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Executive Summary

Knowledge of a system’s response to unknown operating conditions can be of key
importance in engineering design. A standard engineering approach might involve
performing a small handful of calculations to assess the influence of operating
conditions on quantities of interest. However, this simple approach may provide
an incomplete picture, potentially leading to poor design decisions. A brute-force
approach (performing a large number of simulations, over a range of operating
conditions) can provide a more complete mapping between inputs and outputs,
but at a significant computational cost.

In this work we apply advanced uncertainty quantification techniques which
allow us to maximise the knowledge extracted from the modelled system and,
crucially, its response to uncertain input parameters. This is done without changing
existing simulation codes. In the report, we show that we can perform such a study
in a more efficient manner than the brute-force approach – at least 1-2 orders of
magnitude less computational cost, with no loss in accuracy.

We demonstrate the use of these tools by assessing the propagation of thermal
transients within a u-shaped bend. A hot-shock is introduced at the inlet, and
allowed to propagate through the domain. This test-case is relevant to nuclear ap-
plications, where hot-cold cycles can lead to thermal fatigue and material failure.
The influence shock-magnitude on wall temperatures (or wall stresses) is assessed.
Rapid low-fidelity RANS (Reynolds-averaged Navier–Stokes) simulations, as typi-
cally used in industry, form the basis of the model.

The analysis we present shows a bi-modal response, in which extreme values
of temperature within the pipe walls are more likely to occur than the mean value
(despite a uniform distribution on the inlet shock-magnitude). Standard engineer-
ing practice may miss this as mean values are often focussed upon. The study
reveals that the input-output-mapping for this flow is complex and requires novel
approaches to efficiently determine the statistics.

In addition to the wall-temperatures, we also asses the thermally-induced stresses
within the solid domain. We achieve this by coupling the Computational Fluid Dy-
namics (CFD) code with a Finite Element Method (FEM) code for stress analysis.
A one-way coupling is performed, as solid displacements have an insignificant in-
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fluence on the fluid-flow. This preliminary work is important as it will allow us
to infer the likelihood of thermal fatigue (when coupled with an empirical fatigue
model). For the test-case under consideration, stresses close to the yield-stress are
observed, and hence thermal fatigue would be likely within only a few cycles.
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Chapter 1

Introduction

Uncertainty quantification (UQ) is broadly defined as the study of errors associated
with models, numerical algorithms and experiments. It is used to estimate the
sensitivities of predicted outcomes or quantities of interest. Recently, a systematic
UQ analysis of model input has emerged as an active area of research.

In this report we apply UQ in the context of an industrial computational fluid
dynamics (CFD) study. Turbulent, thermally stratified flow in a U-shaped pipe has
been selected as an example problem and models of varying fidelity were used.
The choice has been motivated by the presence of complex physical mechanisms,
transient nature of the flow and the presence of input uncertainties, all common to
many industrial CFD scenarios.

Over the course of their lifetime pipelines in complex cooling and transport sys-
tems will experience numerous thermal transients of varying characteristics. The
focus in this report is placed on forward propagation of model input uncertain-
ties in order to capture the effect of these events in a statistical manner and thus
provide engineers with a better representation of operating conditions. Using this
type of analysis will lead to improved reliability and risk assessment.

The practical utility of UQ relies heavily on the ability to perform a certain
number of model runs constraining significantly the choice of useful methods. The
report details some available procedures with their associated computational costs
giving a guideline on the application of UQ methodology for comparable studies.

The report is organised as follows. The simulation details are provided in Sec-
tion 2. Section 3 gives the theory behind UQ method. In Section 4, the application
and the uncertainty quantification procedure are described, followed by results
and discussion. Finally, we draw some conclusions and discuss future work.
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Chapter 2

Numerical modelling

The simulation is based upon that of Viollet [33].

2.1 Physical properties

The flow, thermal and material properties used are determined from the following
dimensionless groups:

• Reynolds number: Re = 10, 000, based on pipe diameter, D

• Reduced Froude number: F ≡ U√
g δρ

ρ D
= 0.67± 40%

• Peclet number: Pe ≡ UD
α = 6× 104

where U, g, ρ and α are the bulk velocity, gravitational acceleration, fluid density,
and thermal diffusivity respectively.

The flow is fully developed at the inlet, and is allowed to reach a (statistically)
steady isothermal state before commencing the thermal transient. A hot shock
is introduced at the inlet at time t0, and increases linearly until time t1 where it
remains at the maximum temperature. The duration of the ramp is t1 = t0 +

7.5U/D.
The ratio of thermal diffusivities is based on water flowing within a steel pipe.

I.e. αsolid
α f luid

= 144.8.

2.2 Geometry

As shown in Fig. 2.1, the length of both vertical sections is 10D, while the radius of
curvature of both elbows is 1.5D. The near-horizontal section is 6D in length, with
a slope of 1%. The wall thickness is 0.05D. For further details of the geometry,
refer to [33].
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Figure 2.1: Boundary condition employed in stress analysis calculations.
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2.3 Simulation setup

Conjugate heat transfer (CHT) simulations were preformed with Code_Saturne
version 5.0 [9]. The coupling between solid and fluid domains was accounted
for internally. A series of 22 large eddy simulations (LES) were performed, and
ensemble averaged in order to generate a benchmark from which to validate the
RANS results. For the LES calculations, the inflow first- and second-order statistics
were generated from a pre-cursor RANS (EBRSM model [23]), and fluctuations
with these statistics were generated at the inlet via the Synthetic Eddy Method
[17]. Care was taken to ensure the fluctuations reached a developed state prior to
the upstream bend. For the LES calculations, the fluid domain was meshed with
approximately 45M cells, while an additional ∼ 5M cells were used to discretise
the solid domain. In all cases, the non-dimensional cell sizes were sufficient to
resolve the thermal boundary layer (∆T+ ≈ 1, y+ < 1 at the wall).

Buoyancy is accounted for via a Boussinesq approximation in both the gravity
source term, and the turbulence production (see Viollet [33]).

For the RANS calculations, closure of the RANS was achieved through the use
of the EBRSM model. In this case, meshes comprising approximately 4M and 0.5M
cells were employed for the fluid and solid domains, respectively. Mesh sensitivity
tests were carried out with 1M and 0.1M cells for the fluid and solid domains,
respectively (see Section 2.4 for further details).

In addition to the CHT simulations, stress analysis of the wall has been per-
formed with FEniCS (a project for Finite Element open-source software) [2]. The
displacement and stress of the pipe-wall at four time instants has been calculated.
The temperature distribution of the bend at each time instant was prescribed in
FEniCS. The stress calculation employed ∼ 0.5M tetrahedron cells for the solid
domain. Linear thermo-elastic formulations were implemented within the FEniCS
solver. Based on the virtual work principle, the continuum mechanics variational
formulation is to find d ∈ D such that∫

Ω
〈σ(d, T), ε(δd)〉 dΩ =

∫
Ω

δd · b dΩ +
∫

Γ
δd · t̂r dΓ ∀δd ∈ D (2.1)

where d is the displacement vector, T is the temperature distribution, D denotes
the displacement admissible function space, Ω is the physical domain, Γ is the
boundary of the domain, b is the applied mechanical volume load and t̂r is the
prescribed tractions on the Neumann boundary. The stress tensor σ is calculated
as follows:

σ(d, T) = 〈C, (ε− εt)〉 = λtr(ε)I + 2µε− εt (2.2)

where C is the constitutive tensor and I is the identity matrix. λ and µ are Laḿe
coefficients. ε is the strain tensor that calculated as

ε =
1
2
(5d + (5d)T) in Ω (2.3)

c© STFC & IBM Corporation



and the εt is the thermal strain tensor that calculated as

εt = α(3λ + 2µ)(T − T0)I in Ω (2.4)

In the present case, there isn’t any applied mechanical volume load or pre-
scribed tractions. The stress-free reference temperature T0 is set to be constant
throughout the pipe. With the equations above, the thermally induced displace-
ment and stress could be obtained. Point-based displacement constraints at both
inlet and outlet of the pipe-wall have been implemented as shown in Fig. 2.1. These
two constraints prevent the left and right vertical sections from diverging from one
another, but allow the solid structure to expand in response to the temperature
distribution.

2.4 Model Verification & Validation

2.4.1 CFD+CHT model

Mesh sensitivity

For RANS, two mesh densities have been considered. Figure 2.2 shows the coarse
(1M fluid cells) and fine (4M fluid cells) give broadly similar results. A qualitative
comparison is made in Figure 2.3. It can be seen that the agreement is reasonable,
and the fine solution can be considered mesh independent (to within a tolerance of
a few per cent). All subsequent calculations presented herein are performed with
the fine mesh.

As an aside, we note challenges can arise when using probes or contour plots
to assess grid convergence, particularly if probes happen to be located in regions
where the temperature gradient is high. To alleviate this, we have made some pre-
liminary developments in image based feature detection, which can automatically
identify features of interest in a simulation, and assess their similarity. By assess-
ing mesh convergence on integrated quantities, such as the area of a feature, or
its centroid, similarity between features can be determined with less sensitivity to
user parameters such as probe locations. In the present work, image processing
has enabled the automated detection of the region of stratified flow, as seen in Fig-
ure 2.4. This prototype work could be further developed to detect features within a
cognitive computing framework, thereby automating and removing bias from grid
sensitivity tests. In the present study, the centroids of the red areas in Figure 2.4
matched to within a few per cent.

c© STFC & IBM Corporation



Figure 2.2: Temperature contours in the symmetry plane for coarse and fine RANS meshes at time
Ut/D = 40. F = 0.67
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Figure 2.3: Profiles in the symmetry plane. Temperature (top) and streamwise velocity (bottom); Fine mesh (black) is compared against coarse mesh
(red) at Ut/D = 30.
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Figure 2.4: Image based automated feature recognition, showing stratified region for coarse (left)
and fine (right) meshes at time Ut/D = 40.

Validation

Figure 2.5 shows profiles in the symmetry plane of the stably stratified region
for both RANS (EBRSM) and an ensemble of LES runs. It can be seen that the
temperature is predicted reasonably well by the EBRSM model, with the exception
of the upper region of the wall, where the RANS tends to predict higher in-wall
temperatures (presumably due to higher levels of turbulent mixing in the near-wall
region).

For the velocity profiles, the agreement between RANS and LES is less satisfac-
tory, although still broadly acceptable. The region of separated flow at the lower
wall is well captured.

Comparison with higher-order statistics has not been possible, due to the large
number of LES runs that would be needed to generate a reliable ensemble.

c© STFC & IBM Corporation



Figure 2.5: Profiles in the symmetry plane. Temperature (top) and streamwise velocity (bottom); EBRSM model (black) is compared against an
ensemble of 22 LES runs (red) at Ut/D = 30.
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2.4.2 Stress analysis model

The displacement and stress analysis of the pipe-wall is ongoing work. This section
will present some preliminary results that have been obtained so far.

Displacement at different time instants

Four time instants have been considered in the calculation, which are t̃ = Ut/D =

15, 30, 45 and 60.
Fig. 2.6 and Fig. 2.7 shows the non-dimensional displacement magnitude |d|/D

contour and corresponding line plot at the non-dimensional z-axis coordinate z/D =

0. The two lines in the line plots represent the inner and outer intersections be-
tween the pipe-wall and the z/D = 0 plane. It can be seen that the maximum
thermal-induced displacement of the solid wall increases with increasing wall tem-
perature. The maximum displacement is located on the left elbow at all times. At
t̃ = 60, the maximum displacement magnitude |d|/D = −0.072 at x/D = −0.12.

Displacement Vector

Fig. 2.8 shows the contour plot of non-dimensional displacement magnitude |d|/D
and all three components of non-dimensional displacement at t̃ = 60. Correspond-
ing temperature distribution of the pipe-wall at t̃ = 60 has also shown in Fig. 2.8
(e) for reference.

As can be seen from Fig. 2.8 (b), the left vertical section is displaced in the
negative direction, while the right pipe has a positive displacement. A similar
situation occurs for the y-axis and z-axis displacements; the pipe-wall is expanding
in all three directions under the present working conditions.

Stress Tensor

Having the displacement and temperature distribution, the stress tensor of the
solid wall could be obtained. The principle stress tensor components, i.e. σxx,
σyy and σzz, at t̃ = 60 are shown in Fig. 2.9. Based on these contour plots, σxx

plays a dominant role among the different components of the stress tensor. There
is a high σxx stress region at the bottom of the horizontal part of the pipe-wall.
This is dominated by thermal expansion. The thermal stratification plays a fairly
insignificant role, which is somewhat surprisingly as is different from the intuitive
judgement.

The von Mises stress criteria for yielding

For ductile materials, the stress is not proportional to strain when yielding occurs.
When a certain level of stress is reached the material will suffer from irreversible

c© STFC & IBM Corporation



Figure 2.6: Non-dimensional displacement contour and corresponding line plots for each time in-
stants.
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Figure 2.7: (Cont.) Non-dimensional displacement contour and corresponding line plots for each
time instants.
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Figure 2.8: Displacement magnitude, vector components and temperature distribution contours at
t̃ = 60.
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Figure 2.9: Principle stress tensor components contour at t̃ = 60.

deformation due to the permanent molecular rearrangement of the microstructure.
The von Mises yield criterion is a criteria that is found to be suitable for most
ductile materials when assessing the likelihood of structural damage. The von
Mises stress criterion is defined as:√

1
2
[(σxx − σyy)2 + (σyy − σzz)2 + (σzz − σxx)2] + 3(σ2

xy + σ2
yz + σ2

zx) < σY (2.5)

where σY is the yield stress of the material. According to this criterion, the yielding
will not occur as long as the von Mises stress (LHS of Eq. 2.5) of the solid wall is
smaller than the yield stress of steel.

Fig. 2.10 shows the von Mises stress distribution. It shows a high stress region
at the bottom of the horizontal part of the pipe-wall (primarily contributed by σxx).
The region of von Mises stress larger than 2× 108 Pa extends from x/D = 1.36 to
x/D = 8.57.

The von Mises stress distribution along the x-axis direction at z/D = 0 plane
is shown in Fig. 2.11. It shows that the von Mises stress keeps rising in the x-axis
direction from the inlet boundary until reaches to the peak stress at x/D = 5.28.
The von Mises stress starts to drop in the x-direction from that point to the outlet
boundary.

Fig. 2.12 shows the radial von Mises stress distribution at x/D = 5.28 plane,
i.e. the maximum von Mises stress location. It is clear that the von Mises stress is

c© STFC & IBM Corporation



Figure 2.10: von Mises stress contour at t̃ = 60.

Figure 2.11: von Mises stress distribution at z/D = 0 plane at t̃ = 60.

c© STFC & IBM Corporation



Figure 2.12: Radial von Mises stress distribution at x/D = 5.279 plane at t̃ = 60.

symmetrically distributed about the z/D = 0 plane and the maximum von Mises
stress is located at the z/D = 0 and at the arc length of 0.5.

The maximum von Mises stress of the present case is 4.09× 108Pa. With a 30%
margin of safety, the yield stress of the material would be around 5.32× 108Pa, as
to prevent yielding and failure of the solid wall.

Table 2.1 summarizes the yield stress of some common types of steel. It can
be seen that the stress caused by the thermal transient at the present working
condition beyond the yield criteria of ASTM A36, while approaching the yield
criteria of API 5L X65 and high strength alloy ASTM A514. According to the
fatigue theory, the fatigue life of the pipe-wall and the magnitude of stress are
negatively correlated.

Table 2.1: Yield stress of comment types of steel.[1, 15]

Steel Type Yield stress [Pa]
Steel, ASTM A36 2.50× 108

Steel, API 5L X65 4.48× 108

Steel, high strength alloy ASTM A514 6.90× 108

Steel, pre-stressing strands 1.65× 109

c© STFC & IBM Corporation



Chapter 3

Uncertainty quantification - theory

There are two common categories of discrepancies identified both in physical and
numerical experiments: aleatoric and epistemic. The first type refers to uncertainty
due to the physical variability of a system (irreducible), while the latter arises from
a lack of knowledge (reducible). UQ in computer experiments comprises rigorous
analysis of the epistemic errors. These can further be classified as uncertainties re-
lated to model inaccuracy and parametric uncertainties caused by imprecise values
of the input coefficients.

Of particular interest in modelling of real-world problems is parametric UQ,
which is identified as a crucial component of simulation-based reliability analy-
sis. To increase confidence and the utility of modelling predictions, we need to
account for discrepancies which stem naturally from our limitations in measuring
and manufacturing.

Conventional non-intrusive approaches for UQ are based around Monte Carlo
(MC) analysis which requires a large number of simulations for different sets of
input parameters. An alternative strategy uses a smaller number of realisations to
build a surrogate model which approximates the response of the original simula-
tor. Common surrogate-based methods are polynomial chaos (PC) and Gaussian
process emulation [31].

3.1 Generalised polynomial chaos

We are considering the Foude number Fr(ξ) to be a random variable, where ξ has
a certain probability measure µ on Ω ⊆ R. We want to measure the effect on the
temperature distribution along the pipe. More detailed description of the problem
is provided in Sec. 2. In this report, the real-valued random variable is represented
by Y(ξ).

Given the uncertain input, the CFD prediction of quantity of interest (QoI) can
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be represented as a PC expansion as follows:

Y(ξ) =
∞

∑
k=0

ykψk(ξ), (3.1)

where the basis functions ψk are orthogonal with respect to measure µ and {yk}∞
k=0

is a set of PC coefficients. The study can be extended to the Rn-valued random
variable, Y = {Y1, . . . , Yn}, where

Y(ξ) =
∞

∑
k=0

ykψk(ξ), (3.2)

with yk = {y1,k, . . . , yn,k} ∈ Rn for each k ∈ N0; dependence of QoI on multiple
sources of uncertainty ξ = {ξ1, . . . , ξα}, can also be considered. In practice, the
series expansion is truncated after P + 1 = (α + p)!/α!p! terms, where α defines
the stochastic dimensionality and p is the order of the corresponding multivariate
polynomials, Ψk(ξ). Such representation (including the truncated series) allows for
straightforward stochastic post-processing; the measurement of the expected value
of Y is simply its zeroth PC coefficient, E [Y] 〈Ψ0Y〉 = ∑P

k=0 yk 〈Ψ0Ψk〉 = y0, while
the variance is defined as

V [Y] = E
[
|Y−E [Y] |2

]
=

P

∑
k=0

y2
k
〈
Ψ2

k
〉

. (3.3)

As the total number of PC coefficients grows combinatorially (curse of dimensional-
ity) as a function of the number of random inputs and polynomial order, p, practi-
cal applications of the expansion are limited to studies with low stochastic dimen-
sion [31].

Wiener [36] introduced PC expansions, where Hermite polynomials were used
to model stochastic processes with Gaussian random variables. The extension to
generalised PC developed by Xiu [39] allows for non-Gaussian random processes.
In the generalised polynomial chaos approach, different orthogonal polynomials in
the Askey scheme are incorporated for different distribution types. In this report,
the abbreviation PC refers to a generalised formalism of Wiener’s approach.

Considering its practical implementation, there are two main strategies for de-
termining the expansion coefficients, yk, in Equation (3.1). The PC expression
of random variables can be directly introduced to the model equations, and a
Galerkin projection is then applied to obtain a stochastic solver [38, 31]; hence, the
approach is referred to as the intrusive spectral projection (ISP). Xiu [38] explains that
although the Galerkin formalism offers the most accurate solutions, it is not suit-
able for highly complex models. It is also not recommended when the UQ analysis
is performed on legacy codes, which are often not amenable to changes. The oppo-
site situation is for non-intrusive methods which rely on individual realisations of
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Y to determine the response of the system to random inputs. In this approach, the
deterministic solution does not need to be modified and can be evaluated at any
desired point of the probability space (Ω,F , µ). Here Ω defines a sample space
which contains all possible outcomes, while F is a σ-algebra (a set of events), and
µ is the probability measure which defines event’s likelihood. If the normalisation
constant, γk = 〈Ψ2

k〉, is known, in non-intrusive spectral projection (NISP), the PC
coefficients

yk =
〈YΨk〉〈

Ψ2
k

〉 =
1
γk

∫
Y(ξ)Ψk(ξ)dµ(ξ), k = 0, . . . , P (3.4)

can be obtained by approximating the integral with quadrature rules. The realisa-
tions of Y are used to determine a surrogate model Ỹ for which

Ỹ =
P

∑
k=0

ỹkΨk ≈ Y, (3.5)

where ỹk = 1
γk

∑Q
j=1 y

(
ξ(j)
)

Ψk

(
ξ(j)
)

w(j) and
(

ξ(j), w(j)
)

are the prescribed nodes
and their corresponding weights. Sullivan [31] states that if the dimensionality of
vector ξ is small and Y(ξ) is relatively smooth, the Gaussian quadrature approxi-
mation (nodes at the roots of µ-orthogonal polynomials) is an optimal choice. This
quadrature yields an exact result for polynomials of degree at most 2Q− 1, where
Q is the number of quadrature nodes. For multi-dimensional stochastic domains,
sparse quadrature rules may be used to partially alleviate the curse of dimension-
ality.

Another non-intrusive approach to estimate the expansion coefficients, yk is re-
gression, which uses the least-squares solution to a linear system [26]. For the
regression, the expansion coefficients are found by minimising the sum of the
squared difference between observed data Y = [Y1, . . . , YM], where Ym = Y

(
ξ(m)

)
for m = 1, . . . , M, and the truncated PC expansion, Ỹ = ∑P

k=0 ỹkΨk with ỹk =

(ỹ0, . . . , ỹk)

ỹk = arg min
y∈RP+1

[
M

∑
m=1

(
Y
(

ξ(m)
)
− Ỹ

(
ξ(m)

))2
]

. (3.6)

The least-squares solution is

ỹk =
(

AT A
)−1

ATY, (3.7)

where A is a data matrix containing P+ 1 multivariate polynomial terms, evaluated
at the M design points

Amk = Ψk

(
ξ(m)

)
, m = 1, . . . , M, k = 1, . . . , P + 1. (3.8)
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This approach is also known as point-collocation. To have a well-posed problem,
the design size, M, should be greater than or equal to the number of expansion
terms P + 1.

In this work, the NISP is performed with the newly developed application
QUTE (Quantification of Uncertainty Toolkit for Engineering), described in Ap-
pendix A. In addition, the results obtained with quadrature rules are compared
with classical Monte Carlo and least-squares approximation. More information
about other UQ methods is given in Appendix B.
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Chapter 4

Stochastic heat transfer modelling

In this section, the methodology used for stochastic modelling of thermal stratifi-
cation is discussed.

4.1 UQ procedure

We consider a one-dimensional stochastic study. The value of dimensionless Froude
number has been assigned a uniform probability distribution, h(ξ) ∼ U (Frmin, Frmax),
where Frmin = 0.402 and Frmax = 0.938 resulting in different mixing properties and
formation of stratification layer.

The sample points in probability space, for which the CFD model is evaluated,
are specified through (p + 1)-order Gaussian quadrature selected for the given
distribution. Gaussian-type quadrature rules are standard choice for polynomial
chaos [31] as they account for the probability weight in the integral in Eq. 3.4.

Having determined nodes, Fr1, . . . , Frp+1, and corresponding weights, we per-
form the RANS simulations and use the temperature evaluations to describe the
stochastic response to the uncertain parameter. Polynomials of order p are com-
puted using a three-term recurrence relation [10]. We then use the basis, quadra-
ture nodes, weights, and model samples to create the surrogate model, ỸT.

The surrogate model, ỸT, is used to construct a response probability density
function (PDF). The cost of the procedure is very low in comparison with evaluat-
ing the PDF with the original model, YT, which requires a full CFD simulation.

In general, there is no special rule for selecting the values of the maximum PC
expansion order – the choice is also problem-dependent. Therefore, the usual ap-
proach is to start with a small value and, by increasing the order of the expansion,
the convergence of stochastic moments can be monitored. This procedure can be
repeated until the desired accuracy is achieved.
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4.2 Convergence of UQ

Having the polynomial chaos expansion, it is necessary to evaluate the accuracy
of the surrogate model. In the present work, the convergence analysis of resulting
statistical moments, mean and standard deviation, is performed. As the real values
are unknown, the error of approximation is estimated using results from consecu-
tive polynomial resolutions. Therefore, the convergence error of expected value E
obtained with p-th polynomial order is defined as

Error =
|Ep − Ep−1|
|Ep−1|

, (4.1)

where |.| denotes L2 norm.
If the regression approach is used for estimating PC coefficients, a suitable tech-

nique for error analysis could be the leave-one-out method [25], where a surrogate
is constructed using all samples except one, while the remaining sample is used
for assessing the model accuracy.
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Chapter 5

Results of UQ analysis

This section discusses the results of applying generalised polynomial chaos ap-
proach to RANS model of thermal dynamics of hot fluid flow in u-shaped pipe.
The Gaussian quadrature approximation was used for calculating polynomial co-
efficients. The comparison of the UQ method with the Monte Carlo approach is
presented.

5.1 Numerical results

We aim to estimate the temperature distribution in a pipe as a function of the
Froude number, to gain better understanding of stratified flow development. We
measure the wall temperature at rings shown in Fig. 5.1. For the UQ analysis,
we apply the one-dimensional PC expansion (α = 1) with increasing polyno-
mial order, p. The surrogate is built for the second ring at non-dimensionalised
t̃ ≡ Ut/D = 40; at this time a stable stratification occurs as shown in Fig. 5.2
The convergence of the stochastic moments - mean, E, and standard deviation,
SD, are shown in Fig. 5.3a- 5.3b and Fig. 5.3c- 5.3d, respectively. As this is a
one-dimensional stochastic problem, using a polynomial of order p translates to
performing p + 1 calculations with quadrature nodes as input values. The small
change in accuracy suggests that polynomial order as small as p = 10 can suffice
to obtain a surrogate model and no more calculations are necessary. This can be
further demonstrated by comparison with higher order expansion. Figures 5.4a
and 5.4b show the resulting mean temperature obtained with the approximation
functions, for p = 10 and p = 17, over the entire random space. The surrogates
were built with simulator outputs for the set of quadrature nodes (marked as red
dots). The remaining points (blue markers) are additional simulation results for
different Fr numbers used here for validation. We can see that the surrogates with
p = 10 and p = 16 give a comparable approximation of modelled data and can
lead to accurate statistics with respect to the provided PDF.
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Ring 1 Ring 2 Ring 3 Ring 4 Ring 5

Flow
 direction

Figure 5.1: Sketch of ring locations. Rings are located at x/D ≈ 1.5, 3, 4.5, 6 and 7.5 for rings 1 to 5
respectively, and have radius 0.525D (i.e. in the middle of the wall).

The resulting mean temperature distribution and standard deviation are plot-
ted in Fig. 5.5a. Such representation of results suggests that each value of tem-
perature within uncertainty range is equally possible to occur. However, a detailed
picture in Fig. 5.5b provided by PDFs of the simulation outputs gives an interesting
insight – the distribution of QoIs is bimodal in nature, i.e. extreme values of tem-
perature are more likely to occur. This observation highlights misinterpretation of
the system response in finite order statistics such as the mean and standard devia-
tion, particularly for the under-sampled problem. The result stresses the need for
performing UQ analysis. Traditional engineering approach would be to make de-
cisions based on the mean distribution. However, in case of bimodal nature of the
outputs, that would be wrong, as the expected values are not likely to be observed.

Gaussian quadrature nodes are not nested – when the polynomial order is
increased to p, the nodes from the lower resolution p − 1 cannot be re-used. If
evaluations of the simulator are computationally expensive, this can be a major
concern. If we do not wish to have to discard past solutions, Clenshaw–Curtis
quadrature rules might be preferable. In many circumstances, they have a com-
parable accuracy to Gaussian quadrature [32]. Another possibility is to apply the
regression approach for estimation of PC coefficients. Using the one-dimensional
surrogate model built with p = 10 as the true estimate, we can analyse the conver-
gence of least-squares solution to a linear system with the design size M > p. In
Ref. [16], it is suggested to use a twice over-determined system, M = 2× (p + 1),
but we also experiment with M = p + 1 samples. The results for increasing poly-
nomial order are plotted in Fig. 5.6 and Fig. 5.7 for the uniquely-determined and
over-determined systems, respectively. The relative errors are calculated based on
the true mean, Epc and standard deviation, SDpc, obtained in previous study with
Gaussian quadratures. We analyse how quickly we can converge to the solution at
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Figure 5.2: Temperature distribution in a u-shaped bend at non-dimensionalised time t̃ = 40 for
Fr ≈ 0.621.

a given point (temperature value in the middle of the profile shown in Fig. 5.5a)
using Latin hypercube sampling. We can also explore nested sampling, such as
Hammersley [37]. For future work, to avoid bias, the regression study should be
confirmed by using the evaluations of the CFD model to compute the surrogate.

To estimate the number of calculations necessary for obtaining the statistics
with classical Monte Carlo approach, we again use the surrogate model built with
PC and p = 10. We randomly draw samples from the uniform distribution of Fr
numbers and calculate the resulting stochastic moments. Figures 5.8a- 5.8d show
how slowly the method converges to the true value of mean, Epc, and standard
deviation, SDpc, which were previously computed with only 11 simulations for PC
expansion. However, the convergence of MC can in some problems be improved
by applying quasi-random sampling techniques.

5.1.1 Multi-element polynomial chaos

Having performed a number of calculations, we can estimate the stochastic or-
thogonal approximations of temperature at any point in time and space. Fig-
ures 5.9a, 5.9c and 5.9e show temperature PDFs at rings closer to the right bend of
the pipe. Corresponding surrogates are shown in Fig. 5.9b, 5.9d, 5.9f. The results
are obtained with high polynomial orders, p = 16 or p = 17. However, surro-
gates built with smaller number of nodes allow to accurately describe stochastic
moments. Expected value can converge for p = 5. More polynomial terms are re-
tained due to complexity of the functions that describe input-output relationship.
For the last ring, even the model with p = 17 does not return all of the simula-
tion points (see Fig. 5.9f). But using polynomials of higher degree will lead to a
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Figure 5.3: Error in expected value and standard deviation of temperature. Statistics were obtained
from surrogate models built with increasing polynomial order.
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(a) p = 10.
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(b) p = 16.

Figure 5.4: Mean temperature as a function of Froude number obtained from two surrogate models
– with polynomial order p = 10 and p = 16.
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Figure 5.5: Statistics derived from the PC-based surrogate with p = 10.

behaviour similar to Runge phenomenon – oscillations at the edges of an interval.
Some artefacts can already be observed in Fig. 5.9d.

It is well known that although global PC can achieve exponential convergence
for smooth problems, it may converge slowly or even fail in case of discontinu-
ities or steep changes in random space [38]. This problem is observed in approx-
imating the response of mean temperature for the first ring at t̃ to different Fr
numbers. To circumvent this limitation, it is advised to use multi-element PC
with piecewise low-degree polynomial basis [34, 11] or expansions with locally
supported wavelets [20]. Figures 5.10a and 5.10b showcase the improvement in
surrogate modelling when using piece-wise smooth polynomials. By adaptively
dividing the random space into sections and constructing partial model response
functions, we can obtain a better approximation (see Fig. 5.10b) as with global
basis. The individual polynomial order of each surrogate was kept low, p = 3.
Therefore, a better model approximation was achieved at comparable compu-
tational cost as for the global basis with p = 17. The mean of relative error,
δ = 1

N ∑N
n=1 |Y(Frn)− Ỹ(Frn)|/|Y(Frn)| for the partial surrogates was δ = 0.0011,

while the error of the global approximant was about 5 times higher. Note, it is
not required for the surrogate to go through all the simulation points (it’s not an
interpolation!) to accurately reconstruct the stochastic moments.
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Figure 5.6: Convergence study for one-dimensional regression-based PC with M = p + 1 and Latin
hypercube sampling.
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(b) Convergence of standard deviation.

Figure 5.7: Convergence study for one-dimensional regression-based PC with M = 2× (p + 1) and
Latin hypercube sampling.

c© STFC & IBM Corporation



0 100 200 300 400 500
Number of samples, n

0.02

0.04

0.06

0.08

0.10

|E
n
−
E

p
c
|/
|E

p
c
|

(a) Relative error of expected value.

0 100 200 300 400 500
Number of samples, n

10-1

2 × 10-2

3 × 10-2

4 × 10-2

6 × 10-2

|E
n
−
E

p
c
|/
|E

p
c
|

(b) Semi-log plot.

0 100 200 300 400 500
Number of samples, n

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

|S
D
n
−
S
D

p
c
|/
|S
D

p
c
|

(c) Convergence of standard deviation.

0 100 200 300 400 500
Number of samples, n

10-2

|S
D
n
−
S
D

p
c
|/
|S
D

p
c
|

(d) Semi-log plot.

Figure 5.8: Convergence study of classical Monte Carlo for point temperature value.
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(b) Surrogate with p = 17.

0.0 0.2 0.4 0.6 0.8 1.0
Normalised distance

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

N
or

m
al

is
ed

 te
m

pe
ra

tu
re

Mean profile
E+ /−SD

0.0

0.2

0.4

0.6

0.8

1.0

(c) PDF of 4th ring.
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(d) Surrogate with p = 17.
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(e) PDF of 5th ring.
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(f) Surrogate with p = 16.

Figure 5.9: Surrogates of temperature and the resulting PDFs at different locations in the pipe.
Note, red dots are the simulator outputs for which the surrogates are generated. Blue markers are
simulation results used to validate the reduced models.
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(a) Surrogate for 1st ring with p = 17.
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(b) Surrogate built with piece-wise smooth polynomials.

Figure 5.10: Comparison between a surrogate constructed with a global basis and a set of locally
supported polynomials.
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Chapter 6

Conclusions and recommendations

An ensemble of LES calculations have been conducted to provide a useful bench-
mark case to test RANS models. Additional RANS calculations, using the EBRSM
closure, have shown reasonable agreement with the LES for this challenging case
(involving stratification, transient flow, and conjugate heat transfer). Using this
RANS model, we have applied a non-intrusive polynomial-based approach to
model uncertainty associated with input Froude number in conjugate heat transfer
modelling. The results gave an important insight – the resulting distribution of
temperature is bimodal in nature. The extreme values of the variable are more
likely to occur than the average profile. This observation highlights misinterpreta-
tion of the system response in finite order statistics such as the mean and standard
deviation. In addition, the study of response functions shows that in this case
piece-wise polynomials are better suited for constructing accurate surrogates (this
is likely to be true for other stratified flow simulations).

We also showed that the knowledge extracted from the modelled system can
be maximised by using surrogate-based UQ analysis, allowing the prediction of
the influence of varying conditions on quantities of interest. This can be done
without changing existing simulation codes, and at much smaller cost than using
traditional Monte Carlo – at least an order of magnitude less calculations needed.
The method is a very powerful extension of simulation which provides foundation
for obtaining composite bars in CFD [18]. To this end, a thorough analysis of the
numerical error (including a quantitative assessment of the convergence order)
would help estimate the additional source of error due to numerics, which should
be factored in the final UQ.

The surrogate model was built using Gaussian quadrature rules for estimat-
ing PC coefficients. Although some comparison with the regression technique and
Monte Carlo was provided, direct study of nested versus Gaussian quadrature
rules, as well as quadrature approximation versus least-squares approach should
be conducted in future works. In addition, it is recommended to use locally-
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supported piecewise polynomial spaces to further reduce the computational cost
of the UQ study.

All the UQ analysis was conducted using the newly developed QUTE software
package (see Appendix A).

In addition to the UQ work, preliminary work on stress analysis has been con-
ducted. A new thermoelastic stress analysis solver has been developed and vali-
dated within the FEniCS finite element framework. Preliminary findings suggest
the stresses due to the thermal transient would be approaching the yield criteria of
many common steels. Additional analysis of thermal cycling, and the impact this
has on thermal fatigue is ongoing work.
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Appendix A

Quantification of Uncertainty Toolkit
for Engineering

Quantification of Uncertainty Toolkit for Engineering (QUTE) offers a framework
where users can drive several complex uncertainty quantifications studies without
having to master the complexities around the management of the multiple simula-
tions and the underlying HPC resources, including computing environments and
job scheduling.

The framework uses an as-a-service (aaS) design and provides a catalogue of
UQ models and simulation applications/flows to chose from. The only require-
ment from the user is to provide a study (folder) compatible with one of flows in
the catalogue, and annotate in that same case the quantity he/she wishes to do
assess. The tools take care of the rest of the process, including:

• Replication of the study according to the UQ model’s needs, so that each
replica uses the right set of inputs compatible with the statistics used by the
model;

• Selection of cluster or HPC facility where the simulations will take place,
based on the dependencies and availability of the application used for the
simulation;

• Migration of data from the user local computer to the designated cluster or
HPC facility using the user defined assess credentials;

• Set-up of the environment, launching and monitoring for the simulation jobs;

• Retrieval of the outputs referring to the quantity affected by uncertainty anal-
ysis and presentation of the results in plot format.

This framework is under active development and full containerisation of the
framework as well as of the applications invoked from back-end is underway. Such

42



infrastructure will enhance usability and provide the flexibility of cloud technolo-
gies, including automatic adjustment of job sizes and transparent partitions of the
flow by multiple resources.
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Appendix B

Surrogate models for UQ: A short
overview

In this work, the polynomial chaos approach has been applied to quantify uncer-
tainty in simulation of thermally stratified flow. As the problem under consider-
ation had only one uncertain parameter, the choice of the method was straight-
forward. In polynomial chaos, by the correct choice of Q nodes and weights, the
quadrature formula can be made accurate for all polynomials of degree at most
2Q− 1, and no other formula on Q nodes has higher order of accuracy. Therefore,
in univariate setting, if a response function behaves like a polynomial, the nodes
based on Gauss-type quadrature rules will minimise the number of necessary func-
tion evaluation. There are certain situations in which the spectral convergence is
lost, e.g. in case of discontinuous responses (Gibbs’ phenomenon). In addition, the
Gauss quadratures don’t perform well for high dimensions and in presence of sin-
gularities, e.g. 1/x. To tackle these situations, numerous extensions/alternatives
have been proposed. In the following section, we provide an overview of popu-
lar approaches to UQ and further discuss the reasoning behind the choice of the
surrogate method.

Conventional approaches for tasks such as probabilistic modelling for risk anal-
ysis, sensitivity study and design optimisation are based around Monte Carlo
sampling. Although it is a powerful approach, it is deemed infeasible for com-
putationally intensive systems due to its slow convergence rate which depends
on the inverse square root of the number of simulations performed. Some tech-
niques have been introduced to alleviate the cost of the brute-force approach by
applying variance reduction methods, such as stratified sampling using Latin Hy-
percube Sampling [24], quasi-Monte Carlo with deterministic inputs drawn from
a sequence with low discrepancy [6], and sampling at different levels of numer-
ical accuracy in multilevel Monte Carlo [13]. However, their applicability is still
limited to high-dimensional problems and non-smooth integrands, for which the
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Monte Carlo-based methods are still preferred solutions.
As mentioned in the report, an alternative to statistical methods for UQ are

spectral expansion techniques. At their core, these are orthogonal decomposition
methods, e.g. polynomial chaos (PC) or Karhunen–Loève, in which a random vari-
able over a probability space, a quantity of interest (QoI), is expanded with respect
to appropriate basis functions, e.g. polynomials, wavelets. Due to the nature of the
analysis, we focus our review on non-intrusive strategies which compute/estimate
spectral coefficients via a set of deterministic model solutions.

Another widely used UQ method is Gaussian process emulation (GP) which
models the quantity of interest as a Gaussian random field. Both - Gaussian pro-
cess regression and polynomial chaos expansion are often referred to as surrogate-
based methods as they aim to build an approximate model which emulates the
response of the original simulator [26]. In addition, combination of POD with
interpolation of its coefficients (PODi methods) can also serve as an alternative
surrogate modelling approach which is purely data-driven [22].

Polynomial chaos (or generalized Polynomial Chaos, gPC, for arbitrarily dis-
tributed random variable) originates in the engineering and applied mathematics
communities, and was shown to be well suited for Computational Fluid Dynam-
ics, see [40] and [19]. On the other hand, Gaussian process emulation is a sta-
tistical approach. However, it has also been recently applied to fluid modelling
(see, e.g. [29]). It is not a trivial task to compare the listed techniques as they
are based on different mathematical concepts. The particular modelling choices
in constructing surrogates will have an effect on the conclusions that are drawn.
One attempt at assessing Gaussian process emulator and polynomial chaos on a
basic level, without the consideration of more advanced variants of both methods,
has been made by Owen et al. [26]. Although the authors made an effort to de-
sign a fair comparison, it can be argued that the choice of samples used for the
analysis affected their assessment. Additional review has been proposed by Roy et
al. [28]. The article analyses the approximation accuracy of PC and GP emulation
for a model of water flow with two inputs. Moreover, Rajabi [27] looked at per-
formance of the surrogate models in ground water applications by testing them on
hypothetical problems corresponding to seawater intrusion in coastal aquifers. All
the studies found that neither surrogate method clearly outperforms the other, but
advantages can be gained in some cases. As an example, the work of Roy et al. [28]
showed that PC was more accurate in estimating the Sobol’ indices that could be
directly derived from the expansion coefficients. On the other hand, GP emulators
seemed to be better at estimating the multimodal probability density functions.
The results of the latter review claimed that GP outperforms PC in the estimation
of the response function, but in most cases assessed PC provides better accuracy
in the estimation of stochastic moment and PDFs.

Numerous advanced formulations of PC and GP have been presented in the

c© STFC & IBM Corporation



literature. Rajabi [27] provides a review for some of these formulations and their
key characteristics (in [27], see Table 3 and 4). These advanced formulations have
allowed both methods to improve their efficiency, accuracy, extended them to deal
with arbitrary discrete probability distributions, sparse measurements or perform
better with high dimensional problems.

One of the advantages of polynomial chaos mentioned in the literature, is low-
cost of computing the expansion coefficients either through quadratures or regres-
sion [26]. In contrast, fitting Gaussian process emulator can be expensive, particu-
larly for large design sizes.

Gaussian process emulators are considered to more accurately model more
complex simulator behaviours by changing the mean and covariance function.
However, in case of PC, the improved convergence for non-smooth, irregular re-
sponse functions can be addressed by using piece-wise smooth polynomials [11] or
combining hierarchical sparse grid with locally supported bases such as wavelets [14].

One of the strong benefits of Gaussian processes is the ability to provide un-
certainty information due to the distributional assumptions. Although not di-
rectly, such information can also be obtained from polynomial representation by
analysing the behaviour of expansion terms. Arnst et al. [3] treats the PC coef-
ficients as unknown random variables whose probability density function is the
Bayesian posterior. It is claimed that such approach allows to quantify the impact
of missing experimental information on the accuracy of expansion and predictions.

Both classical PC method and GP struggle in high-dimensional setting. In
polynomial chaos, to analyse problems with multiple uncertain parameters, ten-
sor products are used which become expensive for high input dimensions, e.g.,
higher than five. In such case, it is recommended to use sparse grid quadrature to
elevate the computational burden [38]. In addition, the compressed sensing the-
ory can be employed to construct the sparse representation of polynomial chaos
expansion (see, e.g. [30] and [8]). Joint Gaussian emulations with dimensionality
reduction methods have also been introduced [21].

Performing UQ for transient problems is challenging. The convergence failures
can be overcome by using basis functions with finite support, or by decomposing
the probability space of the stochastic input and solving independent local prob-
lems [35]. Another approach, that has been proposed for intrusive PC, suggests
adapting the basis to a set of new random variables defined by the solution itself
at certain discrete time steps [12]. Gaussian process emulation was also extended
to simulations of time-evolving systems [5]

Although much effort has been devoted to application of PC and GP for uncer-
tainty quantification studies, it is not obvious how to use POD to build surrogates.
Proper orthogonal decomposition is extensively used to construct reduced order
models, i.e. find a basis for the projection of the Navier-Stokes equations, filter
noise and extract coherent features. The application of POD-based surrogates has
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recently been applied for aerodynamic shape optimization [7]. The main idea is to
perform singular value decomposition on simulation outputs related to different
parameters. By interpolating the POD coefficients, solutions for unseen values can
be predicted. It can be shown that POD eigenfunctions will resemble polynomial
basis orthogonal with respect to a given random variable. Therefore, such ap-
proach can be seen as purely data-driven polynomial chaos expansion. POD based
surrogate can be used to obtain the simulation output at a given design point or to
estimate stochastic moments by performing Monte Carlo modelling.

In this work, polynomial chaos approach was used including its multi-element
extension to improve the accuracy of resulting surrogates. For practical applica-
tions, some of the constraints of PC, such as moderate number of random inputs, or
presence of correlation between input processes, do not pose significant problem.
In case of low-dimensional parameter spaces, PC works very well, particularly for
steady state. In some articles, it is even argued that, if industrial relevance is con-
sidered, PC is the best alternative, which in combination with the adaptive Gauss
quadrature is a state of the art method for solving stochastic Finite Elements [4].
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