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1 Introduction

Open-shell SCF theory is one of the most elegant techniques of contemporary

quantum chemistry. Computational methods based on open-shell theory provide

well-established tools which are applied routinely in modern molecular electronic

structure studies (see, e.g. [1–14] and references therein). Today, open-shell method-

ology is available in many of the quantum chemical program packages, such as

GAUSSIAN [23] and GAMESS [24], and is exploited in many practical applications.

In open-shell SCF theory, the optimal orbitals ϕi, i = 1, 2, ..., N satisfy equations

of the following form:

Fi|ϕi〉 = ∑
j

|ϕ j〉θ ji

θi j = θ ∗
ji (1)

where the Fi are Fock operators and the θi j are Lagrangian multipliers, which arise

from the orthogonality constraints

〈ϕi|ϕ j〉 = δi j.

The Fock operators are functionals of {ϕi} and so the above equations are solved

iteratively until self-consistency is attained. If a unitary transformation between the

ϕi is possible without changing the total energy expectation, then some or all of

conditions (1) can be fulfilled. This is a case, for example, in closed-shell SCF theory.

When describing open-shell systems, conventional approaches give rise to

Hartree-Fock type equations which involve different Fock operators for the orbitals

with the same spin. This results in off-diagonal Lagrange multipliers which couple

the closed- and open-shells and which cannot be eliminated by a suitably cho-

sen unitary transformation. Many studies have been devoted to the orthogonality

problem for the closed- and open-shell orbitals [1–10]. In his seminal 1960 paper,

Roothaan [1] proposed the elegant coupling operator formalism to overcome this

difficulty. Considerable progress has been made in understanding the nature of the

coupling operator method (see, e.g., [2–8], [11]) and useful computational experi-

ence has been accumulated in solving the restricted open-shell Hartree-Fock (ROHF)

equations (see, e.g., [12–14]). Recent investigations have made it possible to find

a canonical form of the open-shell Fock operator, which leads to useful relations

between the open-shell orbital energies and the ionization potentials [17]. An excel-

lent description of a history and evolution of the SCF theory for open-shell systems

can be found in the review by Carbo and Riera [14] and references therein. At the

present time, the coupling operator based methods, first proposed by Roothaan in

1960, form the basis of the most widely used computational procedure in studies of

open-shell systems.

The choice of zero-order Hamiltonian is crucial to the success of perturbation

approaches to the correlation problem and this choice is not as straightforward

for open-shell systems as it is in the case of closed-shell species. A number of

open-shell versions of many-body perturbation theory have been developed over
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the years beginning with the work of Hubač and Čársky in 1980 [18], which was

extended through fourth order by one of the present authors [19]. Much work on

open-shell systems has concentrated on states of high spin. Of course, the descrip-

tion of arbitrary open-shell systems requires the use of a multireference perturbation

expansion.

The Roothaan coupling operator formalism does not readily lend itself to a

well-defined perturbation theory for describing the correlation effects in arbitrary

open-shell systems [20–25]. In recent years, there has been renewed interest in the

open-shell methods fuelled by the desire to define a cost-effective many-body per-

turbation theory based on restricted open-shell Hartree-Fock wave functions. For

general open-shell systems, it can be difficult to devise a zero-order Hamiltonian

H(0) for which the wave function has a simple form and is an eigenfunction of the

total spin operator S2 [26]. Within the framework of the Roothaan coupling operator

approach, there is no unique way of choosing a reference Hamiltonian, H(0), with

respect to which a perturbation expansion for correlation effects can be developed.

Several proposals have been made for open-shell many-body perturbation theory

expansions (or open-shell Møller-Plesset-like perturbation theory (MPPT)) based

on a reference from the ROHF formalism [22, 23] or the unrestricted Hartree-Fock

(UHF) formalism [20, 21]. (It is well-known that the UHF formalism has a number

of serious deficiencies, such as unphysical features in calculated potential energy

curves.) These approaches to open-shell many-body perturbation theory differ pri-

marily in the definition of the reference hamiltonian H(0). It is well established

that the success or failure of a particular perturbation theory expansion is largely

determined by the choice of the reference Hamiltonian, H(0). Ambiguities in the

definition of the zero-order operator cannot be regarded as a desirable element of

any perturbation theory.

In Sect. 2, we shall demonstrate that the method of asymptotic projection, which

was reviewed in paper 1 [27], can be used to avoid ambiguities in the definition of

zero-order operators for use in developing perturbation expansions for correlation

effects. In previous work [28–38], the asymptotic projection method has been shown

to be useful tool for solving quantum chemical problems which can be formulated in

terms of an eigenvalue problem with orthogonality restrictions, i.e. the constrained

variational problem reviewed in paper 1 [27].

Another aspect of SCF theory which deserves more detailed investigation is the

study of electronically excited states, and especially excited states of the same spin

and spatial symmetry as the ground or some lower-lying state. Indeed, Hartree-Fock

calculations for electronically excited states cannot be considered routine. In partic-

ular, remembering that the ground and excited states are often of quite different

character, it is desirable to use different basis sets for different states. “The desir-

ability of using different basis sets for different states” was pointed out by Shull and

Löwdin [39] as long ago as 1958. Such an approach provides a compact and accu-

rate representation of excited state wave functions. Today, the most commonly used

approaches to the study of excited states are based on multireference techniques,

including configuration interaction, the multiconfigurational self-consistent field

method and its “complete active space” variant designated CASSCF, multireference
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perturbation theory and multireference coupled cluster expansions. These methods

are indispensable in studies of systems for which single-configuration methods can-

not be applied - for example, when the weight of the Hartree-Fock configuration

in the wave function of the full configuration interaction expansion is less than

∼0.9 [40]. However, in cases where a multireference approach is necessary, it is

clear that the orbitals of a single-configuration, together with a basis set that has

been specifically optimized for a given excited state, will prove more appropriate

for the development of many-body correlation methods than orbitals expanded in

a basis set constructed for the ground state. Furthermore, progress in excited state

SCF theory might be expected to aid the development of density functional theory

for excited states.

In Sect. 3, we shall consider the use of the asymptotic projection method in

excited state SCF calculations. The many-body Møller-Plesset-like perturbation

theory based on optimal orbitals generated by the SCF-asymptotic projection method

is the subject of Sect. 4. We shall demonstrate that, unlike existing open-shell per-

turbation theory formalisms, our alternative methodology can be easily extended to

excited states and, thus, facilitate the computation of a large part of the correlation

energy in a rather simple way. Our concluding remarks are given in Sect. 5.

2 Restricted Open-Shell Wave Functions and the Asymptotic

Projection Method

In this section, we review an alternative to the Roothaan’s open-shell method

that does not involve off-diagonal Lagrange multipliers. We develop the asymp-

totic projection-SCF formalism to construct a single open-shell Slater determinant

from which a well-defined, open-shell, many-body Møller-Plesset-like perturbation

theory (MPPT) can be performed for both the ground and excited states.

2.1 Modified Open-Shell Hartree-Fock Equations for Ground

States

2.1.1 Notation, Conventions and Restrictions

In this subsection, we shall consider systems for which the total SCF wave function

can be written as a sum of several antisymmeterized products, each of which consists

of a product of doubly occupied orbitals ϕc
k , the so-called core orbitals or closed-

shell set, and singly occupied orbitals ϕm, the valence orbitals or open-shell set.

To clarify our alternative technique, i.e. asymptotic projection, we shall restrict our

attention to open-shell systems for which the expression for the energy expectation

value can be partitioned as follows:

E = Ec + Eo + Eco (2)
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where the first term on the right-hand side is the closed-shell energy, the second term

is the open-shell energy, and the last term arises from the interaction between the

closed and open shells. This is a case considered in Roothaan’s seminal article [1],

for which the energy components have the form

Ec = 2∑
k

hkk +∑
k,l

(2〈ϕk|Jl |ϕk〉− 〈ϕk|Kl|ϕk〉)

Eo = f [2∑
m

hmm + f ∑
m,n

(2a〈ϕm|Jn|ϕm〉−b〈ϕm|Kn|ϕm〉)] (3)

and

Eco = 2 f ∑
k,m

(2〈ϕk|Jm|ϕk〉− 〈ϕk|Km|ϕk〉).

In these expressions, a, b, and f are numerical constants depending on the particu-

lar state under consideration, hkk = 〈ϕk|h|ϕk〉 where h is the one-electron operator

describing the kinetic energy of an electron and its interactions with the nuclei,

Jk and Kk are commonly called the Coulomb and exchange operators, which are

defined as

〈ϕi|J j|ϕi〉 = (ϕiϕi|ϕ jϕ j) =

∫
ϕ∗

i (1)ϕ∗
j (2)

1

r12

ϕi(1)ϕ j(2)dV1dV2

and

〈ϕi|K j|ϕi〉 = (ϕiϕ j|ϕiϕ j) =

∫
ϕ∗

i (1)ϕ∗
i (2)

1

r12

ϕ j(1)ϕ j(2)dV1dV2,

respectively. Following Roothaan [1], we reserve the indices k, l and m, n for the

closed-shell and open-shall orbitals, respectively, and the indices i, j for orbitals of

either set.

2.1.2 Orthogonality Constraints in the Restricted Open-Shell SCF Formalism

In the following discussion, we will be concerned with the orthogonality constraints

which are to be imposed on the orbitals. Such constraints can be divided into two

types. The first type of constraints are the orthogonality conditions within each of

the orbital sets: {ϕc
k}, {ϕm}, i.e.

〈ϕc
k |ϕ

c
l 〉 = δkl (4)

〈ϕm|ϕn〉 = δmn. (5)

These constraints are usually incorporated by introducing the Lagrange multipliers

{θ c
kl} and {θ o

mn}. The corresponding matrices can always be transformed to diagonal

form by appropriate unitary transformations. The second type of constraints are the

orthogonality conditions between the closed-shell and the and open-shell orbitals,

i.e.

〈ϕc
k |ϕm〉 = 0. (6)
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It is from the condition (6) that the problem of off-diagonal Lagrange multipliers

arises. In the present study, we shall use the asymptotic projection technique to

handle these orthogonality constraints rather than the conventional coupling oper-

ator methods introduced by Roothaan. It is convenient when using the asymptotic

projection method to rewrite Eq. (6) in two related symmetrical forms which are

convenient for carrying out the variations; namely,

∑
k

〈ϕc
k |Po|ϕ

c
k 〉 = 0 (7)

and

∑
m

〈ϕm|Pc|ϕm〉 = 0 (8)

where

Pc = ∑
k

|ϕc
k 〉〈ϕ

c
k | (9)

and

Po = ∑
m

|ϕm〉〈ϕm| (10)

are the orthoprojectors on the subspaces spanned by the closed-shell and open-shell

orbitals, respectively.

It should be noted that each term in the sum (7) [or (8)] is nonnegative, therefore,

the requirement (7) [or (8)] is exactly equivalent to the orthogonality conditions (6).

Thus, when implementing a variational principle, as we shall demonstrate in the

next subsection, we may apply the constraint (7) [or (8)] instead of using (6).

2.1.3 Variational Derivation of the Open-Shell Hartree-Fock Equations

We start from the stationary condition for the total energy given in Eq. (2) subject

to the constraints (4), (5) and (7).

Let us now define the functional

L = E −2∑
k,l

θ c
kl〈ϕ

c
k |ϕ

c
l 〉−2 ∑

m,n

θ o
mn〈ϕm|ϕn〉+ λ ∑

k

〈ϕc
k |Po|ϕ

c
k 〉 (11)

where θ c
mn,θ

o
mn and λ are Lagrange multipliers introduced to take account of the

orthogonality constraints.

The stationary condition δL = 0 takes the form

δL = δ{E −2∑
k,l

θ c
kl〈ϕ

c
k |ϕ

c
l 〉−2 ∑

m,n

θ o
mn〈ϕm|ϕn〉}+ λ δ{∑

k

〈ϕc
k |Po|ϕ

c
k 〉} = 0. (12)

After some manipulation, the variations in the first bracket of Eq. (12) yield the

standard result:

∑
k

〈δϕc
k |(F

c − εc
k )|ϕ

c
k 〉+∑

m

〈δϕm|(F
o − εo

m)|ϕm〉+ c.c. (13)
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where c.c. denotes the complex conjugate and εc
k and εo

m are the diagonal elements

of matrices θ c
kl and θ o

mn, respectively.

In Eq. (13) Fc and Fo are Fock operators (or Fockians), whose explicit form

depends on the precise form of the energy expression of the state under considera-

tion. For example, for the expression (2), we have [1]:

Fc = h +∑
k

(2Jc
k −Kc

k )+ f ∑
m

(2Jm −Km)

Fo = h +∑
k

(2Jc
k −Kc

k )+ f ∑
m

(2aJm −bKm)

where h is the one-electron operator describing the kinetic energy of an electron and

its interaction with the nuclei. It can be shown [24] that the variations in the second

bracket in Eq. (12) lead to the following expression

δ{∑
k

〈ϕc
k |Po|ϕ

c
k 〉} = ∑

k

〈δϕc
k |Po|ϕ

c
k 〉+∑

m

〈δϕm|Pc|ϕm〉+ c.c. (14)

Combining Eqs. (13) and (14), the total variation in Eq. (12) can be written as

follows:

δL = ∑
k

〈δϕc
k |(F

c + λ Po − εc
k )|ϕ

c
k 〉+∑

m

〈δϕm|(F
o + λ Pc − εo

m)|ϕm〉+ c.c. (15)

In practice, the orbitals are approximated by means of some expansion in a finite

one-particle basis set (the algebraic approximation is invoked), i.e.,

|ϕi〉 = P|ϕi〉 =
Q

∑
q=1

Ciq|χq〉

where P is an orthoprojector defined by a chosen basis set {χq}. Using this expan-

sion, the orbital variations can be written in the form

|δϕi〉 = P|δϕi〉+∑
a

(∂aP)|ϕi〉δ µa, (16)

where µa, a =1, 2,. . ., A, represents the basis set parameters (i.e. the exponents and

the positions). The first term in Eq. (16) corresponds to variations within the finite-

dimensional subspace spanned by the chosen basis set {χq}, whereas the second

term allows this subspace to be rotated within the Hilbert space of one-particle states

to attain the deeper minimum with respect to the total energy.

Substituting Eq. (16) into Eq. (15) and taking into account the independence of

the variations and their arbitrariness, we obtain the following equations:

P(Fc + λ Po − εc
k )P|ϕ

c
k 〉 = 0 (17)

and

P(Fo + λ Pc− εo
m)P|ϕm〉 = 0. (18)
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According to the asymptotic projection methodology, the imposition of the condi-

tion λ → ∞ in Eqs. (17) and (18) ensures the orthogonality between closed- and

open-shell orbitals. The choice of λ , whose value determines the target accuracy for

practical calculations, will be discussed below. Here it is worth noting that orbital

energies will be shifted during the iterative solution of Eqs. (17) and (18). Therefore,

after a solution has been obtained, these equations should be redefined as:

εc
k = 〈ϕc

k |F
c|ϕc

k 〉 and εo
m = 〈ϕm|F

o|ϕm〉.

The second term on the right-hand side of Eq. (16) leads to the equations for

optimization of the basis set:

∑
k

〈ϕc
k |(∂aP)Fc|ϕc

k 〉+∑
m

〈ϕm|(∂aP)Fo|ϕm〉 = 0. (19)

In Eq. (19) we took account of the fact that the term λ P(∂aP)P vanishes for arbitrary

λ . The left-hand side of Eq. (19) is the expression for the energy gradient with

respect to the basis set parameters. This expression allows these parameters to be

determined variationally.

2.1.4 Correct Variational Conditions and Orbitals Based on Asymptotic

Projection

It is known that optimum set of orbitals must satisfy the correct variational con-

ditions, which are equivalent to the generalized Brillouin’s theorem [8]. There are

two distinct types of variational conditions for optimal orbitals. The first type corre-

sponds to the variational condition between virtual orbitals {ϕa} and occupied {ϕi}
orbitals, i.e.

〈ϕa|F
c|ϕc

k 〉 = 0 (20)

and

〈ϕa|F
o|ϕm〉 = 0. (21)

The second type of variational condition is that among occupied orbitals, i.e.

〈ϕm|(F
c −Fo)|ϕc

k 〉 = 0 (22)

From Eqs. (17) and (18) it is easy to show that the orbitals based on asymptotic

projection obey these conditions. For example, multiplying Eq. (17) by 〈ϕm| and

Eq. (18) by 〈ϕc
k | by taking into account the orthogonality of the limiting orbitals, we

obtain

〈ϕm|F
c|ϕc

k 〉 = −λ 〈ϕm|ϕ
c
k 〉

and

〈ϕc
k |F

o|ϕo〉 = −λ 〈ϕc
k |ϕm〉.
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Finally, by subtracting these equations and taking the Hermitian properties of oper-

ators Fc and Fo into account, we arrive at the second variational condition, Eq. (22).

The relations (20) and (21) can be proved in a similar manner.

Thus, Eqs. (17) and (18) lead to an optimal set of orbitals. The energy expecta-

tion value supported by such orbitals is identical to that obtained by the Roothaan

coupling operators formalism. However, when implemented in a finite basis set

approach (the algebraic approximation), the coupling operator method deals with

equations of fifth order with respect to the coefficients Ciq in the two operator for-

malism and seventh order in the unique coupling operator formalism because of the

use of exchange coupling operators Jo and Ko (see Eq. (19) in Roothaan’s paper [1])

whereas the self-consistent field equations in the asymptotic projection technique,

Eqs. (17) and (18), are cubic equations.

2.2 Unrestricted Hartree-Fock (UHF) Formalism for Obtaining

High-Spin Restricted Open-Shell Hartree-Fock (ROHF)

Functions

It is well known that a large class of open-shell systems can be described by a sin-

gle Slater determinant. The open-shell Slater determinant Φ is built from orbitals

ϕα
k , k =1, 2,..., nα , associated with α spin and orbitals ϕ

β
k , k =1, 2,..., nβ , associated

with β spin. In addition, nα � nβ and n = nα + nβ is the total number of electrons,

and S = Sz. As we mentioned above, in the traditional open-shell method there is a

degree of arbitrariness in the Fock operators that leads to different forms of pertur-

bation expansion for the correlation energy. These ambiguities can be avoided by

using the UHF formalism in which we allow the spatial part of the α spin orbitals to

differ from that of the β spin orbitals. A spin purity constraint should be imposed

on the spatial orbitals in order to eliminate spin contamination in the UHF func-

tion. This requirement is known [41] to be fulfilled if the occupied β orbitals are a

linear combination of occupied α orbitals, i.e. the β set lies completely within the

subspace defined by the α set. Below we shall see that this requirement leads to a

restricted open-shell Hartree-Fock Slater determinant.

Now we have

Pα Pβ = Pβ Pα = Pβ

with

Pα =
nα

∑
k

|ϕα
k 〉〈ϕ

α
k | and Pβ =

nβ

∑
k

|ϕ
β
k 〉〈ϕ

β
k |.

This allows us to rewrite the spin-purity requirement as the orthogonality constraint

nβ

∑
k

〈ϕ
β
k |Q

α |ϕ
β
k 〉 = 0

where Qα = I − Pα is the orthoprojector on the subspace of the virtual α spin

orbitals.
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Following the asymptotic projection methodology, the Euler equations for

orbitals can be then derived from the stationary condition

δL = δ [EUHF + λ
nβ

∑
k

〈ϕ
β
k |Q

α |ϕ
β
k 〉] = 0. (23)

Similarly using Eq. (16), variations of the orbitals can be divided into independent

parts. For example, for the α orbitals we have

|δϕα
i 〉 = Pα |δϕα

i 〉+(I−Pα)|δϕα
i 〉+∑

a

(∂aP)|ϕα
i 〉δ µa. (24)

Energetically significant variations are described by the second and third terms in

Eq. (24) because the first term does not lead to any change in the total energy since it

is invariant to any orthogonal transformation of the orbitals associated with a given

spin among themselves.

Substituting Eq. (24) into Eq. (23), after some manipulation, we arrive at the

following set of equations, which determine the optimal orbitals (see Glushkov [24,

33] for more details):

lim
λ→∞

P(Fα −λ Pβ − εα
i )P|ϕα

i 〉 = 0, i = 1,2, ...,nα , ...,M (25)

lim
λ→∞

P(Fβ + λ Qα − ε
β
i )P|ϕ

β
i 〉 = 0, i = 1,2, ...,nβ , ...,M (26)

and equations for basis set optimization

nα

∑
k

〈ϕα
k |(∂aP)Fα |ϕα

k 〉+
nβ

∑
k

〈ϕ
β
k |(∂aP)Fβ |ϕ

β
k 〉 = 0. (27)

In Eqs. (25–27) Fα and Fβ are the conventional UHF operators. It should be

stressed that each of the additional term in (25) and (26) ensures spin purity, i.e.

Ŝz|Φ〉 = S|Φ〉, Ŝ2|Φ〉 = S(S + 1)|Φ〉

but only both of the terms λ Pβ and λ Qα in combination with the limit λ → ∞ lead

to an optimum set of orbitals satisfying the generalized Brillouin’s theorem (see

next section for further discussion). Note, that together both additional terms also

lead to spatial parts of the α set which are identical to those of the β set, but the

corresponding orbital energies are different. The Slater determinant built from these

orbitals gives a minimum of the total energy expectation value which is equivalent

to that obtained by the Roothaan coupling operator method.

In concluding this section, we note that the Eq. (27) is the natural generaliza-

tion of the equations for the optimization of the basis set for closed-shell systems.

Indeed, Eq. (27) reduces to that for the optimization of the basis set for closed

systems in the case nα = nβ (see, [42–44]).

∂aE = 2∑
i

〈ϕi|(∂aP)F |ϕi〉 = 0 (28)
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2.2.1 Generalized Brillouin’s Theorem in Terms of Unrestricted Hartree-Fock

Orbitals Based on Asymptotic Projection

Below we shall show that the orbitals generated by Eqs. (25) and (26) in the limit

λ → ∞ satisfy the correct variational conditions i.e. the generalized Brillouin’s

theorem.

Without loss of generality, the full orbital space may be divided into a closed-

shell part (c), an open-shell part (o) and a virtual part (v). According to the

generalized Brillouin’s theorem, we have [7, 8]

〈Φ|H|Φ(i → j)〉 = 0 (29)

Φ(i → j)〉 are configurations which are singly excited with respect to Φ . There are

three types of well-defined singly excited configurations with the same multiplicity

as Φ [7, 8], viz.:

Φ(c → o) = det |cαoβ oα|,

Φ(o → v) = det |cαcβ vα|,

Φ(c → v) = N(det |cαvβ oα|+ det|vαcβ oα|),

in addition

Φ = det |cαcβ oα|.

For the sake of simplicity, we denote only the spin-orbitals which take part in exci-

tations in the determinants. N is a normalization multiplier. The indices c, o and v

mean closed-shell (doubly occupied), open-shell (singly occupied) and the virtual

parts of the full orbital space, respectively. In terms of the unrestricted Hartree-Fock

operators Fα and Fβ , Brillouin’s theorem can be written:

〈Φ|H|Φ(c → o)〉 = 〈ϕ
β
i |F

β |ϕβ
m〉 = 0, (m ∈ o, i ∈ c) (30)

〈Φ|H|Φ(o → v)〉 = 〈ϕα
m |F

α |ϕα
a 〉 = 0, (m ∈ o,a ∈ v) (31)

〈Φ|H|Φ(c → v)〉 = 〈ϕα
a |Fα |ϕα

i 〉+ 〈ϕβ
a |F

β |ϕ
β
i 〉 = 0, (i ∈ c,a ∈ v). (32)

Brillouin’s theorem is obeyed for the set of orbitals satisfying Eqs. (25) and (26)

in the limit λ → ∞ as well as the ‘traditional’ orbitals obtained by the Roothaan

approach. Indeed, multiplying Eq. (25) by 〈ϕα
a | and Eq. (26) by 〈ϕ

β
a |, we obtain

〈ϕα
a |F

α |ϕα
i 〉 = λ 〈ϕα

a |ϕ
β
i 〉, and 〈ϕβ

a |F
β |ϕ

β
i 〉 = −λ 〈ϕα

a |ϕ
β
i 〉. (33)

A constraint vector has been shown to tend to an eigenvector of the modified oper-

ator as 1/α (see Part I of this work [27]). Therefore, the limit λ 〈ϕα
a |ϕ

β
i 〉, λ → ∞,

exists and from Eq. (33) we can confirm that the condition (32) is satisfied. In the

same manner, we can show that conditions (30) and (31) are also satisfied for the

orbitals in the limit λ → ∞.



462 V.N. Glushkov et al.

Thus, the unrestricted Hartree-Fock orbitals based on asymptotic projection lead

to wave function and energy expressions which are equivalent to those obtained

by the Roothaan method. However, the asymptotic projection approach has some

advantages:

• The method avoids introducing the off-diagonal Lagrange multipliers coupling

the closed-shell and open-shell orbitals and, therefore, arbitrariness in the def-

inition of the Fock operators does not arise. Equations (25) and (26) are cubic

equations with respect to orbital expansion coefficients (lcao) and can be easily

implemented in established unrestricted Hartree-Fock codes. The ‘traditional’

open-shell Roothaan-based methods give rise to equations of fifth and seventh

degree with respect to these coefficients.

• The scheme defined in Eqs. (25) and (26) provides a well-defined zero-order

approximation for open-shell many-body perturbation theory that ensures that

single excitations do not contribute to the second-order energy. This should

be contrasted with the method of Knowles et al. [21], the restricted Møller-

Plesset approach, and the method of Amos et al. [20], here designated AAHK,

which employ different orbitals for different spins and for which the general-

ized Brillouin’s theorem is not satisfied and consequently single replacement

contributions enter the second-order energy expression.

The structure of the Fock matrices occurring in the asymptotic projection–self-

consistent field method is displayed in Fig. 1. The structure of the Fock matrices

arising in the RMP and the AAHK methods is shown in Figs. 2 and 3, respectively.

The asymptotic projection–self-consistent field equations are similar to those

reported for the RMP and AAHK methods. However, it should be emphasized that

Eqs. (25) and (26) give rise to spatial parts of the α set which are identical to those of

β set. In contrast, for the RMP and AAHK methods the α orbitals are not coincident

with the β orbitals [21] since these orbitals are rotated with respect to the orbitals

given by the Roothaan procedure and Brillouin’s theorem is not obeyed. The dif-

ferences between the methods is evident when we compare the Fock matrices Fα

and Fβ . It can be seen in Fig. (1) that s+ v block of the asymptotic projection–self-

consistent field Fα matrix has diagonal form and, therefore, the condition (31) is

satisfied. Furthermore, the diagonal form of d + s block of the Fβ matrix confirms

that condition (30) is also satisfied. However, it is clear by inspection of Figs. (2)

and (3) for the RMP and AAHK approaches that these do not satisfy Brillouin’s

theorem.

2.2.2 Matrix Hartree-Fock Energies for Ground States

In this subsection, some features of the alternative self-consistent field procedure

based on the asymptotic projection technique are demonstrated by means of Hartree-

Fock calculations of the ground state energies for the HeH and BeH molecules. The

Hartree-Fock ground state for the three-electron HeH molecule with electronic con-

figuration 1σ22σ is unbound. In this study, we used a He−H distance of 1.500 bohr,
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Fig. 1 Structure of the Fock

matrices in the asymptotic

projection method. d denotes

the doubly occupied com-

ponent of the orbital space,

s denotes the singly occu-

pied component and v the

virtual (or unoccupied) part. •
denotes a non-zero element of

the matrix

Fα

d s+ v
︷ ︸︸ ︷ ︷ ︸︸ ︷

d






s+ v










• • • • • • •
• • • • • • •
• • • • • • •

• • • •
• • • •
• • • •
• • • •
• • • •
• • • •





Fβ

d + s v
︷ ︸︸ ︷ ︷ ︸︸ ︷

d + s






v










• • • •
• • • •
• • • •
• • • •
• • • •
• • • •

• • • • • • •
• • • • • • •
• • • • • • •





which corresponds to the minimum in the potential energy curve for the first excited

Σ state. To assess the potential of the approach based on asymptotic projection, we

compare the matrix Hartree-Fock energies with the finite difference ROHF energy

obtained on a grid designated [217×349; 65] (J. Kobus, 2004, personal communi-

cation): EfdHF =−3.220 315 124 616 hartree which provides an exact Hartree-Fock

result to near-machine accuracy.

The ground state of the five-electron BeH molecule with the electronic configura-

tion 1σ22σ23σ was studied for a nuclear separation of 2.500 bohr. The finite differ-

ence ROHF energy of this molecule at this geometry is EfdHF =−15.153 182 339 96

hartree (J. Kobus, 2004, personal communication).

Self-consistent field energy calculations were carried out using a single reference

wave function. For all calculations, basis sets of s-type Gaussian functions were used

with exponents and positions determined by minimizing the Hartree-Fock energy.

Equation (27) were used to construct numerical procedures for basis set optimiza-

tions. It has been found recently that such basis sets are capable of supporting an

accuracy at the sub-µhartree level for simple molecules [42, 44]. The expectation

value of the energy given by the alternative SCF method depends on a parameter λ ,

where λ = 0 corresponds to the UHF energy and tends asymptotically to the ROHF

energy given by Roothaan’s method as λ → ∞. Table 1 presents the calculated ener-

gies for HeH as a function of λ together with the expectation value 〈S2〉 for the

case of 14s basis functions. We can see that setting λ = 100000 yields practically
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Fig. 2 Structure of the Fock

matrices in the restricted

Møller-Plesset method. d

denotes the doubly occupied

component of the orbital

space, s denotes the singly

occupied component and v the

virtual (or unoccupied) part. •
denotes a non-zero element of

the matrix

Fα

d + s v
︷ ︸︸ ︷ ︷ ︸︸ ︷

d + s






v


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
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• • • •
• • • •
• • • •
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• • • • • • •





Fβ

d s+ v
︷ ︸︸ ︷ ︷ ︸︸ ︷

d






s+ v










• • • • • • •
• • • • • • •
• • • • • • •

• • • •
• • • •
• • • •
• • • •
• • • •
• • • •





the energy obtained by Roothaan’s method (ERoothaan = −3.219 198 91 hartree).

For λ∼5,000−10,000, we achieve a sub-µhartree level of agreement between our

method and the Roothaan method. The expectation value 〈S2〉 is given to our tar-

get accuracy for values λ > ∼100−500. In Table 2, we record the total restricted

open-shell matrix Hartree-Fock energies for Gaussian s-type basis sets of increas-

ing size. In this table, N denotes the total number of basis functions in a given basis

set. ∆ is the difference, in µhartree, between successive entries in Table 2. ∆n is

the value of ∆ divided by the number of basis functions added between successive

rows of Table 2. δ is the difference, again in µhartree, between the matrix Hartree-

Fock energy supported by a given basis set and corresponding value obtained by

the finite difference method. It can be seen that the largest basis set considered in

Table 2, which contains 48 s-type Gaussian functions, supports an accuracy at the

sub-µhartree level. The energy reported for this basis set corresponds to λ = 6,000.

Table 3 illustrates the dependence of the open-shell matrix Hartree-Fock energy

and 〈S2〉 for the BeH molecule on the parameter λ . The basis set of 30 s-type Gaus-

sian functions was used in this case. Values of λ in the range ∼5,000−10,000

provided the required accuracy in the energy when compared with the traditional

Roothaan method. We can see that the study of the BeH molecule is similar to that

of HeH molecule, in particular, it can be seen that when λ increases the expecta-

tion value of the square of the spin operator 〈S2〉 decreases much more rapidly than

the total energy increases. The total restricted open-shell Hartree-Fock energies are
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Fig. 3 Structure of the Fock

matrices in the method of

Amos, Andrews, Handy and

Knowles (AAHK). d denotes

the doubly occupied com-

ponent of the orbital space,

s denotes the singly occu-

pied component and v the

virtual (or unoccupied) part. •
denotes a non-zero element of

the matrix

Fα

d s v
︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷

d






s





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
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
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

Table 1 Dependence of the open-shell matrix Hartree-Fock energy based on asymptotic projection

on the parameter λ for the ground state of the HeH molecule at R = 1.5 bohr with the basis set of

14s functions. Atomic units are used

λ a 〈S2〉 Energy

0 0.750 428 93 −3.219 765 61

50 0.750 000 31 −3.219 308 32

100 0.750 000 08 −3.219 215 27

500 0.750 000 00 −3.219 202 25

5,000 0.750 000 00 −3.219 199 24

10,000 0.750 000 00 −3.219 199 07

100,000 0.750 000 00 −3.219 198 92

a The value λ = 0 corresponds to the unrestricted Hartree-Fock energy, whereas λ = 100,000 yields

practically the energy obtained by the Roothaan method (ERoothaan = −3.219 198 91 hartree).

given in Table 4 for basis sets of increasing size. The largest basis set considered in

this table contains 62 functions and supports an accuracy at the sub-µhartree level.

A total energy of −15.153 181 43 hartree was obtained with λ = 10,000 a.u. which

lies 0.91 µhartree above the finite difference Hartree-Fock energy.

In concluding this section, we point out that optimal basis set parameters for the

largest basis sets for the HeH and BeH molecules can be found in Ref. [44].
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Table 2 Convergence of the open-shell matrix Hartree-Fock-asymptotic projection energy for the

ground state of the HeH molecule, at R = 1.5 bohr, as a function of the basis set size. Atomic units

are used

N Energya ∆ ∆n δ

14 −3.219 199 07 − − 1116.05

24 −3.219 201 72 1002.65 100.27 113.40

30 −3.219 294 93 93.214 15.54 20.19

43 −3.219 313 19 18.26 1.40 1.93

48 −3.219 314 34 1.15 0.23 0.78

a The value λ = 10,000 was used. The energy differences, ∆ , ∆n and δ , which are defined in the

text, are given in µhartree.

Table 3 Dependence of the open-shell matrix Hartree-Fock-asymptotic projection energy on the

parameter λ for the ground state of the BeH molecule at R = 2.5 bohr with the basis set of 30

s-type Gaussian functions. Atomic units are used

λ a 〈S2〉 Energy

0 0.751 788 28 −15.153 428 93

100 0.750 000 12 −15.153 091 16

1,000 0.750 000 00 −15.153 089 13

5,000 0.750 000 00 −15.153 089 13

6,000 0.750 000 00 −15.153 088 92

10,000 0.750 000 00 −15.153 088 90

a Values of λ = in the range ∼5,000−10,000 provide the required accuracy when compared with

the traditional Roothaan method.

Table 4 Convergence of the open-shell matrix Hartree-Fock-asymptotic projection energy for the

ground state of the BeH molecule at R = 2.5 bohr, as a function of the basis set size. Atomic units

are used

N Energya ∆ ∆n δ

24 −15.152 457 00 − − 725.34

30 −15.153 088 92 631.92 105.35 93.42

36 −15.153 140 32 51.40 8.57 42.02

43 −15.153 164 08 23.76 3.39 18.26

60 −15.153 179 41 15.33 0.90 2.93

62 −15.153 181 43 2.02 0.01 0.91

a The value λ = 10,000 was used. The energy differences, ∆ , ∆n and δ , which are defined in the

text, are given in µhartree.

3 Excited State SCF Theory Based on the Asymptotic Projection

Method

3.1 Specific Features of Excited State SCF Calculations

Existing open-shell self-consistent field methods for ground states cannot be applied

directly to excited states of the same symmetry as a lower state without ‘variational
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collapse’; that is, the approximation to the excited state wave function is contami-

nated by components of a lower state. Several useful methods have been proposed

to overcome the ‘variational collapse’ problem and a number of different schemes

have been proposed for obtaining Hartree-Fock wave functions for excited states

[45–50], [34, 36]. Some of these approaches [45–47], [34, 36, 50] explicitly intro-

duce orthogonality constraints to lower states. Other methods [48], [49] introduce

this restriction implicitly. In both types of scheme, the excited state self-consistent

field wave function of interest is orthogonal to the wave function for a lower state

or states of the same symmetry, but this lower state or states are not necessarily

the best self-consistent field functions for these states [50]. An interesting ensemble

Hartree-Fock approach [51] based on the extended Raleigh-Ritz variational prin-

ciple [52] have been also proposed. This is a good compromise in applications to

the excited state problem within the framework of density functional theory and has

found application in wave function based formulation as well [35]. In particular,

calculations for atoms have showed that the ensemble Kohn-Sham theory, with the

exact ensemble-exchange potential, can be as accurate as the ground state calcu-

lations [53, 54]. However, partly due to the lack so far of an accurate correlation

energy functional, there exist very few reported applications for molecules, where a

finite basis set choice is important to achieve reasonable results. Some preliminary

calculations concerning the choice of an optimal basis set for an ensemble of states

can be found in the work of Glushkov and Theophilou [55, 56].

3.2 Orthogonality Constraints for Single Determinantal Wave

Functions

Before deriving the Hartree-Fock equations for the excited state orbitals, we shall

consider the orthogonality constraints imposed on these orbitals.

The exact many-electron wave function for an excited state, Ψi, i �= 0, satisfies

orthogonality conditions with respect to other many-electron states including the

ground state, Ψ0. For example, for the first excited state with many-electron wave

function Ψ1 we have

〈Ψ0|Ψ1〉 = 0. (34)

The exact ground state wave function, Ψ0, can be written

Ψ0 = Φ0 + χ0 (35)

where Φ0 is the many-electron ground state Hartree-Fock wave function and χ0 is

the correlation correction. Without loss of generality, we can require

〈Φ0|χ0〉 = 0. (36)

Similarly, the exact excited state wave function, Ψ1, can be written

Ψ1 = Φ1 + χ1 (37)
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where Φ1 is the many-electron excited state Hartree-Fock wave function and χ1 is

the corresponding correlation correction. Again, without loss of generality, we can

require

〈Φ1|χ1〉 = 0. (38)

Substituting Eq. (37) into Eq. (34) we get

〈Ψ0|Ψ1〉 = 〈Ψ0|Φ1〉+ 〈Ψ0|χ1〉
= 0. (39)

If we require that

〈Ψ0|Φ1〉 = 0 (40)

which implies that

〈Ψ0|χ1〉 = 0 (41)

then it is easily shown that
〈Φ1|H |Φ1〉

〈Φ1|Φ1〉
� E1, (42)

where E1 is the exact energy of the excited state and H is the total electronic hamil-

tonian operator. However, Eqs. (40) and (41) cannot be used directly because the

exact wave function for the ground state, Ψ0, is unknown.

Substituting Eqs. (35) and (37) into Eq. (34) we have

〈Ψ0|Ψ1〉 = 〈Φ0|Φ1〉+ 〈Φ0|χ1〉+ 〈χ0|Φ1〉+ 〈χ0|χ1〉
= 0 (43)

or

〈Φ0|Φ1〉 = − [〈Φ0|χ1〉+ 〈χ0|Φ1〉+ 〈χ0|χ1〉] . (44)

We see that the Hartree-Fock wave functions, do not, in general, satisfy orthogonal-

ity constraints analogous to those obeyed by the exact wave functions. However, we

may impose constraints upon the Hartree-Fock function so that, for example,

〈Φ0|Φ1〉 = 0. (45)

From (44) we see that this constraint requires that

〈Φ0|χ1〉+ 〈χ0|Φ1〉 = −〈χ0|χ1〉 .

The imposition of the constraint (45) on an approximate lower state wave function,

such as the Hartree-Fock function, does not, in general, yield an excited state energy

which is an upper bound to the exact excited state energy. An upper bound to the

excited state energy is obtained if we impose the additional constraint

〈Φ0|H|Φ1〉 = 0.

In practice, if the lower state energy and the corresponding wave function are known

accurately then the coupling matrix element 〈Φ0|H|Φ1〉 is small (see Part I of this
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work for more detailed discussion [27]). Experience shows that, because the finite

basis set approximation is usually more restrictive for Φ1 than it is for Φ0, the

calculated excited state energy lies above the corresponding exact value.

The imposition of the constraint (45) is important since

(i) any lack of orthogonality of the Hartree-Fock wave functions may lead to

excited state energies lying below the corresponding exact energies. (For exam-

ple, Cohen and Kelly [57] found for the He atom the first singlet excited

state energy E1 = −2.16984 hartree, whereas the observed energy E1,exact =
−2.14598 hartree. (see also the work of Tatewaki et al. [58]).);

(ii) it facilitates the development of a simple perturbation theory expansion for

correlation effects in excited states [37];

(iii) it facilitates the study of properties which depend on the wave functions of

different states, for example the evaluation of transition properties (see also

the work of Colle et al. [50]).

We shall be concerned with ground and excited electronic states which can be

adequately described by a single determinantal wave function, i.e. doublet states,

triplet states, etc. with spin S �= 0).

Let Φ0 be the ground state Slater determinant constructed from a set of spin-

orbitals consisting of spatial part
∣∣ϕα

0i

〉
, (iα = 1, 2, ..., nα) associated with α spin

functions and orbitals

∣∣∣ϕβ
0i

〉
, (iβ = 1, 2, ..., nβ ) associated with β spin functions, i.e.

Φ0 = (N!)−
1
2 det

∣∣∣ϕα
01α, ...,ϕα

0nα;ϕ
β
01β , ...,ϕ

β
0nβ

∣∣∣ . (46)

Without loss of generality, we define nα > nβ , nα + nβ = N, where N is a number

of electrons and S = Sz = (nα − nβ )/2 is the total spin. Similarly, Φ1 is a single

determinant wave function for the first excited state:

Φ1 = (N!)−
1
2 det

∣∣∣ϕα
11α, ...,ϕα

1nα;ϕ
β
11β , ...,ϕ

β
1nβ

∣∣∣ . (47)

It is well known that the orthogonality constraint for functions (46) and (47)

〈Φ0|Φ1〉 = 0 (48)

can be written in terms of the spatial orbitals in the form

〈Φ0|Φ1〉 = det |〈ϕα
01|ϕ

α
11〉 ...〈ϕ

α
0n|ϕ

α
1n〉|×

det

∣∣∣
〈

ϕ
β
01|ϕ

α
1n

〉
...

〈
ϕ

β
0n|ϕ

β
1n

〉∣∣∣
= 0. (49)

The annihilation of either one of the two determinants in (49) leads to fulfillment

of the orthogonality condition (48). From energy considerations and previous com-

putational experience, we impose the orthogonality restrictions only via the first
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determinant which is associated with the α set and involves the occupied orbital

highest in energy.

As is well known, the condition

det |〈ϕα
01|ϕ

α
11〉 ...〈ϕ

α
0n|ϕ

α
1n〉| = 0

is fulfilled if either the rows or columns in the first overlap determinant are linearly

dependent. Therefore, two physically different schemes are possible to satisfy (49):

either
nα

∑
j

b1
j

〈
ϕα

0i|ϕ
α
1 j

〉
= 0, i = 1, 2, ..., nα (50)

or
nα

∑
i

b0
i

〈
ϕα

0i|ϕ
α
1 j

〉
= 0, j = 1, 2, ..., nα . (51)

Equation (50) requires that all occupied ground state orbitals be orthogonal to

a linear combination of the excited state orbitals ∑nα

j b1
j

∣∣ϕ1 jα
〉
, which describes

an excited electronic state. Equation (51) requires the orthogonality of all occu-

pied excited state orbital associated with α spin functions to the arbitrary vector

∑nα

i b0
i

∣∣ϕα
0i

〉
from the subspace of the occupied ground state orbitals associated with

α spin functions. In general, the coefficients b0
i can be determined by minimizing

the excited state Hartree-Fock energy. However, calculations show that the choice

nα

∑
i

b0
i |ϕ

α
0i〉 = |ϕα

0n〉 , (52)

where ϕα
0n is the orbital from the ground state Slater determinant with the highest

energy, leads to a minimum energy for the excited state. In the limit of a complete

basis set or a common basis set for the ground and excited state the schemes defined

by (50) and (51), yield the same energy values.

In this work, we use the second scheme to impose the orthogonality constraint

(48), i.e. that defined by Eq. (51), which upon using (52) becomes

〈
ϕα

0n|ϕ
α
1 j

〉
= 0, j = 1, 2, ..., nα . (53)

Equation (53) can be rewritten in symmetrical form, which is useful when deriving

the Hartree-Fock equations, as follows:

〈
ϕα

1 j|ϕ
α
0n

〉〈
ϕα

0n|ϕ
α
1 j

〉
= 0, j = 1, 2, ..., nα (54)

or, since the left-hand side of Eq. (54) is not negative

nα

∑
j

〈
ϕα

1 j|P
α
n |ϕα

1 j

〉
= 0, (55)

where Pα
n is the projection operator

Pα
n = |ϕα

0n〉〈ϕ
α
0n| . (56)
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3.3 Variational Derivation of Hartree-Fock Equations for Excited

States

We shall follow the unrestricted Hartree-Fock formalism for obtaining the ROHF

functions developed in Sect. 2.2 to derive the Hartree-Fock equations for excited

states. For the sake of simplicity, we restrict our attention to the first excited state.

This means that we start with the minimization of the total energy expressed in terms

of the UHF orbitals:

EUHF
1 =

nα

∑
i

〈ϕα
1i|h|ϕ

α
1i〉+

1

2

nα

∑
i, j

[(ϕα
1iϕ

α
1i|ϕ

α
1 jϕ

α
1 j)− (ϕα

1iϕ
α
1 j|ϕ

α
1iϕ

α
1 j)]

+
nβ

∑
i

〈ϕ
β
1i|h|ϕ

β
1i〉+

1

2

nβ

∑
i, j

[(ϕ
β
1iϕ

β
1i|ϕ

β
1 jϕ

β
1 j)− (ϕ

β
1iϕ

β
1 j|ϕ

β
1iϕ

β
1 j)]

+
nα

∑
i

nβ

∑
i

(ϕα
1iϕ

α
1i|ϕ

β
1 jϕ

β
1 j)

subject to the following constraints:

(i) orbitals must satisfy the restrictions (55) which ensure the orthogonality of

Slater determinants for the ground state and the first excited state;

(ii) the excited Slater determinant must be an eigenfunction of the S2 operator, i.e.

we impose the spin purity condition in the form

nβ

∑
k

〈ϕ
β
1k|Q

α |ϕ
β
1k〉 = 0 (57)

where Qα = I −Pα is the orthoprojector on the subspace of the virtual α spin

orbitals. It is useful to remember that Eq. (57) implies that the set of orbitals

associated with the β spin functions lies completely within the space defined

by the set associated with the α spin functions.

The Hartree-Fock equations for the excited state orbitals can now be obtained

by constructing a functional consisting of the UHF energy expression together

with terms imposing the orthogonality constraints (55) and (57) by the method of

Lagrange undetermined multipliers. In particular, the constraints (55) and (57) mul-

tiplied by Lagrange multipliers λ1 and λ2, respectively, are added to the UHF energy

EUHF
1 = 〈Φ1|H| |Φ1〉, so as to give the following functional

L = EUHF
1 + λ1

nβ

∑
i

〈
ϕ

β
1i|Q

α |ϕ
β
1i

〉
+ λ2

nα

∑
i

〈
ϕα

1 j|P
α
n |ϕα

1 j

〉
. (58)
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The stationary condition has the form

δL = δ

[
EUHF

1 + λ1

nβ

∑
i

〈
ϕ

β
1i|Q

α |ϕ
β
1i

〉
+ λ2

nα

∑
i

〈
ϕα

1 j|P
α
n |ϕα

1 j

〉
]

= 0. (59)

It should be emphasised that, although this condition is based on the UHF energy

expression, it leads to a result corresponding to ROHF theory.

In practical applications, we invariably invoke the algebraic approximation by

parameterizing the orbitals in a finite basis set. This approximation may be written

|ϕ1〉 = P |ϕ1〉

where P is an orthoprojector defined by a chosen basis set with dimension M1, i.e.

P =
M1

∑
p,q

∣∣χ1
p

〉
(S−1)pq

〈
χ1

q

∣∣

where S is the overlap matrix and S−1 is its inverse.

It should be stressed that, in general, the basis set for the excited state,

{
χ1

p; p = 1, 2, ..., M1

}
,

is distinct from that for the ground state,

{
χ0

p; p = 1, 2, ..., M0

}
.

The stationary condition (59) leads, after some manipulation, to the following

equations

limλ1,λ2→∞P(Fα −λ1Pβ + λ2Pα
n − εa

i )P
∣∣ϕα

1i

〉
= 0, iα = 1, 2, ..., nα , ..., M1

limλ1→∞P(Fβ + λ1Qα − ε
β
i )P

∣∣∣ϕβ
1i

〉
= 0, iβ = 1, 2, ..., nβ , ..., M1

(60)

Here Fα and Fβ are the standard UHF operators constructed from the excited state

orbitals ϕ1i. According to the asymptotic projection technique the terms λ1Pβ and

λ1Qα , λ1 → ∞, ensure spin purity (see the work of Glushkov and Tsaune [34] and

also Glushkov [24] for more details) whereas the term λ2Pα
n , λ2 → ∞, provides the

orthogonality of states.

This result can be easily extended to the higher energy levels. For example, for

the second excited state the operator Pα
n should be substituted by the orthoprojector

Pα
n = |ϕα

0n〉〈ϕ
α
0n|+ |ϕα

1n〉 〈ϕ
α
1n|

etc., i.e. the problem of choosing a determinantal wave function for the higher exci-

tations does not arise. The only additional computation beyond that required for the

UHF scheme is the evaluation of the overlap matrix element
〈

ϕα
0n|ϕ

α
1 j

〉
. It should



Asymptotic Projection Method: II 473

be noted that for practical calculations, the value λ1 ∼ 100−500 a.u. ensures spin

purity [24], whereas λ2 ∼ 1,000 a.u. ensures that 〈Φ0|Φ1〉 < 10−6−10−7 [36].

It is worth also noting that because of the asymptotic projection method, all

excited configurations based on the excited Slater determinant Φ1, viz., Φa
1i, Φab

1i j,

etc., are orthogonal both to Φ0 and among themselves. Therefore, these functions

form the orthonormal basis set in the many-body space and can be used, unlike other

SCF methods which do not satisfy the orthogonality of states in the explicit form,

to develop many-body methods incorporating the correlation effects, in particular, a

many-body Møller-Plesset-like perturbation theory (see Sect. 5).

3.4 Numerical Results and Discussion

At present, there are only very few published finite basis set calculations for excited

states having the same symmetry as the ground state which are based on existing

Hartree-Fock methods. For some atoms, numerical Hartree-Fock (NHF) results are

available [59]. They can be used to examine the performance of the excited state

SCF theory presented above.

3.4.1 Even-Tempered Basis Set Implementation for Excited States of Atoms

In this section, we describe three different schemes for developing systematic

sequences of even-tempered basis sets for excited states. We define each scheme,

which we label (a), (b) and (c) in turn.

In each scheme, we generate a sequence of even-tempered basis sets, with

exponents given by

ζp = αβ p, p = 1, 2, ..., M. (61)

Following Schmidt and Rudenberg(61), in the following we shall use α and β for

the parameters that generate a sequence of even-tempered basis sets and not for spin

function as we did above. The parameters α and β must be taken to be functions of

M, the number of basis functions, i.e. α = α (M) and β = β (M), if the Gaussian

sets defined by (61) are to become complete in the appropriate subspace as M → ∞.

In the scheme which we label (a), the same basis set is employed for both the

ground and excited state. Therefore, the same integrals over basis functions are

used for both states. The values of the even-tempered parameters α and β are those

which were optimized for the ground state of the atom as reported by Schmidt and

Ruedenberg [60]. These values are given in Table 1 of Schimdt and Ruedenberg’s

paper [60].

In scheme (b) the basis set is optimized by invoking the variation princi-

ple for each state considered. For the ground state the optimized values of the

even-tempered parameters α and β given by Schmidt and Ruedenberg [60] are

used whereas for the excited state optimal values for a sequence of M values are

determined by minimizing the corresponding excited state energy.
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In our third scheme, which we label (c), we optimized the parameter α and β
for the smallest basis set considered, i.e. M = 6 and then determine values of these

parameters for the basis sets of larger size by using the recursions [61]:

α [M] =

[
β [M]−1

β [M−1]−1

]a

α [M−1]

and

ln(β [M]) =

[
M

M−1

]b

lnβ [M−1]

with the values of a and b taken from the work of Schmidt and Ruedenberg [60].

These values are given in Table 3 of reference [60].

We performed prototype calculations on some simple atoms in order to study the

rate of convergence of the excited state energies and the accuracy which could be

supported before problems associated with the precision of our calculations arising

from computational linear dependence became significant. In particular, we studied

the 3S states of the He atom corresponding to the configurations 1s2s, 1s3s and 1s4s,

and the 3S states of the Be atom corresponding to the configurations (He)2s3s and

(He)2s4s.

Using scheme (b) we also computed excitation energies for the Be isoelectronic

series in a comparison with the numerical Hartree-Fock values.

3.4.2 Matrix Hartree-Fock Energies and Excitation Energies of Atoms

The ground and excited state matrix Hartree-Fock energies for the He and Be atoms

are presented in Tables 5 and 6, respectively. All energies are given in atomic units,

(Hartree). In each of these tables, we label the columns according to the three

schemes, (a), (b) and (c), described above. We consider each system in turn.

For the excited states of the He atom considered in Table 8 the numerical Hartree-

Fock energies are known from the work of Froese-Fischer [59] to be – E(1s2s) =
−2.174 26 Hartree, E(1s3s) = −2.068 49 Hartree, E(1s4s) = −2.036 44 Hartree.

For none of the three states considered does the sequence of basis sets constructed

according to scheme (a) achieve satisfactory accuracy. For the 1s2s state, the energy

supported by the largest basis set, i.e. M = 72, is in error by ∼0.8 mHartree. For

the 1s3s state this error is ∼0.056 Hartree, whilst for the 1s4s state the calculation

with the largest basis set failed to converge and for the next largest set the error is

∼0.348 Hartree. Not surprisingly, a basis set designed for the ground state supports

an increasingly poor description of excited states as the level of excitation increases.

Equally, it is not surprising that if the sequence of even-tempered basis sets for

each excited state is optimized independently then the matrix Hartree-Fock energies

converge to values in good agreement with the corresponding numerical Hartree-

Fock energies. What is more this level of agreement is achieved for basis sets of

only 42 functions in the case of the He states considered here. Scheme (c) leads to

sequences of energies which begin, of course, with values equal to those for scheme
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Table 5 Self-Consistent Field energies (in hartree) of the He atom for some 3S excited states as

a function of the size, M, of the even-tempered basis set used to parameterize the orbitals. In the

column headed (a): the same even-tempered basis set – optimized for the ground state, is used

for all states; (b): the even-tempered basis set is optimized for each state; (c): the even-tempered

parameters α and β are optimized for each basis set for the smallest basis set (M = 6) and larger

basis sets are generated using the recursions

M 3S 1s2s

(a) (b) (c)

6 −1.83461514 −2.16969148 −2.16969148

12 −2.09589565 −2.17420691 −2.17416233

18 −2.14125461 −2.17424990 −2.17424758

24 −2.15704132 −2.17425075 −2.17425059

30 −2.16421386 −2.17425077 −2.17425076

42 −2.17012977 −2.17425078 −2.17425078

54 −2.17228698 – –

60 −2.17284371 – –

72 −2.17348174 – –

M 3S 1s3s

(a) (b) (c)

6 1.73706970 −2.05902284 −2.05902285

12 −1.10978995 −2.06833906 −2.06768910

18 −1.58429285 −2.06847975 −2.06845041

24 −1.76064449 −2.06848472 −2.06847385

30 −1.84981446 −2.06848493 −2.06848386

42 −1.93754688 −2.06848496 −2.06848488

54 −1.97977236 – –

60 −1.99338333 – –

72 −2.01255580 – –

M 3S 1s4s

(a) (b) (c)

6 17.38262804 −2.00192936 −2.00192936

12 2.01602912 −2.03624788 −2.03501230

18 −0.09897153 −2.03641613 −2.03601202

24 −0.81661258 −2.03643495 −2.03641298

30 −1.16049508 −2.03643584 −2.03641853

42 −1.48612549 −2.03643641 −2.03643607

54 −1.64005315 – –

60 −1.68986935 – –

72 – – –

(b) when M = 6 and converge almost as rapidly towards the numerical Hartree-

Fock values. For the 1s2s state schemes (b) and (c) lead to energies which agree

to all figures quoted, i.e. 0.01 µHartree when M = 42. For the 1s3s state there is a

difference of ∼0.08 µHartree between the energies supported by the two schemes

when M = 42. The corresponding difference for the 1s4s state is ∼0.34 µHartree.

For the two excited states of the Be atom considered in Table 6 the numerical

Hartree-Fock energies are known [59] to be as follows: E([He]2s3s) = −14.377 54
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Table 6 Self-Consistent Field energies (in hartree) of the Be atom for some 3S excited states as

a function of the size, M, of the even-tempered basis set used to parameterize the orbitals. In the

column headed (a): the same even-tempered basis set – optimized for the ground state, is used

for all states; (b): the even-tempered basis set is optimized for each state; (c): the even-tempered

parameters α and β are optimized for each basis set for the smallest basis set (M = 6) and larger

basis sets are generated using the recursions

M (He)2s3s

(a) (b) (c)

6 −13.68597324 −14.28743398 −14.28743398

12 −14.30875164 −14.37655131 −14.37615739

18 −14.35583967 −14.37747784 −14.37745253

24 −14.36814873 −14.37749790 −14.37749650

30 −14.37282326 −14.37749869 −14.37749856

42 −14.37602885 −14.37749874 −14.37749874

54 −14.37694934 – –

60 −14.37714828 – –

72 −14.37735193 – –

M (He)2s4s

(a) (b) (c)

6 −5.20614793 −14.10328399 −14.10328399

12 −13.45962762 −14.32284981 −14.32018366

18 −14.01343862 −14.32455109 −14.32446205

24 −14.15980890 −14.32460713 −14.32458356

30 −14.22107884 −14.32461093 −14.32460787

42 −14.27239938 −14.32461121 −14.32461113

54 −14.29355025 – –

60 −14.29978829 – –

72 −14.30798338 – –

Table 7 Optimized even-tempered parameters α and β for 3S excited states of He as a function of

size of basis set

M 1s2s 1s3s 1s4s

α β α β α β

6 0.009 397 4.210 973 0.001 684 4.979 103 0.000 376 5.420 623

12 0.009 088 2.641 628 0.002 742 2.758 438 0.000 924 3.033 467

18 0.008 243 2.211 957 0.002 785 2.202 424 0.001 226 2.212 713

24 0.007 443 1.999 366 0.001 967 1.999 755 0.001 232 1.932 314

30 0.006 989 1.897 299 0.002 043 1.845 165 0.001 176 1.794 637

42 0.005 045 1.702 089 0.002 176 1.661 148 0.001 068 1.666 500

Hartree, E([He]2s4s) = −14.324 66 Hartree. For scheme (a) the iterative process

failed to converge for basis sets containing more than 72 functions. For the [He]2s3s

state, the largest basis set supports an energy expectation value which is within

∼0.2 mHartree of the numerical Hartree-Fock value, whilst for the [He]2s4s state,

the corresponding difference is ∼16.7 mHartree. Again, a basis set designed for

the ground state supports an increasingly poor description of excited states as the
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Table 8 Optimized even-tempered parameters α and β for 3S excited states of Be as a function of

size of basis set

M [He] 2s3s [He] 2s4s

α β α β

6 0.004 884 5.142 401 0.001 057 5.809 367

12 0.004 799 2.947 601 0.001 459 3.191 957

18 0.004 552 2.370 166 0.001 709 2.424 045

24 0.004 237 2.083 730 0.001 736 2.080 558

30 0.003 912 1.921 824 0.001 663 1.899 549

42 0.003 667 1.745 016 0.001 537 1.719 092

Table 9 Total energies (hartree) and excitation energies (eV) for the Be isoelectronic series

System State Hartree-Fock–asymptotic projection NHF

Be 1s22s3s −14.377 48 −14.377 54

1s22s4s −14.324 55 −14.324 66

∆E(3s → 4s) 1.440 1.439

B+ 1s22s3s −23.700 12 −23.700 18

1s22s4s −23.539 19 −23.539 30

∆E(3s → 4s) 4.379 4.378

C2+ 1s22s3s −35.388 09 −35.388 26

1s22s4s −35.069 25 −35.069 43

∆E(3s → 4s) 8.676 8.676

O4+ 1s22s3s −65.852 21 −65.852 58

1s22s4s −65.070 35 −65.070 69

∆E(3s → 4s) 21.276 21.277

level of excitation increases. When the sequence of even-tempered basis sets are

individually optimized for a particular state (scheme (b)) an accuracy of ∼0.04

mHartree is supported for the [He]2s3s state and ∼0.05 mHartree for the [He]2s4s

state. A comparable accuracy is observed for the excited state energies of the Be

atom corresponding to scheme (c) in which only the basis set for M = 6 is optimized.

The even-tempered basis set parameters obtained by optimization of α and β
with respect to the energy for each size of a basis set, that is scheme (b) can be

found in Table 7 for the He atom and in Table 8 for the beryllium atom.

Table 9 lists excitation energies (in eV) for Be, B+, C2+ and O4+ computed

with the even-tempered basis set of 18 s-type functions (scheme (b)). In Tables

9, 10 and 11 we label our implementation of SCF method the “HF – asymptotic

projection” technique. The numerical Hartree-Fock energies are given in the column

headed “NHF”. The results of the Table 9 show that the HF – asymptotic projection

method for excited states is capable of supporting high accuracy both for excited

state energies and for excitation energies of the atoms and ions.
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Table 10 Total ground and some excited state energies of HeH at R = 1.5 bohr. Atomic units are

used

State Hartree-Fock - CIa EHF−ECI

ECI %

asymptotic projectionb

X2Σ+ −3.219 851 −3.263 164 1.3
A2Σ+ −3.066 606 −3.112 706 1.5
C2Σ+ −3.014 785 −3.055 797 1.3
D2Σ+ −2.988 232 −3.030 025 1.4

a – Hartree-Fock energies based on the asymptotic projection method.
b – configuration interaction method.

Table 11 Vertical excitation energies (eV ) from A2Σ+ of HeH at R = 1.5 bohr

State Hartree-Fock– CIa [62] Expt [62]

asymptotic projectionb

A2Σ+ 0 0 0

C2Σ+ 1.41 1.53 1.55

D2Σ+ 2.13 2.25 2.26

a – Hartree-Fock energies based on the asymptotic projection method.
b – configuration interaction method.

3.4.3 Matrix Hartree-Fock Energies and Excitation Energies of the HeH

Molecule

The HeH molecule is of experimental interest and has been studied using accurate

ab initio calculations (see, e.g. the work of Petsalakis et al. [62]), which provide

excellent reference data. These data were obtained with the configuration interaction

(CI) method. The CI space consisted of 4,732 configurations. Certainly, a compar-

ison of absolute values computed by the present Hartree-Fock method with those

given by the CI method would not be useful. However, the comparison of relative

errors for different states is of value and permits an assessment of the performance

of the method. Basis sets consisting of 18s Gaussian functions were used for all

states under consideration (X2Σ+, A2Σ+,C2Σ+ and D2Σ+). All basis functions

were centred on points lying on the line passing through the nuclei (the z-axis).

The He nucleus was placed at the origin (0, 0, 0) and the H nucleus at the point

(0, 0, 1.500).
The total energy of each excited state was minimized to determine non-linear

basis set parameters (orbital exponents and positions) for a given state i.e. basis sets

were individually optimized for each state. By exploiting the asymptotic projection

method, this procedure takes practically the same computational time for excited

states as it does for the ground state. (Some details of basis set optimization for

the ground state can be found in the work of Glushkov and Wilson [42–44] and
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references therein). The values λ1 = 100 a.u. and λ2 = 10,000 a.u. were used to

solve Eq. (60).

In Tables 10 and 11, the performance of the SCF-asymptotic projection method

for excited states can be observed. In these Tables, the total energies and excitation

energies are given respectively make it possible to observe (see the column Hartree-

Fock-AP).

The degree of agreement between computed and experimental values of excita-

tion energies can be improved by taking account of electron correlation effects. It is

to this problem that we turn our attention in the next section.

4 Many-body Møller-Plesset-Like Perturbation Theory Based

on Open-Shell Asymptotic Projection Orbitals

It is well known that the choice of the zero-order Hamiltonian, H(0), is crucial to

the success of any perturbation theory. As we have already mentioned, this choice

is known to be particularly problematic for open-shell systems. On the one hand,

although the theory for the construction of the ROHF wave function, which is an

eigenfunction of S2, was developed by Roothaan [1] long ago, this approach does

not readily lend itself to a perturbational treatment [20,21,23,25]. On the other hand,

the UHF theory facilitates the construction of a suitable H(0), but the UHF Slater

determinant is not, of course, an eigenfunction of S2. At present, the open-shell per-

turbation theory based on the so-called RMP method [21] is widely used. It is, for

example, incorporated in computational quantum chemistry software packages such

as GAMESS [24]. However, as we have pointed out, this method employs different

orbitals for different spins for which the generalized Brillouin’s theorem is not satis-

fied. Consequently, singly excited configurations enter the expansion for the energy

at second-order. This also complicates higher-order perturbation theory calculations.

In contrast, by employing an optimum set of asymptotic projection orbitals, we can

develop a well-defined open-shell perturbative treatment which is a natural exten-

sion of the widely used closed-shell many-body Møller-Plesset perturbation theory.

This new open-shell formalism leads to algorithms which exhibit computational

costs comparable with the closed-shell algorithms. Moreover, we will show that,

unlike existing open-shell perturbation theories, the new methodology can be easily

extended to excited states having the same symmetry as the ground state.

4.1 Open-Shell Perturbation Theory for the Ground State

4.1.1 Basic Theory

The spin-unrestricted formalism for the ROHF functions developed in Sect. 2.2 facil-

itates the development of a well-defined open-shell many-body Møller-Plesset-like
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perturbation theory. Indeed, the zero-order Hamiltonian can be written as a sum of

Fock operators for each electron:

H
(0)
0 =

nα

∑
k

Fα
0 (k)+

nβ

∑
k

F
β
0 (k) (62)

with Fock operators

Fα
0 =

M

∑
i

|ϕα
0i〉ε

α
0i〈ϕ

α
0i|, F

β
0 =

M

∑
i

|ϕ
β
0i〉ε

β
0i〈ϕ

β
0i| (63)

and the perturbation operator V = H −H
(0)
0 . Here the subscript indicates the ground

state, i.e. the orbitals and orbital energies are determined from Eqs. (25) and (26).

It is clear that the Slater determinant Φ
(0)
0 constructed from orbitals (25), (26) and

the determinants Φa
0i, Φab

0i j, etc. corresponding to single, double, etc. excitations,

obtained by replacing the occupied spin-orbitals by virtual spin-orbitals, form the

orthonormal basis set in the many-particle space of states and are eigenfunctions of

H
(0)
0 , i.e.

H
(0)
0 |Φ

(0)
0 〉 = E

(0)
0 |Φ

(0)
0 〉, E

(0)
0 = 〈Φ

(0)
0 |H

(0)
0 |Φ

(0)
0 〉 =

nα

∑
i

εα
0i +

nβ

∑
i

ε
β
0i

H
(0)
0 |Φa

0i〉 = Ea
0i|Φ

a
0i〉, Ea

0i = E
(0)
0 − ε

γ
0i + ε

γ
0a, γ = α,β

H
(0)
0 |Φab

0i j〉 = Eab
0i j|Φ

ab
0i j〉, Eab

0i j = E
(0)
0 − ε

γ
0i − ε

γ
0 j + ε

γ
0a + ε

γ
0b. (64)

Applying Rayleigh-Schrödinger perturbation theory to the problem (62),(63),

it is then easy to show that the sum of the zero-order and first-order energy

E0 = E
(0)
0 + E

(1)
0 yields the energy expectation value evaluated with respect to the

reference function Φ
(0)
0 . Indeed

E
(0)
0 + E

(1)
0 = 〈Φ

(0)
0 |H

(0)
0 |Φ

(0)
0 〉+ 〈Φ

(0)
0 |V |Φ

(0)
0 〉 = 〈Φ

(0)
0 |H|Φ

(0)
0 〉.

Note that the reduced resolvent operator

R
(0)
0 = Q

(0)
0 (E

(0)
0 −H

(0)
0 )−1Q

(0)
0 , Q

(0)
0 = I−|Φ

(0)
0 〉〈Φ

(0)
0 |

has a diagonal form in the basis set of excited configurations. Therefore, this can be

expressed in the form

R
(0)
0 =

occ

∑
i

virt

∑
a

|Φa
0i〉〈Φ

a
0i|

E
(0)
0 −Ea

0i

+
occ

∑
i< j

virt

∑
a<b

|Φab
0i j〉〈Φ

ab
0i j|

E
(0)
0 −Eab

0i j

+ . . .
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The summations in this expression are over spin orbitals. We omitted the summa-

tions corresponding to the higher order excitations.

Because of the Brillouin theorem, the first-order corrections to the wave functions

have the form:

|Φ
(1)
0 〉 = R

(0)
0 V |Φ

(0)
0 〉 =

occ

∑
i< j

virt

∑
a<b

|Φab
oi j〉〈Φ

ab
0i j|H|Φab

oi j〉(ε0i + ε0 j − ε0a − ε0b)
−1.

The second-order correction to the ground state energy E
(2)
0 is expressed in terms of

spin-orbitals and orbital energies:

E
(2)
0 =

occ

∑
i> j

virt

∑
a>b

|(ϕ0aϕ0i|ϕ0bϕ0 j)− (ϕ0aϕ0 j|ϕ0bϕ0i)|
2

ε0i + ε0 j − εa − ε0b

. (65)

We emphasise that the summations are over spin-orbitals. a and b are virtual orbitals

while i and j are occupied orbitals. The above expression is suitable for practical

calculations.

Thus, the orbitals based on asymptotic projection lead to a many-body perturba-

tion theory similar in form to the original to the original Møller-Plesset perturbation

theory. In terms of computational cost, this new open-shell perturbation theory, like

the OPT1 and OPT2 theories of Murray and Davidson [23] and the ZAPT theory

of Lee and Jayatilaka [25], has an obvious advantage over the RMP [21]. The new

theory is based on only one set of spatial molecular orbitals whereas the RMP has

two sets.

4.1.2 Application to the Singlet-Triplet Separation in the CH2 Molecule

There have been a large number of experiments and theoretical studies of the singlet-

triplet 1A1 −
3B1 separation in the CH2 molecule (see, e.g. the work of Sherrill, van

Huis, Yamaguchi and Schaefer [63] and also that of Bauschlicher and Taylor [64])

which provide excellent data for assessing new methods. The different spin and spa-

tial symmetry of the states imposes stringent requirements on the methods employed

at both the SCF level and in the perturbation theory calculations. We carried out cal-

culations with three basis sets containing 24s, 28s, and 42s Gaussians, respectively.

The orbital exponents and positions were determined by minimizing the energy for

each individual state. The parameters for our largest basis set of 42s functions can be

found in the work of Glushkov [24]. The nuclear coordinates are as follows: the 1A1

state: C(0, 0, 0); H1(−1.64403,−1.32213, 0); H2(1.64403,−1.32213, 0) and the
3B1 state: C(0, 0, 0); H1(−1.871093,−0.82525,0); H2(1.871093,−0.82525,0).

The energies of the 1A1 and 3B1 states at the SCF and second order perturbation

theory levels are given in Table 12 together with the corresponding energy split-

tings. The 1A1 state is described by a closed-shell determinant and, therefore, the

standard restricted Hartree-Fock and the second-order many-body Møller-Plesset

perturbation expansion were used.
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Table 12 SCF and second order perturbation theory energies (hartrees) of methelene in the 1A1

and 3B1 states and the 1A1 −
3B1 separation energy (in kcal/mol)

Energy Basis set 3B1
1A1 ∆E(1A1 −

3 B1)

ESCF 24s −38.897 795 −38.858 109 24.90

28s −38.909 868 −38.872 370 23.53

42s −38.929 603 −38.889 249 25.33

DZP [63] −38.927 640 −38.885 590 26.39

E a
PT 2 24s −38.984 048 −38.957 602 16.59

28s −39.008 662 −38.984 938 14.88

42s −39.045 811 −39.023 562 13.96

CASPT 2b DZP −39.037 660 −39.013 080 15.43

RMPc TZ2P − − 18.05

OPT 2c TZ2P − − 17.99

ZAPT c TZ2P − − 17.07

FCId DZP −39.046 260 −39.027 183 11.97

a – EPT2 = ESCF +E(2).
b – CASPT2, second-order of multireference perturbation theory based on a CAS wave

function [40].
c – Values were taken from Ref. [25].
d – Full configuration interaction method (FCI) [64].

One can see that our basis set of 42s functions yields SCF energies that are close

to those obtained with the DZP basis set. We observe that the value of the energy

splitting computed by using our scheme is improved when the size of the basis set

increases. A comparison of our asymptotic projection based technique in its second-

order implementation with other open-shell perturbation theories (CASPT2, OPT2,

RMP and ZAPT) shows the new method yields values of the singlet-triplet splitting

closest to the FCI reference value.

In concluding this section, we note that the present results could be improved

by using multireference perturbation theory since the singlet state 1A1 is known to

have two important configurations [64]. An alternative asymptotic projection-based

multireference perturbation theory [65] can be used for this.

4.2 Open-Shell Perturbation Theory for the Excited States

To our knowledge, there is, at present, no analogue of many-body Møller-Plesset

perturbation theory for excited states having the same symmetry as the ground state

or some lower lying excited state. The study of such systems often involves the use

of a multireference formalism. Such methods are indispensable in studies of systems

where single-configuration methods cannot be applied. Nevertheless, it would be

very useful to have a perturbation theory formalism the description of excited states
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which can be adequately described by a single Slater determinant. Such an approach

shares the computational advantages of the widely used many-body Møller-Plesset

perturbation theory. It would be especially useful for calculations of energy dif-

ferences. In addition, it is important to calculate the ground-state and excited-state

energies in a balanced manner, i.e.:

(i) Reference configurations are constructed by employing the same computational

scheme. For example, the ground and excited SCF functions are constructed

using the Hartree-Fock equations, whose solutions are approximated in one-

particle basis sets adjusted specifically to the state under consideration.

(ii) Correlation effects are taken into account using comparable schemes for the

ground- and excited-states, for example, using many-body Møller-Plesset-like

perturbation theory.

4.2.1 Second-Order Correlation Energy for Excited States

For simplicity, we shall consider the first excited state energy. In this case, the zero-

order Hamiltonian is similar to that for the ground state, but the Fock operators are

based on the excited state orbitals and orbital energies from Eqs. (60), i.e.

H(0) =
nα

∑
k

Fα(k)+
nβ

∑
k

Fβ (k) (66)

with Fock operators

Fα =
M−1

∑
i

|ϕα
i 〉ε

α
i 〈ϕα

i |, Fβ =
M−1

∑
i

|ϕ
β
i 〉ε

β
i 〈ϕ

β
i |. (67)

In the following, we shall omit the lower subscript for the excited states. The the

upper limit of the summations is M − 1 because the vector |ϕα
0n〉 is excluded from

the subspace of virtual molecular orbitals. It is important that singly, Φa
i , doubly,

Φab
i j , etc. excited configurations with respect to an excited state Slater determinant

Φ(0) are eigenfunctions of the Hamiltonian H(0) (66) and they are orthogonal to the

ground state Slater determinant Φ
(0)
0 because 〈ϕα

0n|ϕ
α
i 〉 = 0, i = 1, 2, ..., M−1.

In contrast to the ground state case, for the excited state it is necessary to take

into consideration the orthogonality constraints. For the first-order correction to the

excited state reference function, Φ(1), these constraints have the form

〈
Φ(0)|Φ(1)

〉
= 0. (68)

The first-order correction can be written in the following form

|Φ(1)〉 = (I −P
(0)
0 )|Φ(1)〉+ P

(0)
0 |Φ(1)〉

where I is the identity operator and P
(0)
0 = |Φ

(0)
0 〉〈Φ

(0)
0 |.
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It should be stressed that |Φ(1)〉 is constructed in the basis of singly, doubly, etc.

excited configurations of |Φ(0)〉, which, due to the asymptotic projection method,

are orthogonal both to |Φ(0)〉 and |Φ
(0)
0 〉. Therefore, the solution of the first-order

equation

(H(0)−E(0))|Φ(1)〉 = −(V −E(1))|Φ(0)〉, V = H −H(0)

determines only part of the correction, the projection (I−P
(0)
0 )|Φ(1)〉 satisfying the

condition (68), but does not determine the other part, P
(0)
0 |Φ(1)〉. This projection

should be determined by the orthogonality condition for the states in the first-order

perturbation theory, i.e.

P
(0)
0 |Φ(1)〉 = −P

(1)
0 |Φ(0)〉, (69)

where

P
(1)
0 = |Φ

(0)
0 〉〈Φ

(1)
0 |+ |Φ

(1)
0 〉〈Φ

(0)
0 |.

Such a scheme of the construction for Φ(1) is compatible with both the perturbation

theory equations and the orthogonality restrictions (68) and (69).

The final expression for the first-order correction to the excited state reference

function takes the form

|Φ(1)〉 = R(0)V |Φ(0)〉− |Φ
(0)
0 〉〈Φ

(1)
0 |Φ(0)〉 (70)

where R(0) = Q(0)(E(0)−H(0))−1Q(0) is the reduced resolvent operator, and Q(0) is

the orthoprojector onto the complementary space, i.e. Q(0) = I−|Φ(0)〉〈Φ(0)|.
It is well-known that the Rayleigh-Schrödinger perturbation theory leads to the

following expression for the second order correction to the energy

E(2) = 〈Φ(0)|H|Φ(1)〉

or, taking (70) into account, we have the expression

E(2) =
occ

∑
i> j

virt

∑
a>b

|(ϕaϕi|ϕbϕ j)− (ϕaϕ j|ϕbϕi)|
2

εi + ε j − εa − εb

−〈Φ(0)|H|Φ
(0)
0 〉〈Φ

(1)
0 |Φ(0)〉. (71)

The first term in Eq. (71) is immediately recognized as the second-order perturbation

theory expression for the ground state energy (cf. with (65)). Single excitations do

not contribute because the excited state orbitals, like the ground state orbitals, sat-

isfy the generalized Brillouin theorem. The second term in Eq. (71) appears because

the Hartree-Fock ground and excited state functions are not eigenfunctions of the

Hamiltonian H. In practice, if the ground state and excited state energies and the cor-

responding wave functions are known accurately then the coupling matrix element

〈Φ0|H|Φ1〉 is expected to be small (see also paper I [27], Sect. 3.1). Furthermore, as

the overlap element 〈Φ
(1)
0 |Φ(0)〉 < 1, then during the first stage of calculations the

last term in Eq. (71) may be neglected.
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Thus, we obtain comparable perturbation schemes for the ground and excited

state energies. Use of the asymptotic projection technique ensures that calculations

for excited states require practically the same computational time as those for the

ground state.

4.2.2 Numerical Examples

Below we demonstrate some possibilities of the single reference-based perturbation

theory based on orbitals obtained by asymptotic projection for calculations of the

total energies and excitation energies of the HeH and BeF molecules. We studied

the X2Σ+, A2Σ+, C2Σ+, and D2Σ+ states of HeH and the X2Σ+, B2Σ+ and C2Σ+

states of the BeF molecule.

For HeH, the basis set of 18s Gaussians employed in Sect. 2.2.2 was extended

to a 18s3p set, i.e. 18s functions were distributed along the molecular axis (z-axis)

with the basis set parameters determined by minimizing the total SCF energy for

each individual state. It should be noted that such basis set extension does not mod-

ify the subspace of occupied orbitals nor, therefore, the SCF energy, but it facilitates

and improved description of correlation effects. The orbital exponents and posi-

tions of the p-functions (px and py) were determined by using Hylleraas’ variational

principle [66]. This allowed us to minimize the error associated with truncation of

one-particle basis sets and, thus, to assess more precisely the errors of the method

itself. In addition, each p function (px, py) was represented by a linear combination

of two s-functions, i.e. the so-called Gaussian lobe representation [67] was used.

The results of our calculations of the total energies and excitation energies are

presented in Table 13 where they are compared to those obtained by the CI method

[62] and experimental data.

The BeF molecule was studied in detail in [68] where its various properties

were determined using the CI method. Experimental data are also available for this

molecule [69]. The best results in [68] were obtained with the mixed one-particle

basis set consisting of the Slater and two-center functions. We carried out calcula-

tions with the basis sets consisting of 24s Gaussian functions for the X2Σ+, B2Σ+

Table 13 Excited state energies (hartrees) and excitation energies (∆E, eV) from the A2Σ+ state

of HeH at the different levels of approximation at R = 1.5 bohr

Method A2Σ+ B2Σ+ D2Σ+

Hartree-Fock–asymptotic projection −3.066 606 −3.014 785 −2.988 232

E(2) −0.033 363 −0.029 915 −0.030 027

EMP2 −3.099 969 −3.044 700 −3.018 259

ECI [62] −3.112 706 −3.055 797 −3.030 025

∆EHF 0 1.41 2.13

∆EMP2 0 1.50 2.22

∆ECI [62] 0 1.53 2.25

∆Eexp [62] 0 1.55 2.26
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states and 26s functions for the C2Σ+ state and 4p-functions (4px and 4py), which,

in turn, were represented by the lobe approximated using lobes functions as we

did for HeH. These p-functions simulated the behavior of 1πx and 1πy orbitals in

the 1σ21σ21σ21σ21π4φ configurations, where φ = 5σ , 6σ and 7σ correspond to

the X2Σ+, B2Σ+ and C2Σ+ states, respectively. The calculations were performed

at internuclear distance R = 2.5 bohr, which is close to the equilibrium separation

for all the states under consideration. In this case, the basis set parameters both

of s-functions and p-functions were determined for each individual state by mini-

mizing the corresponding energy in the single determinant approximation. Such an

optimization of the restricted basis sets is very important for the excited states, and

its contribution to the total energy is comparable with the second-order correla-

tion correction as can be seen in Table 14, where the zero-, first- and second-order

energies are given. The energies in the column headed A were computed with basis

sets optimized for the state under study whereas the energies presented in column

B were obtained with the basis set adjusted to the ground state (X2Σ+). In addition,

a comparison of columns A and B also shows that the correlation energy (the row

E(2)) depends slightly on the basis set optimization.

Of course, the basis sets employed are not of sufficient size to approach the

complete basis limit and thus the comparison of absolute values with more precise

ones is not meaningful. However, if basis set optimization has been carried out for

each individual state and the similar scheme for accounting the correlation effects

has been used (Møller-Plesset like perturbation theory in our case), then energy

contributions from incompleteness of basis set may be assumed to be similar for

adjacent excited states and, therefore, comparisons of relative positions of energy

levels computed against more precise or experimental ones are instructive to esti-

mate the performance of the method. We can see from Table 15 that the method

introduced in this paper yield reasonable excitation energies which are closer to

experimental results [69] than the CI values obtained in Ref. [68].

Table 14 The total energies (hartrees) of the BeF molecule calculated in different orders of

perturbation theory at R = 2.5 bohr

Order of perturbation A (X2Σ+) A (B2Σ+) B (B2Σ+) A (C2Σ+) B (C2Σ+)

E(0) −69.221 2 −70.864 9 −68.980 0 −70.209 8 −68.667 4

E(0) +E(1) −114.103 6 −113.882 3 −113.790 9 −113.875 1 −113.595 3

E(2) −0.174 3 −0.172 5 −0.173 0 −0.169 0 −0.168 4

EMP2 −114.277 9 −114.054 8 −113.964 7 −114.044 1 −113.763 7

Table 15 Excitation energies (∆E, eV) from the X2Σ+ state of BeF at the different levels of

approximation at R = 2.5 bohr

State Hartree-Fock–asymptotic MP2 CI [68] Experiment [69]

projection

B2Σ+ 6.02 6.07 6.25 6.12

B2Σ+ 6.22 6.36 6.69 6.24
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5 Conclusions

We have presented a detailed description of open-shell SCF theory for the ground

and excited states based on an easily implemented asymptotic projection method for

taking the orthogonality constraints into account in eigenvalue problems which was

proposed earlier. The effectiveness of such a SCF-asymptotic projection theory and

its performance have been demonstrated:

(i) By solving the long-standing problem of off-diagonal Lagrange multipliers

in open-shell self-consistent theory. We have considered an alternative to the

Roothaan’s open-shell technique that does not involve off-diagonal Lagrange

multipliers. We have constructed a well-defined perturbation theory based on

this technique which can be used to account for correlation effects.

(ii) We have given an example of the variational determination of excited elec-

tronic states having the same spatial and spin symmetry as the ground state. The

results given above in (i) have thus been extended to excited state self-consistent

theory and an analogue of the many-body Møller-Plesset perturbation theory for

excited states has been developed.

Finally, it is worth pointing out the similarity between the SCF-asymptotic pro-

jection formalism developed here and the Optimized Effective Potential method

for practical excited state calculations within density functional theory. Prelimi-

nary results can be found in the work of Glushkov, of Glushkov and Levy and of

Glushkov and Gidopoulos [70–72].

Acknowledgment V.N.G. thanks Prof. A. Theophilou for useful and stimulating discussions

during the early stages of this work.
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