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ABSTRACT

Numerical linear algebra and combinatorial optimization are vast subjects; as is

their interaction. In virtually all cases there should be a notion of sparsity for a

combinatorial problem to arise. Sparse matrices therefore form the basis of the

interaction of these two seemingly disparate subjects. As the core of many of

today’s numerical linear algebra computations consists of the solution of sparse

linear system by direct or iterative methods, we survey some combinatorial problems,

ideas, and algorithms relating to these computations. On the direct methods

side, we discuss issues such as matrix ordering; bipartite matching and matrix

scaling for better pivoting; task assignment and scheduling for parallel multifrontal

solvers. On the iterative method side, we discuss preconditioning techniques

including incomplete factorization preconditioners, support graph preconditioners,

and algebraic multigrid. In a separate part, we discuss the block triangular form of

sparse matrices.
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1 Introduction

In this short review paper, we examine the interplay between the solution of sparse linear

systems and combinatorics. Most of this strong association comes from the identification

of sparse matrices with graphs so that most algorithms dealing with sparse matrices have

a close or exact analogue to an algorithm on a graph. We examine these analogues both

in the case of the direct solution of sparse linear equations and their solution by iterative

methods, particularly focusing on preconditioning.

Two surveys on combinatorial scientific computing have already been carried out.

Hendrickson and Pothen [114] focus on the enabling role of combinatorial algorithms

in scientific computing, highlighting a broad range of applications: parallel computing;

mesh generation; sparse linear system solution; automatic differentiation for optimization;

statistical physics; computational chemistry; bioinformatics; information processing.

Bollhöfer and Schenk [26] give an overview of combinatorial aspects of LU factorization.

In a spirit similar to the two preceding surveys, Heath, Ng, and Peyton [109] survey

parallel algorithms for sparse Cholesky factorization by discussing issues related to the

parallelization of the major steps of direct solvers. A recent book by Brualdi and

Cvetković [33] covers standard matrix computations where the combinatorial tools are

brought to the forefront, and graphs are used to explain standard matrix computations.

The contents include matrix powers and their description using directed graphs; graph-

theoretical definition of the determinant of a matrix; and the interpretation of matrix

inverses and linear system solution. Brualdi and Ryser [34] and Brualdi [31, 32] include

a higher level of combinatorial analysis and many linear algebraic concepts beyond the

solution of linear systems.

We cover linear system solution with both direct and iterative methods. We try to

keep the discussion simple and provide details of some fundamental problems and methods;

there are a great many beautiful results on combinatorial problems in linear algebra and

reviewing them all would fill a book rather than a short survey paper. Often we review or

cite the paper or papers that are at the origin of a particular method. The field has evolved

in many ways and many developments have taken place since this original research. We

try to provide newer references and software which define the current state-of-the-art. In

some cases, survey papers of the highest quality are available, and we list some of these

as pointers for readers who wish to explore these areas more fully. All the papers in our

reference list are cited and almost all of them are commented on in the text of the paper.

In fact we feel that the extensive bibliography is a very useful feature of this review and

suggest that the reader may look at these references for further enlightenment on topics of

particular interest.

We have intentionally avoided covering subareas that are addressed by other papers in

this volume, for example graph partitioning, sparse matrix-vector multiplication, colouring

problems, automatic differentiation.

In Section 2, we provide basic definitions from graph theory that are used throughout

the paper. Some further definitions are deferred to the relevant sections. We start
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discussing combinatorial problems in direct solvers by a gentle introduction to the

elimination process and its relationship to a suitably defined graph in Section 3. This

section is structured around the main techniques that constitute the essential components

of modern direct solvers. Section 4 covers some other combinatorial problems which arise

in iterative methods. In this section, we mainly discuss the issues that arise due to the use

of preconditioning techniques. Section 5 covers a special permutation of sparse matrices,

known as the block triangular form, which reformulates the solution of a large linear system

in terms of the solution on smaller subsystems thus giving us benefits if the solution scheme

is superlinear in the order of the system which is usually the case. We finish with some

concluding remarks in Section 6.

2 Basics

In this section, we collect some elementary terms and definitions in graph theory to be

used later in the paper. Most classical use of these terms and definitions in direct methods

can be found in in [59, 87]. For a more algorithmic treatment of graph theory, we refer the

reader to [42].

A graph G is a pair (V, E), where V is a finite set, called the vertex or node set, and E

is a binary relation on V , called the edge set. There are three standard graph models that

are widely used in combinatorial scientific computing. In an undirected graph G = (V, E)

the edges are unordered pairs of vertices, {u, v} ∈ E for u, v ∈ V and u 6= v. In a directed

graph G = (V, E), the edges are ordered pair of vertices, that is, (u, v) and (v, u) are two

different edges. A bipartite graph G = (U ∪V, E) consists of two disjoint vertex sets U and

V where for each edge (u, v) ∈ E we have u ∈ U and v ∈ V .

An edge (u, v) is said to be incident on the vertices u and v. For any vertex u, the

vertices in the set adj(u) = {v : (u, v) ∈ E} are called the neighbours of u. The degree

of a vertex is the number of edges incident on it. A path p of length k is a sequence of

vertices 〈v0, v1, . . . , vk〉 where (vi−1, vi) ∈ E for i = 1, . . . , k. A cycle is a path that starts

and ends at the same vertex. The two end points v0 and vk are said to be connected by

the path p, and the vertex vk is said to be reachable from v0. An undirected graph is said

to be connected if every pair of vertices is connected by a path. A directed graph is said to

be strongly connected if every pair of vertices are reachable from each other. The subgraph

H = (W, F ) of a given graph G = (V, E) is a graph such that W ⊆ V and F ⊆ W ×W ∩E.

Such an H is called an induced subgraph, if F = W ×W ∩ E and a spanning subgraph if

W = V . A tree is a connected graph without cycles. A spanning tree of a connected graph

is a spanning subgraph which is also a tree.

Given a sparse square matrix A of order n, one can associate any of the three standard

graph models described above. Formally one can associate the following three graphs.

The first one is the bipartite graph GB = (VR ∪ VC , E), where the vertex sets VR and VC

correspond to the rows and columns of A, respectively, and the edge set E corresponds to

the set of nonzeros of the matrix A so that (i, j) ∈ E iff aij 6= 0. The second one is the
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directed graph GD = (V, E), where each vertex corresponds to a row and the respective

column of A, and the edge set E corresponds to the set of nonzeros of A so that (i, j) ∈ E iff

aij 6= 0. The third one is the undirected graph GU = (V, E) which is defined for a pattern

symmetric matrix A (that is aij 6= 0 whenever aji 6= 0), where each vertex corresponds to a

row and the respective column of A, and the edge set E corresponds to the set of nonzeros

so that (i, j) ∈ E iff aij 6= 0 and aji 6= 0. We note that among these three alternatives,

only the bipartite graph GB can represent a rectangular matrix.

A matching in a graph is a set of edges such that no two are incident on the same

vertex. In this paper, we will be mostly interested in matchings in bipartite graphs. A

matching in the bipartite graph of a matrix A corresponds to a set of nonzeros in A no

two of which are in the same row or column. An independent set in an undirected graph is

a set of vertices no two of which are adjacent. An independent set in the undirected graph

of a matrix corresponds to a square principal submatrix whose nonzeros can only be on

the diagonal. A clique is a set of mutually adjacent vertices. A clique in the undirected

graph of a matrix corresponds to a dense square principal submatrix, assuming a zero free

diagonal.

3 Direct methods

We start by describing the LU decomposition, sometimes called Gaussian elimination, of a

nonsingular, square sparse matrix A of order n. Although there are many variations, the

basic point-wise LU decomposition proceeds in n−1 steps, where at step k = 1, 2, . . . , n−1,

the formulae

a
(k+1)
ij ← a

(k)
ij −

(

a
(k)
ik /a

(k)
kk

)

a
(k)
kj , for i, j > k (1)

are used to create zeros below the diagonal entry in column k. Matrices of the form

A(k) = {a(k)
ij } of order n−k+1 are called reduced matrices. This process leads to an upper

triangular matrix U . Here, each updated entry a
(k+1)
ij overwrites a

(k)
ij , and the multipliers

lik = a
(k)
ik /a

(k)
kk may overwrite a

(k)
ik resulting in the decomposition A = LU stored in-place.

Here L is a unit lower triangular matrix, and U is an upper triangular matrix. In order

for this method run to completion, the inequalities a
(k)
kk 6= 0 should hold. These updated

diagonal entries are called pivots and the operation performed using the above formulae is

referred to as eliminating the variable xk from the subsequent equations.

Suppose at step k, either of the matrix entries a
(k)
ik or a

(k)
kj is zero. Then there would be

no update to a
(k)
ij . On the other hand, if both are nonzero, then a

(k+1)
ij becomes nonzero even

if it was previously zero (accidental cancellations due to existing values are not considered

as zeros, rather they are held as if they were nonzero). Now consider the first elimination

step on a symmetric matrix characterized by an undirected graph. If ai1 is nonzero we zero

out that entry. Suppose that a1j is also nonzero for some j > 1, then we will have a nonzero

value at aij after the application of the above formulae. Consider now the undirected graph

GU(V, E) of A. As ai1 6= 0 and a1j 6= 0, we have the edges (1, i) and (1, j) in E. After the
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Figure 1: Ordering affects the sparsity during elimination.

elimination, the new nonzero aij will thus correspond to the edge (i, j) in the graph. Since

the vertex 1 does not concern us any further (due to the condition i, j > k in the formulae

above), we can remove the vertex 1 from the graph, thereby obtaining the graph of the

reduced matrix A(1) of size (n − 1) × (n − 1). In other words, step k of the elimination

process on the matrix A(k−1) corresponds to removing the kth vertex from the graph and

adding edges between all the neighbours of vertex k that were not connected before.

Algorithm 1 Elimination process in the graph

GU(V, E)← undirected graph of A

for k = 1 : n− 1 do

V ← V − {k} . remove vertex k

E ← E − {(k, `) : ` ∈ adj(k)} ∪ {(x, y) : x ∈ adj(k) and y ∈ adj(k)}

This relation between Gaussian elimination on A and the vertex elimination process

on the graph of A, shown in Algorithm 1, was first observed by Parter [153]. Although it

looks innocent and trivial1, this relation was the starting point for much of what follows

in the following subsections.

The following discussion is intentionally simplified. We refer the reader to [59] and [87]

for more rigorous treatment.

3.1 Labelling or ordering

Consider the elimination process on the matrices shown in Fig. 1. The original ordering

of the matrix A is shown on the left. The elimination process on this matrix will lead to

nonzeros in the factors that are zeros in the matrix A. These new nonzeros are called fill-in.

Indeed, the resulting matrix of factors will be full. On the other hand, the ordering obtained

by permuting the first row and column to the end (shown on the right) will not create any

fill-in. As is clearly seen from this simple example, the ordering of the eliminations affects

the cost of the computation and the storage requirements of the factors.

Ordering the elimination operations corresponds to choosing the pivots among

combinatorially many alternatives. It is therefore important to define and find the best

ordering in an efficient way. There are many different ordering methods; most of them

1In 2000 at Los Alamos, Seymour V. Parter told Michele Benzi that such were the reactions he had

received from the referees on his paper.
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attempt to reduce the fill-in. Minimizing the fill-in is an NP-complete problem. This was

first conjectured to be true in 1976 by Rose, Tarjan, and Lueker [168] in terms of the

elimination process on undirected graphs. Then Rose and Tarjan [167] proved in 1978

that finding an elimination ordering on a directed graph that gives minimum fill-in is NP-

complete (there was apparently a glitch in the proof which was rectified by Gilbert [93]

two years later). Finally, Yannakakis [193] proved the NP-completeness of the minimum

fill-in problem on undirected graphs in 1981.

Heuristic ordering methods to reduce the fill-in predate these complexity results by

about two decades. The first of these ordering methods is due to Markowitz [146]. At the

beginning of the kth elimination step, a nonzero entry a
(k)
ij in the reduced matrix is chosen

to reduce the fill-in, and the chosen entry is permuted to the diagonal, thus defining the kth

pivot. The criterion for choosing an entry a
(k)
ij is to select the entry to minimize the product

of the number of other entries in its row and the number of other entries in its column.

Markowitz’s paper deals with nonsymmetric matrices. The selection criterion was later

adapted to symmetric matrices by Tinney and Walker [186] (they do not cite Markowitz’s

paper but state that their method might be used already). Tinney and Walker’s method

of choosing a diagonal entry as the pivot at step k, referred to as S2 in their paper, can be

seen more elegantly during the elimination process on the graph, as noted by Rose [165].

Here, the vertex with the minimum degree in the current graph is eliminated. In other

words, instead of eliminating vertex k at step k of the Algorithm 1, a vertex with minimum

degree is selected as the pivot and labelled as k. Due to this correspondence, Rose renamed

the method S2 of Tinney and Walker as the minimum degree algorithm.

There have been many improvements over the basic minimum degree algorithm,

reducing both the run time and the space complexity. Probably the most striking result

is that the method can be implemented in the same amount of space used to represent

the original graph with a few additional arrays of size n. This is surprising as the degrees

changes dynamically, fill-in normally occurs throughout the execution of the algorithm, and

to be able to select a vertex of minimum degree, the elimination process should somehow be

simulated. The methods used to achieve this goal are described in [65, 85, 86]. The survey

by George and Liu [88] lists, inter alia, the following improvements and algorithmic follow-

ups: mass eliminations [90], where it is shown that, in case of finite-element problems,

after a minimum degree vertex is eliminated a subset of adjacent vertices can be eliminated

next, together at the same time; indistinguishable nodes [87], where it is shown that two

adjacent nodes having the same adjacency can be merged and treated as one; incomplete

degree update [75], where it is shown that if the adjacency set of a vertex becomes a subset

of the adjacency set of another one, then the degree of the first vertex does not need to be

updated before the second one has been eliminated; element absorption [66], where based

on a compact representation of elimination graphs, redundant structures (cliques being

subsets of other cliques) are detected and removed; multiple elimination [135], where it

was shown that once a vertex v is eliminated, if there is a vertex with the same degree

that is not adjacent to the eliminated vertex, then that vertex can be eliminated before
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updating the degree of the vertices in adj(v), that is the degree updates can be postponed;

external degree [135], where instead of the true degree of a vertex, the number of adjacent

and indistinguishable nodes is used as a selection criteria. Some further improvements

include the use of compressed graphs [11], where the indistinguishable nodes are detected

even before the elimination process and the graph is reduced, and the extensions of the

concept of the external degree [44, 94]. The approximate minimum degree as described

in [6] is shown to be more accurate than previous degree approximations and leads to

almost always faster execution with an ordering often as good as or better than minimum

degree. Assuming a linear space implementation, the run-time complexity of the minimum

degree (and multiple minimum degree) and the approximate minimum degree ordering

heuristics are shown to be, respectively, O(n2m) and O(nm) for a graph of n vertices and

m edges [110].

A crucial issue with the minimum degree algorithm is that ties arise while selecting the

minimum degree vertex [58]. It is still of interest, though a little daunting, to develop a

tie-breaking strategy and beat the current fill-reducing algorithms.

As mentioned above, the minimum degree based approaches order the matrix by

selecting pivots using the degree of a vertex without any reference to later steps of the

elimination. For this reason, the general class of such approaches are called local strategies.

Another class, called global strategies, permute the matrix in a global sense so as to confine

the fill-in within certain parts of the permuted matrix. A widely used and cited algorithm is

by Cuthill and McKee [43]. A structurally symmetric matrix A is said to have bandwidth

2m + 1, if m is the smallest integer such that aij = 0, whenever |i − j| > m. If no

interchanges are performed during elimination, fill-in occurs only within the band. The

algorithm is referred to as CM and is usually based on a breadth-first search algorithm.

George [92] found that reversing the ordering found by the CM algorithm effectively always

reduces the total storage requirement and the arithmetic operations when using a variant

of the band-based factorization algorithm (a rigorous treatment and analysis of these two

algorithms is given in [143]). This algorithm is called reverse Cuthill-McKee and often

referred to as RCM.

Another global approach that received and continues to receive considerable attention

is called the nested dissection method, proposed by George [83] and baptized by Birkhoff

(acknowledged in George’s paper). The central concept is a vertex separator in a graph:

that is a set of vertices whose removal leaves the remaining graph disconnected. In

matrix terms, such a separator corresponds to a set of rows and columns whose removal

yields a block diagonal matrix after suitable permutation. Permuting the rows and

columns corresponding to the separator vertices last, and each connected component of

the remaining graph consecutively results in the doubly bordered block diagonal form





A11 A1S

A22 A2S

AS1 AS2 ASS



 . (2)

The blocks A11 and A22 can be further dissected using the vertex separator of the
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corresponding graphs and can themselves be permuted into the above form, resulting in a

nested dissection ordering. Given such an ordering, it is evident that fill-ins are confined

to the blocks shown in the form.

A significant property of nested-dissection based orderings is that they yield

asymptotically optimal fill-in and operation counts for certain types of problems. It was

shown in [83] that, for a matrix corresponding to a regular finite-element mesh of size q×q,

the fill-in and operation count using a nested dissection ordering are O(q2 log2 q) and O(q3),

respectively. For a three dimensional mesh of size q × q × q, the bounds are O(q6) for the

operation count and O(q4) for the fill-in, see also [52] for a detailed analysis. George [83]

shows the asymptotic optimality of the operation count but not the fill-in. The asymptotic

results were settled thoroughly in [118]. Further developments for finite-element meshes

include automatic generation of nested dissection on square meshes with q = 2l − 1,

with l integer, in [169], and methods for arbitrary square meshes and irregular shaped

regions in [58]. In [84], a heuristic is presented to perform nested dissection on general

sparse symmetric matrices. The nested dissection approach was then generalized so that

it yields the same bounds for systems defined on planar and almost planar graphs [133].

The generalization essentially addresses all n× n systems of linear equations whose graph

has a bounded separator of size n1/2. The results of [134] are used to obtain separators

and bounds on separator sizes on planar graphs, and therefore the asymptotic optimality

results apply to planar or almost planar graphs, a general class of graphs which includes

two dimensional finite-element meshes. Gilbert and Tarjan [96] combine and extend the

work in [84] and [133] to develop algorithms that are easier to implement than the earlier

alternatives and have smaller constant factors. In [96] asymptotic optimality results are

demonstrated on planar graphs, two-dimensional finite-element graphs, graphs of bounded

genus, and graphs of bounded degree with n1/2-separators (note that without the bounded

degree condition, the algorithm can be shown not to achieve the bound on fill-in).

It is not much of a surprise that hybrid fill-reducing ordering methods combining the

above two approaches have been developed. We note that the essential ideas can be seen

already in [186]. Tinney and Walker suggest that if there is a natural decomposition of the

underlying network, in the sense of (2), then it may be advantageous to run the minimum

degree algorithm on each subnetwork. The first formalization of the hybrid approach was,

however, presented in [91]. In this work, the hybrid method is applied to finite-element

meshes, where first a few steps of nested dissection are applied before ordering all entries (a

precise recommendation is not given). The remaining entries are ordered using bandwidth

minimization methods such as CM and RCM. Liu [139] uses a similar idea on general

symmetric sparse matrices. Probably this is the first paper where minimum degree based

algorithms are called bottom-up approaches and the separator based, nested dissection

algorithms are called top-down approaches, thus defining the current terminology. Liu

terminates the nested dissection earlier (up to 5 levels of dissections are applied; but this

depends on the size of the graphs and there is no precise recommendation for a general

problem), and then orders the remaining vertices with minimum degree, including the
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separator vertices in the degree counts but ignoring them during vertex selection (this

method is known as constrained minimum degree or minimum degree with constraints). The

merits of the proposed algorithm are listed as a reduced sensitivity to the initial ordering

of the matrix and an ordering algorithm more appropriate for parallel factorization.

As we stated before, a nested dissection ordering gives asymptotically optimal storage

and operation counts for square grids. For rectangular grids, however, this is not the case.

It has been shown that for rectangular grids with a large aspect ratio, nested dissection

is inferior to the minimum degree ordering [14], and even to the natural ordering [22].

The main issue, as stated by Ashcraft and Liu [14], is that the ordering of the separator

vertices found at different dissection steps is important. For rectangular grids, Bhat et

al. [22] propose to order the separator vertices in the natural ordering to minimize the

profile after partitioning the rectangular grid into square sub-grids each of which is ordered

using nested dissection. Ashcraft and Liu [14] develop this idea to propose a family of

ordering algorithms. In these algorithms, a partitioning of the graph is first found by

using either the elimination tree or by recursive application of graph bisection [13]. Then

each part is ordered using constrained minimum degree. The Schur complement of the

domains is formed symbolically and used to reorder the separator vertices using multiple

minimum degree. Hendrickson and Rothberg [115] (concurrently with Ashcraft and Liu)

and Schulze [178] develop similar algorithms. Ashcraft and Liu find multisectors instead

of performing recursive bisection; Hendrickson and Rothberg and Schulze use multilevel

graph partitioning; Schulze proposes an elegant coarsening algorithm.

Not surprisingly, the current state-of-the-art in fill-reducing ordering methods is based

on hybrid approaches of the kind outlined above. The efficiency of these methods is due to

developments in graph partitioning methods such as efficient algorithms for computing

eigenvectors to use in partitioning graphs [16, 158]; and the genesis of the multilevel

paradigm [35, 113] which enables better use of vertex-move-based iterative refinement

algorithms [77, 126]. These developments are neatly incorporated in graph partitioning

and ordering software packages such as Chaco [112], MeTiS [125], SCOTCH [154], and

WGPP [103]. These libraries usually have a certain threshold (according to F. Pellegrini,

around 200 vertices seems to be a common choice) to terminate the dissection process and

to switch to a variant of the minimum degree algorithm.

3.2 Matching and scaling

As discussed before, for the elimination process to succeed, the pivots a
(k)
kk should be

nonzero. This can be achieved by searching for a nonzero in the reduced matrix and

permuting the rows and columns to place that entry in a diagonal position. Such

permutations are called pivoting and guarantee that an a
(k)
kk 6= 0 can be found for all k

so long as the original matrix is nonsingular. In partial pivoting, the search is restricted

to the kth column. A general technique used to control the growth factor is to search

the column for a maximum entry or to accept an entry as pivot so long as it passes

certain numerical tests. These pivoting operations are detrimental to the fill-reducing
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orderings discussed in the previous section, as those ordering methods assume that the

actual numerical elimination will follow the ordering produced by the symbolic elimination

process on the graph.

Suppose that the diagonal entries of the matrix are all nonzero. Assuming no exact

cancellation, all pivots will be nonzero when they are taken from the diagonal. Notice that

any symmetric permutation of the original matrix keeps the set of diagonal entries the

same, and hence the fill-reducing orderings of the previous section are applicable in this

case. Our purpose in this section is to summarize the methods to find permutations that

yield such diagonals.

As is clear, we are searching for n nonzeros in an n × n matrix A no two of which

are in the same row or column. As we mentioned earlier, this corresponds to finding a

perfect matching in the bipartite graph representation of A. The existence of such a set

of n nonzeros (i.e., a perfect matching in the bipartite graph) is guaranteed to exist if, for

k = 1, 2, . . . , n any k distinct columns have nonzeros in at least k distinct rows—a result

shown by P. Hall [108].

A few definitions are in order before describing bipartite matching algorithms. Given a

matchingM, a vertex is said to be matched if there is an edge in the matching incident on

the vertex, and to be unmatched otherwise. AnM-alternating path is a path whose edges

are alternately in M and not in M. An alternating path is called an augmenting path, if

it starts and ends at unmatched vertices. The cardinality of a matching is the number of

edges in it. We will be mostly interested in matchings of maximum cardinality. Given a

bipartite graph G and a matchingM, a necessary and sufficient condition forM to be of

maximum cardinality is that there is no M-augmenting path in G [20, Theorem 1]—for

the curious reader the second theorem of Berge gives a similar condition for minimum

vertex covers. Given a matchingM on the bipartite graph of a square matrix A, one can

create a permutation matrix M such that mji = 1 iff row i and column j are matched in

M. Then, the matrix AM has a zero-free diagonal. It is therefore convenient to abuse the

notation and refer to a matching as a permutation matrix.

The essence of bipartite cardinality matching algorithms is to start with an empty

matching and then to augment it until no further augmentations are possible. The

existing algorithms mostly differ in the way the augmenting paths are found and the

way the augmentations are performed. In [107] a breadth-first search is started from an

unmatched row vertex to reach an unmatched column vertex. The time complexity is

O(nτ), where τ is the number of nonzeros in the matrix. The algorithm in [54, 55], known

as MC21, uses depth-first search where, before continuing the depth-first search with an

arbitrary neighbour of the current vertex, all its adjacency set is scanned to see if there

is an unmatched vertex. This is called a cheap assignment and helps reduce the run

time. The time complexity is O(nτ), but it is observed to run usually much faster than

that bound. Depth-first search is also used in [129] with a complexity of again O(nτ).

Hopcroft and Karp [119] find a maximal set of shortest augmenting paths using breadth-

first search and perform the associated augmentations at the same time. With a detailed
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analysis of the possible length and number of such augmentations, they demonstrate a

complexity of O(
√

nτ). Building upon the work of Hopcroft and Karp, Alt et al. [5]

judiciously combine depth- and breadth-first searches to further reduce the complexity to

O(min{√nτ, n1.5
√

τ/ log n}).
Not all matrices have perfect matchings. Those that have a perfect matching are

referred to as structurally nonsingular, or structurally full rank, whereas those that do

not have a perfect matching are referred to as structurally singular, or structurally rank

deficient. The maximum cardinality of a matching is referred to as the structural rank

which is at least as large as the numerical rank.

Although permuting a matching to the diagonal guarantees existence of the pivots, it

does not say anything about their magnitudes. In order to control the growth factor, it

may still be necessary to perform pivoting during the course of the elimination. It is known

that for diagonally dominant matrices, pivoting on the grounds of numerical stability is

not necessary. Therefore, if we find a matching which guarantees diagonal dominance after

a permutation and probably some scaling, we can avoid numerical pivoting. Unfortunately

not all matrices can be permuted to such a form but trying to do so is likely to reduce the

need for numerical pivoting. These were the motivating ideas in [61] and [151], where such

an attempt is formulated in terms of maximum weighted bipartite matchings.

In matrix terms, Olschowka and Neumaier [151] and Duff and Koster [61] find a

permutation matrix (and hence a perfect matching) M such that the product of the

diagonal of the permuted matrix,
∏

diag(AM), is maximum (in magnitude) among all

permutations. Although the product form of the variables is intimidating, a simple

transformation by changing each entry of the matrix to the logarithm of its magnitude

reduces the problem to the well known maximum weighted bipartite matching problem.

In particular, maximizing
∏

diag(AM) is equivalent to maximizing the diagonal sum given

by
∑

diag(ĈM) for Ĉ = (ĉij) where

ĉij =

{

log |aij|, if aij 6= 0

−∞, otherwise ,

or, to minimizing the diagonal sum given by
∑

diag(CM) for C = (cij) where

cij =

{

log maxi |aij| − log |aij|, if aij 6= 0

∞, otherwise .

The literature on the minimum weighted matching problem is much larger than

that on the cardinality matching problem. A recent book lists 21 algorithms [36,

p.121] from years 1946 to 2001 and provides codes or a link to codes of eight of them

(http://www.assignmentproblems.com/). The best strongly polynomial time algorithm

is by Fredman and Tarjan [78] and runs in O(n(τ + n log n)). The book does not cite

nor give a reference to Duff and Koster’s implementation of the matching algorithm, now

known as MC64 and available as an HSL subroutine (http://www.cse.scitech.ac.uk/

nag/hsl/hsl.shtml). MC64 was initially designed for square matrices, but the latest
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version extends the algorithm to rectangular matrices. The running time of MC64 for the

maximum weighted matching problem is O(n(τ +n) log n). MC64 also provides algorithms

for a few more bipartite matching problems. There are also recent efforts which aim to

develop practical parallel algorithms for the weighted matching problem. In [164] and [69]

parallel algorithms for maximum weighted bipartite matching are proposed. Although

these algorithms are still being investigated, one cannot expect them to be entirely

successful for all problems (given that depth-first search is inherently sequential [162] and

certain variations of breadth-first search are also inherently sequential [98]); nevertheless,

there are many cases where each algorithm delivers solutions in quite reasonable time

with quite reasonable speed-ups. There are also efforts in designing parallel approximate

matching algorithms [106, 145, 156].

We say a few words about the pioneering work of Kuhn in maximum weighted weighted

matchings [129] for two reasons. Firstly, his paper was selected as the best paper of

Naval Research Logistics in its first 50 years and was reproduced as [130] (there is a

delightful history of the paper by Kuhn himself [131]). Secondly, it forms the basis for

the algorithms [61, 151] that combine matchings with matrix scaling for better numerical

properties during elimination.

By linear programming duality, it is known [129] that M is a maximum weighted

matching if and only if there exist dual variables ui and vj with

{

ui + vj ≤ cij for (i, j) ∈ E \M

ui + vj = cij for (i, j) ∈M

For such ui and vj, setting

D1 = diag(eui) and D2 = diag(evj/ max
i
|aij|)

scales the matrix so that D1AMD2 has all ones on the diagonal and all other entries are

less than or equal to one, see [61, 151]. Off-diagonal entries can be one in magnitude

(this can happen for example when there is more than one maximum weighted matching),

but otherwise the combined effect is such that the resulting matrix has larger entries

on the diagonal. If the given matrix was obtained from a strongly diagonally dominant

matrix or a symmetric positive definite matrix by permutations, the maximum product

matching recovers the original diagonal [151]. Therefore, it is believed that the combination

of the matching and the associated scaling would yield a set of good pivots. This was

experimentally observed but has never been proved.

3.3 Elimination tree and the multifrontal method

In this section, we describe arguably the most important graphical representation for sparse

matrices: the elimination tree. We discuss its properties, construction and complexity,

and illustrate the flexibility of this model. We then consider one of the most important

elimination-tree based class of direct methods: the multifrontal method. We indicate how
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we can modify the tree for greater efficiency of the multifrontal method and show how it

is used in a parallel and out-of-core context.

3.3.1 Elimination tree.

The elimination tree is a graphical model that represents the storage and computational

requirements of sparse matrix factorization. The name elimination tree was first used in [56]

and was principally used there as a computational tree to guide the factorization process.

The term was also used by Jess and Kees [122], who again used the elimination tree to

represent the computational dependencies in order to exploit parallelism. We note that

Jess and Kees used the elimination tree of a triangulated graph. That is, they consider the

graph that includes the fill-in edges obtained using a fill-reducing ordering. The formalized

definitions of the elimination tree and the use of the data structures resulting from it

for efficient factorization and solution are given by Schreiber [177]. Liu considers the

elimination tree in some detail and provides a detailed discussion on it in [136] and [140].

The latter paper is a comprehensive survey of the elimination tree structure. Here we

provide a few properties of the elimination tree and comment on its computation, mostly

following the exposition in [140].

The elimination tree essentially relates to the factorization of irreducible, pattern

symmetric matrices. However, some modern solvers such as MUMPS [7] extend the use

of the elimination tree to unsymmetric systems by using a tree based on the structure

of the matrix |A| + |AT |. This extends the benefits of the efficient symmetric symbolic

factorization to the unsymmetric case, and so the following discussion can apply to general

LU factorization.

We first give a few definitions before listing some important properties of the elimination

tree. Depth-first search (DFS) of a graph starts with an initial node v, marks the node as

visited and then recursively visits an unvisited vertex which is adjacent to v. The edges that

are traversed to explore an unvisited node form a tree, which is called a depth-first search

tree [184] . Let A be a symmetric positive definite matrix having the factorization LLT . Let

GF represent the graph of the filled in matrix, i.e., the undirected graph of L + LT . Then

the elimination tree T = (V, E) is a depth-first search tree of the undirected graph GF .

This statement summarizes most of the structural information relating to the factorization

process. Firstly, the elimination tree is a spanning tree of the graph corresponding to the

filled in matrix. Secondly, the elimination tree can be constructed by making an edge from

each vertex j = 1, . . . , n−1 to the first nonzero lij in column j so that vertex i is the parent

of vertex j. As there are no cross edges (a cross edge is an edge of the graph but not the

DFS tree and it connect vertices which do not have an ancestor-descendant relationship

in the DFS tree) with respect to a DFS tree of an undirected graph, the edges of GF that

are not in the tree T are back edges, i.e., they are from a vertex v to another vertex in the

unique path joining v to the root (see [184] and [42, Section 23.3]). Combining with the

fill-path theorem of Rose et al. [168, Lemma 4, p.270], we have that for i > j, the entry

lij is nonzero if and only if there exists a path vj, vp1, . . . , vpt, vi in the graph of A such
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that the vertices vj, vp1, . . . , vpt are all in the subtree of the elimination tree T rooted at

node vj. Another important property characterizing the fill-in is that lij 6= 0, if and only

if the vertex vj is an ancestor of some vertex vk in the elimination tree T , where aik 6= 0

(see [136, Theorem 2.4]).

As is evident from the previous discussion, the elimination tree depends on the ordering

of elimination operations. In particular, a node (that is the associated variable) can only

be eliminated after all of its descendants have been eliminated—otherwise the structure

is lost and the tree no longer corresponds to the depth-first search tree of the filled-in

matrix anticipated at the beginning. A topological ordering of the nodes of a tree refers

to an ordering in which each node is ordered before its parent. It was known earlier (see,

e.g., [67] and comments in [136, p.133]) that all topological orderings of the elimination tree

are equivalent in terms of fill-in and computation; in particular any postorderings of the

tree are equivalent. Liu [138] investigates a larger class of equivalent orderings obtained

by tree restructuring operations, refereed to as tree rotations. Liu combines a result of

Rose [165, Corollary 4, p.198] and one of his own [136, Theorem 2.4, p.132] to note that

for any node v in the tree there is an equivalent ordering in which the nodes adjacent

(in the graph of A) to the nodes in the subtree rooted at v are numbered last. Using a

result of Schreiber [177, Proposition 5, p.260], Liu identifies a node as eligible for rotation

if the ancestors of the node (in the elimination tree) form a clique in the filled graph.

Then, the nodes are partitioned into three sets and numbered in the following order: those

that are not ancestors of the selected node while retaining their relative order; those that

are ancestors of the selected node but not connected to (in the original graph, not in

the tree) the subtree rooted at the selected node; then finally the remaining nodes. The

final ordering will correspond to a new elimination tree in which the subtree rooted at the

selected node would be closer to the root of the new tree.

Liu [136] (also in the survey [140]) provides a detailed description of the computation

of the elimination tree. Firstly, an algorithm is given in which the structure of row i of

L is computed using only A and the parent pointers set for the first i − 1 nodes. This

algorithm processes the rows of in turn and runs in time proportional to the number of

nonzeros in L. At row i, the pattern of the ith row of L is generated; for this the latest

property of the elimination tree that we mention above (see [136, Theorem 2.4]) is used.

Then for for each k for which lik 6= 0 and the parent k is not set, the parent of k is set to be

i. In order to reduce the time and space complexity, Liu observes that parent pointers can

be set using the graph of A and repeated applications of set operations for the disjoint set

union problem [185]. A relatively simple implementation using these operations reduces

the time complexity to O(τα(τ, n)), where τ is the number of entries in A and α(τ, n)

is the two parameter variation of the inverse of the Ackermann function—α(τ, n) can be

safely assumed to be less than four.
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3.3.2 Multifrontal method.

Based on techniques developed for finite-element analysis by Irons [121] and

Speelpenning [180], Duff and Reid proposed the multifrontal method for symmetric [66]

and unsymmetric [68] systems of equations. Liu [141] provides a good overview of the

multifrontal method for symmetric positive definite matrices.

The essence of a frontal method is that all elimination operations are performed on

dense submatrices (called frontal matrices) so that these operations can be performed very

efficiently on any computer often by using the Level 3 BLAS [51]. The frontal matrix can

be partitioned into a block two by two matrix where all variables from the (1,1) block can

be eliminated (the variables are called fully summed) but the Schur complement formed

by the elimination of these on the (2,2) block cannot be eliminated until later in the

factorization. This Schur complement is often called a contribution block.

The multifrontal method uses an assembly tree to generalize the notion of frontal

matrices and to allow any fill-reducing ordering. At each node of the assembly tree, a

dense frontal matrix is constructed from parts of the original matrix and the contribution

blocks of the children—this process is called the assembly operation. Then, the fully

summed variables are eliminated (factorization of the (1,1) block takes place) and the

resulting contribution block is passed to the parent node for assembly into the frontal

matrix at that node. Clearly, one can only perform the eliminations at a node when all the

contributions have been received from its children. Liu [141] defines a tree (associated with

LLT factorization of a matrix A) as an assembly tree if for any node j and its parent p, the

off-diagonal structure of the jth column of L is a subset of the structure of the pth column

of L and p > j. It is easy to see that the elimination tree satisfies this condition and that

there are other tree structures which will exhibit the same property. In this setting, the

contributions from j (or any descendant of it in the assembly tree) can be accommodated

in the frontal matrix of p and hence the generality offered by the assembly tree might be

used for reducing the memory requirements [141, p.98].

Since the elimination tree is defined with one variable (row/column) per node, it only

allows one elimination per node and the (1,1) block would be of order one. Therefore,

there would be insufficient computation at a node for efficient implementation. It is thus

advantageous to combine or amalgamate nodes of the elimination tree. The amalgamation

can be restricted to avoid any additional fill-in. That is, two nodes of the elimination tree

are amalgamated only if the corresponding columns of the L factor have the same structure.

As even this may not give a large enough (1,1) block, a threshold based amalgamation

strategy can be used in which the columns to be amalgamated are allowed to have a

certain number of discrepancies in their patterns, introducing logical zeros. Duff and Reid

do this in their original paper [66] where they amalgamate nodes so that a minimum

number of eliminations are performed at each node of the resulting tree. That is, they

make the (1,1) blocks at least of a user-defined order. Ashcraft and Grimes [12] investigate

the effect of this relaxation in amalgamation and provide new algorithms. Firstly, the

notion of a fundamental supernode is defined. A fundamental supernode is a maximal
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chain (n1, n2, . . . , np) of nodes in the tree such that each ni is the only child of ni+1, for

i = 1, . . . , p − 1, and the associated column structures are perfectly nested. Then, the

fundamental supernodes are visited in an ordering given by a postorder, and the effect

of merging children with a parent node on the number of logical zeros created is taken

into account to amalgamate nodes. In [142], an efficient algorithm which determines the

fundamental supernodes in time proportional to the number of nonzeros in the original

matrix (avoiding the symbolic factorization altogether) is presented.

The simple tree structure of the computations helps to identify a number of

combinatorial problems, usually relating to scheduling and task mapping for efficient

memory use, in out-of-core solution and in parallel computing contexts. In the rest of this

section, we discuss some of the issues relating to efficient memory use and parallelization.

In a multifrontal method, the pattern of memory use permits an easy extension to

out-of-core execution. In these methods, memory is divided into two parts. In the static

part, the computed factors of the frontal matrices are stored. This part can be moved

to secondary storage. The second part, called the active memory, contains the frontal

matrix being factorized and a stack of contributions from the children of still uneliminated

nodes. Liu [137] minimizes the size of the active memory by rearranging the children of

each node (hence creating an equivalent ordering) in order to minimize the peak active

memory for processing the whole tree. In a series of papers, Agullo et al. [2, 3] and

Guermouche and L’Excellent [102] develop these ideas of Liu [137] concerning the assembly

and partial assembly of the children and their ordering. In these papers, algorithmic

models that differentiate between the concerns of I/O volume and the peak memory size

are developed, and a new reorganization of the computations within the context of an

out-of-core multifrontal method are presented.

George et al. [89] propose the subtree-to-subcube mapping to reduce the communication

overhead in parallel sparse Cholesky factorization on hypercubes. This mapping mostly

addresses parallelization of the factorization of matrices arising from a nested dissection

based ordering of regular meshes. The essential idea is to start from the root and to assign

the nodes of the amalgamated elimination tree in a round robin-like fashion along the

chains of nodes and to divide the processors according to the subtrees in the elimination

tree and then recursively applying the idea in each subtree. The method reduces the

communication cost but can lead to load imbalance if the elimination tree is not balanced.

Geist and Ng [82] improve upon the subtree-to-subcube mapping to alleviate the load

imbalance problem. Given an arbitrary tree, Geist and Ng find the smallest set of subtrees

such that this set can be partitioned among the processors while attaining a load balance

threshold supplied by the user (in the experiments an imbalance as high as 95% is allowed).

A breadth-first search of the tree is performed to search for such a set of subtrees. The

remaining nodes of the tree are partitioned in a round robin fashion. Improving upon

the previous two algorithms, Pothen and Sun [159] propose the proportional mapping

algorithm. They observe that the remaining nodes after the subtree mapping can be

assigned to the processors in order to reduce the communication overhead that arises
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because of the round robin scheme. The essential idea is to map the nodes (they use a

clique tree representation of the filled-in graph and therefore nodes are cliques of the nodes

of the original graph) that lie on the paths from already assigned subtrees to the root onto

the processors that are associated with those subtrees. A first-fit decreasing bin-packing

heuristic is used to select a processor among the candidates. In a different framework,

Gilbert and Schreiber [95] address the parallelization on a massively parallel, fine-grained

architecture (using a virtual processor per each entry of L). In this work, a submatrix

corresponding to supernodes is treated as a dense submatrix and is factorized in a square

grid of processors. In order to facilitate parallelism among independent, dense submatrices,

a two-dimensional bin-packing is performed. It is interesting to note the relevance of this

work to current massively parallel architectures. Amestoy et al. [8, 9, 10] generalize and

improve the heuristics in [82, 159] by taking memory scalability issues into account and

by incorporating dynamic load balancing decisions for which some preprocessing is done

in the analysis phase.

Many of the known results on out-of-core factorization methods are surveyed in a recent

thesis by Agullo [1]. The thesis surveys some out-of-core solvers including [50, 97, 148, 170,

187], provides NP-completeness results for the problem of minimizing I/O volume in certain

variations of factorization methods, and also develops polynomial time algorithms for some

other variations. Reid and Scott discuss the design issues for HSL MA77, a robust, state-

of-the-art, out-of-core multifrontal solver for symmetric positive-definite systems [160] and

for symmetric indefinite systems [161].

4 Iterative methods

A different but equally well known family of methods used for solving linear systems of

the form

Ax = b (3)

starts with an initial guess and, by successive approximations, obtains a solution with

a desired accuracy. The computations proceed in iterations (hence the name iterative

methods), where a set of linear vector operations and usually one or two sparse matrix-

vector multiplication operations take place at each iteration. As one can easily guess, the

presence of sparse matrices raises a number of combinatorial problems. Indeed, there is

a beautiful interaction between the parallelization of a certain class of iterative methods

and combinatorial optimization which revolves around graph and hypergraph partitioning.

As this is the subject of another survey [23], we do not cover this issue. Instead, we refer

the reader to [37, 49, 111, 189] for this interaction and to [71] for different aspects and a

survey of earlier studies on parallelization.

There are many aspects to iterative methods; here we restrict the discussion to some

preconditioning techniques because of their combinatorial ingredients. Preconditioning

refers to transforming the linear system (3) to another one which is easier to solve. A

preconditioner is a matrix enabling such a transformation. Suppose that M is a nonsingular
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matrix which is a good approximation to A, then the solution of the system M−1Ax =

M−1b may be much easier than the solution of the original system. There are alternative

formulations as to how to apply the preconditioner: from the left, from the right, or both

from left and right. For our purposes in this section, those formulations do not make any

difference, and we refer the reader to a survey by Benzi [17] that thoroughly covers most

of the developments up to 2002. We refer to some other surveys when necessary.

4.1 Incomplete factorization-based preconditioners

As discussed in the previous section, fill-in usually occurs during the LU decomposition of

a matrix A. By selectively dropping the entries computed during the decomposition, one

can obtain an incomplete LU factorization (ILU) of A with a lower and an upper triangular

matrix L̂ and Û . The matrix M = L̂Û , then can approximate the matrix A and hence

can be used as a preconditioner. Benzi traces incomplete factorization methods back to

the 1950s, to the then Soviet Union, but credits Meijerink and van der Vorst [147] for

recognizing the potential of incomplete factorization as a preconditioner for the conjugate

gradient method.

As just mentioned, the essence of incomplete factorization is to drop entries in the

course of the elimination process. Current methods either discard entries according to

their position, value, or with a combination of both criteria.

Consider a pattern S ⊆ {1, . . . , n}× {1, . . . , n} and perform the elimination process as

in (1) but allow fill-in if the position is in S using the formulae

a
(k+1)
ij ←







a
(k)
ij −

(

a
(k)
ik /a

(k)
kk

)

a
(k)
kj , if (i, j) ∈ S

a
(k)
ij , otherwise

(4)

for each major elimination step k (k = 1, . . . , n) and i, j > k. Often, S is set to the nonzero

pattern of A, in which case one obtains ILU(0), a no-fill ILU factorization. This was used

in [147] within the context of incomplete Cholesky factorization.

A generalization was proposed by Gustafsson [104]. Gustafsson develops the notion of

level of fill-in and drops fill-in entries according to this criterion. The initial level of fill-in

for aij is defined as

levij ←
{

0 if aij 6= 0 or i = j,

∞ otherwise ,

and for each major elimination step k (k = 1, . . . , n) during the elimination (4), the level

of fill-in is updated using the formula

levij = min{levij, levik + levkj + 1} .

Given an initial choice of drop level `, ILU(`) drops entries whose level is larger than `.

Observe that the level of fill-in is a static value that can be computed by following the

elimination process on graphs.
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There have been many improvements upon the basic two incomplete factorization

methods discussed above, resulting in almost always better preconditioners. However,

these two methods are still quite useful (and effective for certain problems) because of the

structural properties of the computed factors, as we shall see later when discussing the

parallel computation of incomplete factorization preconditioners.

For example, Saad [172] develops a dual threshold strategy ILUT(τ, p), where a fill-

in entry is dropped if its value is smaller than τ , and at most p fill-ins per row are

allowed. For more on the variations and the properties of incomplete factorization-based

preconditioners, we refer the reader to [17, 149, 174].

4.1.1 Orderings and their effects.

As for their complete factorization counterparts, incomplete factorization preconditioners

are sensitive to the ordering of the elimination. Recall from Section 3 that, for a complete

factorization, the ordering affects both the fill-in and stability of the factorization. For an

incomplete factorization, in addition to these two effects, the ordering of the eliminations

also affects the convergence of the iterative method. This last issue, although demonstrated

by many, has yet to be understood in a fully satisfactory way. Benzi [17] cites 23 papers

between the years 1989 and 2002 that experimentally investigate the effects of ordering on

incomplete factorization preconditioners.

The first comparative study of the effect of ordering on incomplete Cholesky

factorization was performed by Duff and Meurant [62]. The paper shows that, contrary to

what was conjectured in [179], the number of iterations of the conjugate gradient method

is not related to the number of fill-ins discarded but is almost directly related to the norm

of the residual matrix R = A − L̄L̄T . Chow and Saad [40] show that for more general

problems the norm of the preconditioned residual (L̄Ū)−1R is also important.

The general consensus of the experimental papers, starting with [62], including [19],

strongly favour the use of RCM. Bridson and Tang [30] prove a structural result (using

only the connectivity information on the graph of A) as to why RCM yields successful

orderings for incomplete factorization preconditioning. One of the results showing why

RCM works for IC(0) is based on (L̄L̄T )−1 being fully dense if and only if each column

of L̄ has a nonzero below the diagonal. Any ordering yielding such a structure is called a

reversed graph traversal in [30] and RCM is shown to yield such a structure. We note that

for the complete factorization case such characterizations were used before; for example

the irreducibility characterization of A in terms of the structure of L (see [192] and [57]).

The other result of [30] is based on the intuition that if the structures of L−1 and L̄−1

coincide, then the incomplete factor returned by IC(0) could be a good approximation. It

is then shown that reversing an ordering that can be found by a graph search procedure

that visits, at each step, a node that is adjacent to the most recently visited node (allowing

backtracking) will order A so that the above condition holds. RCM does not yield such an

ordering in general, but a close variant always will.

As an alternative to using the ordering methods originally designed for complete
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factorization, orderings specially designed for incomplete factorization have also been

developed. In [45] a minimum discarded fill ordering, MDF, is proposed. The algorithm

is considered as the numerical analogue of the minimum deficiency ordering (scheme S3

of [186]), and it corresponds to ILU(`). The basic idea is to eliminate the node with

the minimum discarded fill at each stage of the incomplete elimination in an attempt to

minimize the Frobenius norm of the matrix of discarded elements. The method has been

developed in [46] yielding two variants, both of which still are fairly expensive. D’Azevedo

et al. deserve the credit for giving the static characterization of the factors in ILU(`) in

terms of the graph of the original matrix. In [41], two sets of ordering methods which use

the values of the matrix elements are proposed. The first one is a variation of RCM where

ties are broken according to the numerical values of the matrix entries corresponding to

edges between the vertex and the already ordered vertices. The second one is based on

minimum spanning trees, where at each node the least heavy edge is chosen to produce an

ordering of the nodes. These algorithms use heuristics based on a theorem [41, Theorem

1] (the proof refers to the results of [46, 147]) relating the element lij to the entries along

the path joining vertices i and j in the original graph of an M-matrix.

In recent studies, such as [18, 60, 61], nonsymmetric orderings that permute rows and

columns differently are used to permute large entries to the diagonal before computing an

incomplete preconditioner. Other more recent work that uses similar ideas includes [24]

where pivoting is performed during incomplete elimination; [132] where fill-reducing

ordering methods are interleaved with the elimination; and [175] where weighted matching-

like algorithms are applied to detect a diagonally dominant square submatrix, which is then

approximately factorized. Its approximate Schur complement is then constructed, on which

the algorithm is applied recursively.

Blocking methods for the complete factorization are adapted to the incomplete

factorization as well. The aim here is to speed up the computations as for complete

factorization and to have more effective preconditioners (in terms of their effect on the

convergence rate). A significant issue is that in certain incomplete factorization methods,

the structure of the incomplete factors are only revealed during the elimination process.

Ng et al. [150] present a technique for the incomplete Cholesky factorization that starts

with the supernodal structure of the complete factors. If standard dropping techniques

are applied to individual columns, the pre-computed supernodal structure is usually lost.

In order to retain the supernodal structure as much as possible, Ng et al. either drop the

set of nonzeros of a row in the current set of columns (the supernode) or retain that set.

In order to obtain sparser incomplete factors, they subdivide each supernode so that more

rows can be dropped.

In [116] and [173] blocking operations are relaxed in such a way that the supernodes

are not exact, but are allowed to incur some fill-in. In the first step, the set of exact

supernodes are found. Then, in [173], a compressed matrix is created from the exact

supernodes, and the cosine-similarity between nodes or supernodes are computed to allow

some inexact supernodes. In [116], inexact amalgamations are performed between the
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parents and children in the assembly tree with a threshold measuring the inexactness of

the supernodes.

Another set of blocking approaches are presented in [79, 152], explicitly for

preconditioning purposes. Here, a large number of small dense blocks are found and

permuted to the diagonal. The initial intention of these methods was to obtain block

diagonal preconditioners, but the resulting orderings are found to be useful for point

incomplete factorizations as well, see [19]. The blocking methods are fast (in general run in

O(n+τ) time although the current version finds a maximum product matching with MC64

as a preprocessor) and are provided in the PABLO library (http://www.math.temple.

edu/~daffi/software/pablo/).

Many of the current state-of-the-art variations of ILU methods are provided in

ILUPACK [25]. Other efforts include PETSc [15], IFPACK [176], and ITSOL (http:

//www-users.cs.umn.edu/~saad/software/ITSOL/index.html).

Benzi et al. [19] ask the following questions; answers to which will shed light into the

effect of orderings on incomplete factorization preconditioners: (i) why does the choice

of the initial node and the ordering within level sets affect the performance of (reverse)

Cuthill-McKee? (ii) why does ILU(0) with a minimum degree ordering not suffer from the

instability that occurs when a natural ordering is used, for the model problem or similar

ones?

4.1.2 Parallelization.

The parallel computation of ILU preconditioners is often implemented in two steps. Firstly,

the matrix is partitioned into blocks to create a high level parallelism where the ILU of the

interior blocks can be performed independently. Secondly, dependencies between blocks

are identified and sequential bottlenecks reduced to increase the parallelism.

The basic algorithm for no-fill ILU can be found in [174, p.398]. A parallel algorithm

for a threshold based ILU preconditioner is given in [124]. In this work, after the initial

partitioning and ILUT elimination of interior nodes, an independent set of boundary nodes

is found using Luby’s algorithm [144]. After elimination of these nodes, which can be

done in parallel, fill-in edges are determined and added between the remaining nodes.

Another independent set is then found and eliminated. The process is continued until

all nodes have been eliminated. Hysom and Pothen [120] develop a parallel algorithm

for a level-based ILU. They order each subdomain locally, ordering the interface nodes of

each domain after the interior nodes. Then, a graph of subdomains is constructed that

represents interactions between the subdomains. If two subdomains intersect, ordering

one before the other introduces a directed edge from the first domain to the second one.

Considering these directions, Hysom and Pothen colour the vertices of the subdomain

graph to reduce the length of directed paths in this graph. The colour classes can again

be found using Luby’s algorithm. Hysom and Pothen impose constraints on the fill-in that

can be obtained from a pure ILU(`) factorization. This helps improve the parallelization.
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Their paper presents an improvement to the scheme outlined above and provides a fill-in

theorem for the incomplete factorization.

4.2 Support graph preconditioners

Combinatorial structures have been used to construct and analyse preconditioners.

For example, Rose [166] defines the R-regular splitting (matrix splitting is a form of

preconditioning, see [191] for splitting methods) of singular M-matrices. Starting from

a given choice of diagonal blocks, Rose reorders the blocks so that the vertices in a cycle

(guaranteed to exist) are ordered consecutively. This ordering guarantees the convergence

of any given block regular splitting for singular M-matrices. This was not true without

this simple combinatorial tinkering of the given choice of diagonal blocks.

A more recent combinatorial preconditioner and a set of machinery used in designing

and proving the effectiveness of the constructed preconditioner is based on work by

Vaidya [190]. Although Vaidya’s manuscript is not published, his main theorem and the

associated preconditioners are given in the thesis of his student Joshi [123, Chapter 5]. In

this work, preconditioners for symmetric, positive definite, diagonally dominant matrices

are constructed using a maximum weighted spanning tree of the associated undirected

graph (the edge weights are equal to the absolute values of the corresponding matrix

entries). In other words, some off-diagonal entries of the given matrix are dropped to

obtain the preconditioner. In Joshi’s thesis there is a condition on which entries of A

to drop: an edge can be dropped if one can associate a single path in the graph of the

preconditioner matrix such that all edges in this path have a weight at least as large as the

weight of the dropped edge. A maximum weighted spanning tree satisfies this condition.

Any matrix containing that spanning tree and some additional edges also satisfies this

condition. Joshi demonstrates the development on two dimensional regular grids. First,

he separates the boundary nodes from the internal ones by removing all the edges between

the boundary nodes and the internal ones but keeping the edges between boundary nodes.

Then, he constructs a spanning tree of the internal nodes, and finally joins the boundary

to this tree with a single edge (one of those removed previously).

The proof that such structures give effective preconditioners uses two graph embedding

notions (Joshi uses the term embedding just to mean the representation of a grid by

a graph). For simplicity, consider two graphs H and G defined on the same set of

vertices. The embedding of H into G is a set of paths of G, such that each edge in

H is associated with a single path in G. The congestion of an edge of G is the sum of

the weights of such paths that pass through that edge, and the dilation of an edge of H is

the length of the associated path in G. The maximum congestion of an edge of G and the

maximum dilation of an edge of H define, respectively, the congestion and the dilation of

the embedding. Vaidya’s main result as stated by Joshi says that the condition number

of the preconditioned system is less than the product of the congestion and the dilation of

the embedding.

The basic support-tree preconditioners and the graph embedding tools used in bounding
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the condition number of the preconditioned system were extended and generalized by

Miller and his students Gremban and Guattery [99, 100, 101]. The extensions by Miller

and Gremban include projecting the matrix onto a larger space and building support

trees using Steiner trees (a Steiner tree forms a spanning tree of a graph with possibly

additional vertices and edges). Vertex separators that are used to partition the underlying

graph are defined as the additional nodes. The leaves of the constructed support-tree

correspond to the nodes of the underlying graph, and the internal nodes correspond to

vertex separators. This form of preconditioner is demonstrated to be more amenable to

parallelization than the original support-tree preconditioners [99, Section 3.4]. Reif [163]

also develops Vaidya’s preconditioners and reduces the bounds on the condition number of

the preconditioned matrix by using a weighted decomposition, i.e., by partial embedding of

the edges into multiple paths. Similar decompositions are used and defined more clearly by

Guattery [101] based on Gremban’s thesis. Guattery uses the embedding tools to analyse

incomplete Cholesky factorization as well.

As seen from the references cited in the above paragraph, the earlier papers on support

tree preconditioners are not published in widely accessible journals, except the rather

theoretical paper by Reif [163]. The preconditioners, the related tools that are used to

analyse them, and the potential of the theory as a means to analyse preconditioners are

presented by Bern et al. [21]. That paper collects many results and refines them, at the

same time extending the techniques to analyse modified incomplete Cholesky factorization

(the dropped entries are added to the diagonal entry, keeping the row sums of the original

matrix and the preconditioner matrix the same). The main tool that is used in bounding

the condition numbers of the preconditioned matrix is called the splitting lemma. Suppose

we use a preconditioner B for the matrix A, where A is symmetric and diagonally dominant

with nonnegative off-diagonal entries, and B is symmetric positive semidefinite, and both

A and B have zero row sums. One way to bound the maximum eigenvalue of B−1A is to

split A and B into m parts as

A = A1 + · · ·+ Am and B = B1 + · · ·+ Bm ,

where each Ak and Bk are symmetric positive definite. Proving τBk − Ak is positive

semidefinite for all k gives a bound on λmax(B
−1A). A similar technique is used to

bound λmin(B−1A) so that the condition number of the preconditioned system given

by λmax(B
−1A)/λmin(B−1A) can be bounded. The relation with the graph embedding

concept is such that each Ak represents an edge in the graph of A and each Bk represents

the associated path in the graph of B. Let Ak and Bk correspond to the edge (i, j),

i.e., to the nonzero aij = aji. The matrix Ak contains the weight of the edge aij in its

entirety, whereas the matrix Bk contains fractions of the weights of the edges along the

path associated with the corresponding edge so that the sum of the weights of the same

edge in different paths add up to the weight of the edge in B. For example in Vaidya’s

construction, if bij represents the weight of an edge b in the graph of B, and if the edge

b appears in paths associated with some aij, then each such aij contributes aij divided

by the congestion of b to bij. The diagonal entries of Ak and Bk are set in such a way
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that the row sums are zero. The congestion due to the edge aij represented by Ak in

the path represented by Bk is |aij|/bk, where bk is the minimum magnitude of a nonzero

off-diagonal entry in Bk. The dilation dk is the length of the associated path, hence one

less than the number of non-null rows or columns of Bk. These two numbers can be used

to show that dk|aij|/bkBk − Ak is positive semidefinite. The bound on λmax is therefore

maxij dk(|aij|/bk).

Bern et al. [21] use the above tools to analyse Vaidya’s maximum-weight spanning tree

preconditioners. In this analysis, B’s underlying graph is a maximum-weight spanning

tree T . Loose asymptotic bounds for congestion and dilation can be computed as follows.

Suppose there are m edges in the graph of A, then B will be split using m paths, each

defined uniquely in T . If one allocates 1/m of the weight of each edge of T to each

path, then the maximum congestion due to an edge aij in the associated path would be
aij

aij/m
= m. Furthermore, the dilation can be at most n − 1, one less than the number of

vertices. Hence, O(mn) is a loose upper bound on the maximum eigenvalue λmax of the

preconditioned system. The analysis for λmin is easier: λmin is at least 1, as each edge of

B is already in A. Therefore, the preconditioned system has a condition number bound

of O(mn). Another class of preconditioners that are based on maximum-weight spanning

trees is also proposed by Vaidya and analysed in [21]. These preconditioners are built by

partitioning the vertices of a maximum-weight spanning tree T into t connected parts, and

then enriching the edge set of T by adding the maximum weighted edge between any pair

of parts (if two parts are already connected by an edge of T , nothing is done for these two).

With this kind of preconditioners, the preconditioned system is shown to have a condition

number of O(n2/t2) [21].

Later, Boman and Hendrickson [28] generalized these embedding tools to develop more

widely applicable algebraic tools. Specifically, the tools can now address symmetric positive

semidefinite matrices. The insights gained with this generalization are used to analyse the

block Jacobi preconditioner and have enabled the development of new preconditioners [27].

Additionally, the support theory techniques have been extended to include all diagonally

dominant matrices [28].

The work by Chen and Toledo [38] presents an easily accessible description of Vaidya’s

preconditioners and their implementation. Sophisticated algorithmic approaches which

aim at constructing spanning trees yielding provably better condition numbers for the

preconditioned matrix, and again provably better graph decompositions are given in [76,

181, 182]. The developments in these papers lead to nearly linear time algorithms for

solving a certain class of linear systems. Another very recent study is by Koutis, again a

student of Miller. Koutis [128] proposes preconditioners for Laplacian matrices of planar

graphs. Koutis develops the preconditioners by aggregating graph-based preconditioners

of very small subsystems. Furthermore, Steiner tree preconditioners [99] are extended and

algebraic multigrid preconditioners are cast in terms of Steiner trees, yielding combinatorial

implications for the algebraic preconditioners.

The research on support graph preconditioners is very active. It seems that there is
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much to do in this relatively young intersection of combinatorics and linear system solution.

For example, except for a few comments in [28], nothing is said for nonsymmetric matrices,

not even for pattern symmetric ones. Although we have very little experience with support

graph preconditioning methods, we think that they can help understand the effects of

ordering methods for incomplete factorization preconditioners discussed in the previous

subsection.

Support-graph preconditioners are available in the TAUCS library of iterative

solvers http://www.tau.ac.il/~stoledo/taucs/ and in PETSc [15].

4.3 Algebraic multigrid preconditioning

Algebraic multigrid preconditioners approximate a given matrix by a series of smaller

matrices. Simply put, the system of equations is coarsened to a much smaller system, a

system is solved and refined at each level to obtain a correction to the original solution.

There are a number of combinatorial issues regarding efficient parallelization of multigrid

solvers, see Chow at el. [39]. Here, we will look at the coarsening operation which

incorporates a number of combinatorial techniques. For a survey on algebraic multigrid,

we refer the reader to [183].

In general, there are three coarsening approaches used in algebraic multigrid: classical

coarsening (see, e.g., [171]), aggregation based coarsening (see, e.g., [188]), and graph

matching (this is a relatively new method described in [127]).

In classical coarsening approaches of the type given in [171], the grid points are classified

into coarse or fine points. The coarse points are used to define the coarser grid. In order to

restrict the size of the coarser grid, such points are restricted to be a maximal independent

set. As we have seen before, this can be achieved using Luby’s algorithm [144]. Two

modifications of Luby’s algorithm are presented in [48] for the coarsening operation in

the algebraic multigrid context. The modifications include directing Luby’s algorithm

to choose points that have a higher number of influenced points (that is, those that are

connected to the chosen points by heavy weights) and removing certain points before

running the algorithm.

In aggregation based coarsening [188], an aggregate is defined as a root point and its

immediate neighbours for which a certain condition in the magnitudes of the coefficient

between the neighbours and the root point is satisfied. A constraint on a root point is

that the aggregate defined around it cannot be adjacent to another root point. Therefore,

a maximal independent set in the square of the graph (a graph formed by adding edges

between any two vertices that are connected by a path of length 2 in the original graph) of

the fine grid is found to define the roots of the aggregates again using Luby’s algorithm. The

exposition suggests that Luby’s algorithm is run on the square graph. The graph colouring

heuristics, see e.g., [29, 80], can be modified and used to reduce the space requirements by

avoiding the construction of the square graph (similar applications of the distance-k graph

colouring heuristics can also boost the performance of some other aspects of multigrid

solvers [47] as well as the coarsening [4]).
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In the matching based coarsening [127], the coarse grids are defined using simple graph

matching heuristics. In this work, a matching is found on the graph of a fine grid, and

the matched vertices are reduced to a single vertex in the coarser grid. The matching

is of the cardinality matching type, but does not aim at maximizing the cardinality. An

investigation in the paper shows that if the original matrix is an M-matrix, so are the

coarser matrices.

Current state-of-the-art multigrid solvers include ML [81] and BoomerAMG [117].

PETSc [15] provide interfaces for a number of multigrid preconditioners. For a much

larger list of multigrid solvers and related multilevel ones see http://www.mgnet.org/

mgnet-codes.html.

5 Block triangular form

Consider a permutation of a square, nonsingular sparse matrix that yields a block upper

triangular form (BTF):

A =











A11 ∗ ∗ ∗
O A22 ∗ ∗
...

...
. . . ∗

O O · · · App











,

where each block on the diagonal is square and nonsingular and the nonzeros are confined

to the block upper triangular part of the permuted matrix. If a permutation to this form

is used when solving the linear system, the whole system can be solved as a sequence of

subproblems, each involving a solution with one of the blocks on the diagonal.

The algorithms to obtain the BTF proceed in two steps, see e.g., [52, 74] and [105].

First, a maximum cardinality matching on the bipartite graph representation is found,

see [54, 55]. In the case of a structurally full-rank matrix, this would be a perfect matching.

Then, the matrix is nonsymmetrically permuted so that the matching entries are on the

main diagonal. The directed graph of this matrix is then constructed, and its strongly

connected components are found [184] which define the blocks on the diagonal. Efficient

and very compact implementations in Fortran are provided in [63, 64].

The block structure of the BTF is unique, apart from possible renumbering of the

blocks or possible orderings within blocks, as shown in [53, 72, 73]. In other words, the

same block structure would be obtained from any perfect matching. We note that any

such matching contains nonzeros that are only in the diagonal blocks of the target BTF.

The BTF form is generalized to rectangular and unsymmetric, structurally rank

deficient matrices by Pothen [155] and Pothen and Fan [157] following the work of Dulmage

and Mendelsohn [72, 73, 74]. According to this generalization any matrix has the following

form




AH ∗ ∗
O AS ∗
O O AV



 ,
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where AH is underdetermined (horizontal), AS is square, and AV is overdetermined

(vertical). Each row of AH is matched to a column in AH , but there are unmatched columns

in AH ; each row and column of AS are matched; each column of AV is matched to a row in

AV , but there are unmatched rows in AV . Furthermore, Pothen and Fan [157] and Dulmage

and Mendelsohn [74] give a finer structural characterization. The underdetermined matrix

AH can be permuted into block diagonal form, each block being underdetermined. The

square block AS can be permuted into upper BTF with square diagonal blocks, as discussed

before. The overdetermined block AV can be permuted into block diagonal form, with

each block being overdetermined. Again, the fine permutation is unique [155], ignoring

permutations within each fine block. The permutation to the generalized BTF is performed

in three steps. In the first step, a maximum cardinality matching is found, not necessarily

a perfect matching. Then each row that reaches an unmatched column through alternating

paths (these rows are all matched, otherwise the matching is not of maximum cardinality)

are put into the horizontal block, along with any column vertex in those paths. Then, a

corresponding process is run to detect the columns and rows of the vertical block. Finally,

the previous algorithm is run on the remaining full rank square block to detect its fine

structure. Pothen [155] proves the essential uniqueness of the BTF for rectangular and

structurally singular square matrices (see also [72, 73]).

In recent work, we have presented a few observations on the BTF of symmetric

matrices [70]. Firstly, the blocks AH and AV are transposes of each other. That is,

the set of rows and the set of columns that define the horizontal block are equal to the set

of columns and the set of rows that define the vertical block, respectively. Secondly, a fine

block of the square submatrix AS is such that either the set of its row indices is equal to

the set of its column indices, or they are totally disjoint and there is another square block

equal to the transpose of the block.

6 Conclusions

In this review, we have been rather eclectic in our choice of topics to illustrate the symbiotic

relationship between combinatorics and sparse linear algebra. This is in part because other

papers in this volume address specific subareas and in part because of our own interest

and expertise. Although space and energy prevent us from going into significant detail,

we have given a substantial number of references that should easily quench the thirst of

anyone eager to dig more deeply.

We have discussed graph search algorithms in the spirit of depth- and breadth-first

search methods; both weighted and unweighted bipartite matchings; spanning trees; and

graph embedding concepts. We believe that these are the most important and useful

tools of the trade, and hence by having some level of acquaintance with these concepts, a

computational scientist will be able to start understanding many of the issues that arise

in solving sparse linear systems and be able to see how combinatorial approaches can be

used to solve them.
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We hope that we have communicated to the reader that combinatorial optimization and

graph theory play a dominant role in sparse linear system solution. This is a delightful

combination as the discrete and continuous worlds often seem so far apart, yet the synergy

created by the interaction of the two leads to developments and advances in both worlds.

Much of the combinatorial material that we have discussed is fairly elementary and indeed

most would be covered in the context of an undergraduate level discrete mathematics

course, or a senior-level algorithms course. We view this very positively as it means that

these basic techniques are accessible to many people. However, the way these elementary

techniques are applied requires substantial conceptualization, both in casting a problem

in combinatorial terms and in restructuring computational methods to accommodate the

combinatorial results.
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[24] M. Bollhöfer, A robust ILU with pivoting based on monitoring the growth of the

inverse factors, Linear Algebra and its Applications, 338 (2001), pp. 201–218.
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