
′(k)
i

dx
(l)
n

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

P ′′(l)
n , n = i,l = k,

−P
′′(l)
in , n �= i,l = k,

−∑
j

r
(k)
nj

rnj

(
1
rnj

+ 1
b

)
P

′(l)
nj , n = i,l �= k,

r
(k)
in

rin

(
1
rin

+ 1
b

)
P

′(l)
in , n �= i,l �= k,

(A8)

and therefore the forces

dU

dx
(l)
n

= 2g(l)
n

[
− 1

P 2
n

(
P ′(l)

n

)2 + 1

Pn

P ′′(l)
n

]

+
∑
i �=n

2g
(l)
i

[
1

P 2
i

P
′(l)
in P

′(l)
i − 1

Pi

P
′′(l)
in

]

+
∑
k �=l

2g(k)
n

[
− 1

P 2
n

P ′(k)
n P ′(l)

n
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− 1

Pn

∑
j

r
(k)
nj

rnj

(
1

rnj

+ 1

b

)
P

′(l)
nj

]

+
∑

i �=n,k �=l

2g
(k)
i

[
1

P 2
i

P
′(k)
in P

′(l)
i + 1

Pi

r
(k)
in

rin

(
1

rin

+ 1

b

)
P

′(l)
in

]
.

(A9)

APPENDIX B: NORMALIZATION
OF THE EXPONENTIAL KERNEL

The multivariate exponential kernel centered in the origin
is defined as

K(q) = exp

[
−|q|

b

]
(B1)

for a given width b. This needs to be divided by its integral
over the entire space for normalization purposes. For the 1D
case the solution is simple, as the integral∫ ∞

0
exp

(
−x

b

)
dx = b (B2)

is easily found, and thus the overall integral is 2b. However, the
multivariate case is more complex. One can find it considering
two things. First, the integral of a radial function in a D-
dimensional space can be defined as∫

Rn

f (|q|)dq =
∫ ∞

0
f (r)ωD−1(r)dr, (B3)

where ωD−1 is the surface area of the D-dimensional sphere
[30]. This is known to be

ωD−1(r) = 2π
D
2

�
(

D
2

) rD−1. (B4)

On the other hand, the radial integral can be carried out by
parts if we notice that∫ ∞

0
exp

(
− r

b

)
rD−1dr =

∣∣∣∣−b exp

(
− r

b

)
rD−1

∣∣∣∣
∞

0

(B5)

+ (D − 1)b
∫ ∞

0
exp

(
− r

b

)
rD−2dr (B6)

= (D − 1)b
∫ ∞

0
exp

(
− r

b

)
rD−2dr (B7)

as the first term goes to zero both on r = 0 and r = ∞. We
can repeat the operation D − 1 times, thus finding∫ ∞

0
exp

(
− r

b

)
rD−1dr = (D − 1)!bD, (B8)

which, combined with the prefactor for the surface area of an
n-sphere, gives us∫

RD

K(q) = 2(
√

πb)D

�
(

D
2

) (D − 1)!, (B9)

whose reciprocal is the normalization factor we need.

APPENDIX C: A MATRIX NUMEROV METHOD
FOR INTEGRATION OF THE SCHRÖDINGER

EQUATION IN ARBITRARY DIMENSIONS

The original 1D matrix Numerov method for integrating
the Schrödinger equation was presented in [26]. An analog
scheme for the 2D equation is described in [31]. Here we
write the same scheme in a general form for any number of
dimensions. Similarly to what happens in 1D, the Numerov
method is designed to solve equations of the form

∇2ψ(x) = f (x)ψ(x), (C1)

where, in the case of the Schrödinger equation,

f (x) = −2m

h̄2 [E − V (x)]. (C2)

Now we expand ψ in a Taylor series, define the function
on a grid, and consider the “stencil” surrounding a grid point
composed of all nearest neighbors—the points that are one step
forward or backward in each direction. Then we can write

D∑
i

ψ(x + hiεi) − 2ψ(x) + ψ(x − hiεi)

h2
i

= f ψ + 1

12

D∑
i

∂4ψ

∂x4
i

h2
i + O(h6) (C3)

with εi a unit vector and hi a grid step for dimension i. In this
case, the following relation holds:

∇2(f ψ) = ∇2(∇2ψ) =
D∑
i

∂4ψ

∂x4
i

+
D∑
i

D∑
j �=i

∂4ψ

∂x2
i ∂x2

j

(C4)

so we can separate

D∑
i

ψ(x + hiεi) − 2ψ(x) + ψ(x − hiεi)

h2
i

= f ψ + 1

12

D∑
i

∂2(f ψ)

∂x2
i

h2
i − 1

12

D∑
i

h2
i

D∑
j �=i

∂4ψ

∂x2
i ∂x2

j

.

(C5)

Now, considering that we are working within a grid of finite
size, we can write all operators as matrices. The matrix A as
described in [26] extends to a Kronecker sum:

A(D) =
D∑
i

A(D)
i =

D⊕
i

(I−1 − 2I0 + I1)

h2
i

(C6)

while the matrix B, which operates on f ψ on the right-hand
side, becomes

B(D) = I + 1

12

D∑
i

h2
i A(D)

i . (C7)

We can also write the mixed derivatives as matrix products,

∂4

∂x2
i ∂x2

j

→ A(D)
i A(D)

j , (C8)

which happen to commute since the A matrices are symmetric.
So in the end we can write the multidimensional equivalent of
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the 1D Numerov method as

− h̄2

2m

⎡
⎣A(D) + 1

12

∑
i,j>i

A(D)
i A(D)

j

(
h2

i + h2
j

)⎤⎦ψ

= B(D)(E − V)ψ

⇒ − h̄2

2m
B−1(D)

⎡
⎣A(D) + 1

12

∑
i,j>i

A(D)
i A(D)

j

(
h2

i + h2
j

)⎤⎦
×ψ + Vψ = Eψ (C9)

with V a matrix having the potential along its diagonal and
zero everywhere else. Therefore, this becomes an eigenvalue
problem that can be solved by diagonalizing the matrix:

M = − h̄2

2m
B−1(D)

⎡
⎣A(D) + 1

12

∑
i,j>i

A(D)
i A(D)

j

(
h2

i + h2
j

)⎤⎦ + V

(C10)

and will give us energies and eigenstates as a result.
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