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We extend the Vanderbilt ultrasoft pseudopotential scheme by adding kinetic energy density terms, in order
to use meta-GGA exchange potentials, such as the Becke-Johnson or Tran-Blaha potentials, in the plane-wave–
pseudopotential implementation of density functional theory. Having implemented kinetic energy augmentation
and nonlinear core correction terms in the CASTEP density functional package, we evaluate the validity of our
approach by comparing the calculated electronic structure of isolated atoms and semiconductor crystals to all-
electron benchmark calculations. Based on our results, we provide recommendations for the practical use of the
Tran-Blaha exchange in plane-wave–pseudopotential codes.
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I. INTRODUCTION

Density functional theory (DFT) calculations have become
a standard tool in atomistic modeling, resulting from a good
balance between computational cost and accuracy. Due to the
approximations in practical applications, DFT is often labeled
less accurate than high level quantum chemistry methods. On
the other hand, DFT is generally regarded as a good model of
atomic interactions and often used to gain insight of structures
and dynamics on the microscopic level. Properties derived
from the the electronic ground state are also well described
by DFT, as demonstrated by the successful prediction of
vibrational properties [1] and nuclear magnetic resonance
(NMR) parameters from first principles [2]. Most commonly
used in practical applications, the Kohn-Sham (KS) equations
provide a way to map the all-electron problem to a set of
noninteracting one-electron Schrödinger equations [3], where
the kinetic energy is well defined albeit not exact for the many-
body interacting system. The difference can be formulated
in terms of exchange and correlation functionals, which are
approximated in practical calculations.

One of the most often used approaches, the generalized
gradient approximation (GGA), owes its success over the local
density approximation (LDA) to its dependence on the local
gradient of the electronic density in addition to the value of the
density, allowing more accurate description of variations in
the electron-electron interactions. However, missing descrip-
tions of self-interaction [4] and the derivative discontinuity
with respect to particle numbers [5] result in an inferior
description of the band structure by underestimating the band
gaps of solids compared to a higher level of theory, such as
GW , which approximates the self-energy using the single-
particle Green’s function (G) and the screened Coulomb inter-
action (W ) [6]. Some GGA parametrizations such as PBE are
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known to overestimate bond lengths while underestimating
bonding energy. Several approaches have been proposed to
improve these shortcomings. Hybrid functionals use exact ex-
change obtained from the single determinant exchange using
the Kohn-Sham orbitals, but in practice the amount of exact
exchange is fitted to reproduce a select group of properties,
and as a result, they lack generality. Meta-GGA (mGGA)
functionals, on the other hand, follow the GGA idea, but
including higher order derivatives of the electronic density or
the kinetic energy density (KED), thereby introducing more
nonlocal effects, in the fashion of a Taylor expansion. It has
been shown that SCAN [7], a mGGA functional improves
considerably the description of atomic interactions as well
as the electronic structure, if the generalized Kohn-Sham
scheme is used to determine the electronic ground state [8].
Separate developments related to mGGA, for example, the
Becke-Johnson potential (BJ) [9] and its modification pro-
posed by Tran and Blaha (TB) [10], aim to fix the problem
of underestimation of band gaps.

Implementing mGGA functionals is straightforward in
all-electron DFT codes, and many software packages al-
ready allow such calculations [11–13], but in the plane-
wave–pseudopotential framework additional considerations
are needed for KED terms. Sun et al. have described the
changes required in the projector augmented wave method
to enable self-consistent mGGA calculations [14]. Yao and
Kanai discussed implementation details of norm-conserving
pseudopotentials with the mGGA functionals [15], which are,
however, missing KED augmentation terms and nonlinear
core corrections.

The TB potential has been used in plane-wave–
pseudopotential codes in previous studies [16], albeit with
inconsistent pseudopotentials, generated with LDA or GGA
functionals [17,18]. Germaneau et al. found that the accuracy
of the resulting band gaps depends on the pseudopotentials,
and recommended GGA pseudopotentials [17].
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In this work we explore how the potential-only mGGA
methodology can be implemented in the plane-wave, ultrasoft
pseudopotential framework of DFT. The use of this class of
effective potentials is somewhat limited, due to the fact that
there is no corresponding functional defined, therefore neither
the total energy, nor structural or thermochemical informa-
tion, are available. However, there has been a considerable
interest in the technique, and our work aims to increase the
accuracy of plane-wave–pseudopotential calculations within
the potential-only framework. We describe a method to gen-
erate consistent pseudopotentials, and discuss how the all-
electron KED can be reconstructed and represented in a basis
of plane waves. We benchmarked our approach against the
all-electron implementation and we remark on the practi-
cal limitations of the Tran-Blaha (TB) potential when using
pseudopotentials.

II. IMPLEMENTATION

The TB potential [10] is defined as

vTB
x,σ (r) = cvBR

x,σ (r) + (3c − 2)
1

π

√
5

12

√
2tσ (r)

ρσ (r)
, (1)

where ρσ (r) is the electronic density, tσ (r) is the kinetic
energy density, vBR

x,σ (r) is the Becke-Roussel potential, and
c is a constant. The electronic density is obtained from the
Kohn-Sham eigenstates ψi,σ corresponding to spin state σ ,
and the occupation numbers fi,σ as

ρσ (r) =
Nσ∑
i

fi,σ |ψi,σ (r)|2. (2)

The Kohn-Sham kinetic energy density is

tσ (r) = 1

2

Nσ∑
i

fi∇ψ∗
i,σ (r)∇ψi,σ (r) (3)

or alternatively,

tσ (r) = 1

4
∇2ρσ (r) − 1

2

Nσ∑
i

fi Re[∇2ψ∗
i,σ (r)ψi,σ (r)]. (4)

The Becke-Roussel part [19] of the the TB potential is given
by the expression

vBR
x,σ (r) = − 1

bσ (r)

(
1 − e−xσ (r) − 1

2
xσ (r)e−xσ (r)

)
, (5)

where b is defined as

bσ (r) =
[

x3
σ (r)e−xσ (r)

8πρσ (r)

]1/3

. (6)

To obtain xσ , the nonlinear equation

xσ e
−2xσ

3

xσ − 2
= 2

3
π2/3 ρ5/3

σ

Qσ

(7)

need to be solved, with the definitions

Qσ = 1
6 (∇2ρσ − 2γ Dσ ) (8)

and

Dσ = tσ − 1

4

(∇ρσ )2

ρσ

, (9)

where we use γ = 0.8 [19]. With c = 1, we recover the orig-
inal Becke-Johnson expression for the exchange functional.
Tran and Blaha introduced a dependence of c on the electronic
density as

c = α + β

(
1

Vcell

∫
cell

dr
|∇ρ(r)|

ρ(r)

)1/2

, (10)

where they fitted the parameters α and β to reproduce the band
gaps of a wide range of solids.

We implemented the TB potential in the plane-wave DFT
program, CASTEP [20]. As the electronic density is represented
on a fine Fourier grid, the gradient and the Laplacian of the
electronic density are easily available. To compute the KED
of the all-electron wave function, we adapt the Vanderbilt
ultrasoft pseudopotential method [21,22].

Kinetic energy density augmentation

In order to accurately evaluate the mGGA exchange-
correlation potential, the KED of all electrons is required,
whereas in plane-wave codes only the valance electrons are
treated explicitly, with the region near the nucleus pseudized.
In the case of ultrasoft pseudopotentials, the valence electron
KED can be reconstructed from the smooth pseudowave
functions using projector and augmentation functions. We
discuss the necessary kinetic energy density augmentation in
terms of the projector augmented wave (PAW) approach [23],
noting that to generate ultrasoft pseudopotentials, the augmen-
tation functions are pseudized close to the nucleus.

The full-potential KS orbital, sometimes referred to as the
all-electron wave function [24], is reconstructed from the soft
wave function using PAW as

|ψn〉 = |ψ̃n〉 +
∑

i

(|φi〉 − |φ̃i〉)〈βi|ψ̃n〉, (11)

where |ψ̃n〉 are the nodeless pseudowave functions, |φi〉 are
the all-electron partial waves, |φ̃i〉 are the pseudopartial waves,
and |βi〉 are the projector functions, as introduced by Vander-
bilt [21] and Laasonen et al. [22]. For clarity, we dropped the
spin index σ , noting that it can be reintroduced later.

Following the derivation in [14,22] the all-electron KED is
reconstructed by

t =
∑

n

fn

[
〈ψ̃n|∇〉〈∇|ψ̃n〉+

∑
i j

〈ψ̃n|βi〉〈β j |ψ̃n〉

× (〈φi|∇〉〈∇|φ j〉 − 〈φ̃i|∇〉〈∇|φ̃ j〉)

]
, (12)

where |∇〉〈∇| is the KED operator and we define the KED
augmentation term as

Ti j (r) ≡ 〈φi|∇〉〈∇|φ j〉 − 〈φ̃i|∇〉〈∇|φ̃ j〉. (13)

The partial waves φ and φ̃ are expressed as the product of
radial and spherical harmonics functions:

φi(r) = φi(r)Ylimi (r̂). (14)
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The product φ∗
i (r)φ j (r) can be written as

φ∗
i (r)φ j (r) = φ∗

i (r)φ j (r)Y ∗
limi

(r̂)Ylj mj (r̂)

=
∑
LM

ci jLM (r)YLM (r̂), (15)

thanks to the Clebsch-Gordan (CG) expansion of spherical
harmonics. Rearranging the Laplacian of this product

∇φ∗
i (r) · ∇φ j (r) = 1

2 [∇2[φ∗
i (r)φ j (r)]

− ∇2φ∗
i (r)φ j (r) − φ∗

i (r)∇2φ j (r)]
(16)

we obtain the expression for the KED augmentation in the
form of

Ti j (r) =
∑
LM

ti jLM (r)YLM (r̂) (17)

exploiting the fact that the Laplacian operator in terms of
spherical coordinates is

∇2 = 1

r2

[
∂

∂r

(
r2 ∂

∂r

)
− l̂2

]
(18)

and by further application of the CG expansion.
To represent the augmented KED on a Fourier grid, it

would need to be very dense to be able to account for the rapid
variations of the KED near the nucleus, making calculations
impractical. Instead, we pseudize the ti jLM (r) functions in a
similar way as the charge density augmentation functions are
pseudized in Ref. [22], except we do not enforce conservation
of moments, just optimal smoothness and the continuation
conditions at the inner cutoff radius rin.

The pseudized KED augmentation terms t̃ outside rin

match exactly t , and inside rin are expanded as polynomials

t̃i jLM (r) =
n∑

k=0

ckrL+2k , (19)

where n is chosen such that the resulting polynomial is smooth
and joining conditions regarding the αth derivatives at rin can
be fulfilled:

t̃ (α)(rin) = t (α)(rin), α = 0, 1, . . . . (20)

In our implementation in CASTEP, we preserve up to third
order derivatives at rin. The coefficients are determined by
the requirement that the Fourier coefficients of t̃ above a
plane-wave cutoff Gcut regarding the dense Fourier grid in the
plane-wave calculation are as small as possible, minimizing

I =
∫ ∞

Gcut

dG G2 t̃2(G). (21)

As the pseudized KED augmentation functions, unlike their
electron density counterparts, do not need to conserve the
moments of the KED, they tend to be smoother. We have
found that the Gcut values applied to the electron density
augmentation functions remain adequate choices for t̃ (r).

Figure 1 shows an example of KED augmentation func-
tions of the Zn atom where the pseudization radius was
chosen to be rin = 1.406 a0. It is apparent that the KED
augmentation functions would need a very fine grid spacing

FIG. 1. The radial part of the KED augmentation function be-
longing to the 4s (top panel) and 3d (bottom panel) orbitals of Zn,
for each angular momentum channel. Black and red lines correspond
to the original and the pseudized functions, respectively. The main
figures show the functions in real space, whereas the insets show
them in Fourier representation.

if they were to be represented accurately on a Fourier grid,
which would make a calculation require impractically large
memory and computational time. However, their pseudized
counterparts provide a much more favorable reciprocal space
convergence, with computational requirements comparable to
those of GGA functionals.

Another crucial component to generate successful pseu-
dopotentials is including a nonlinear core correction (NLCC)
for the KED. To accomplish this, we calculate the contribu-
tion of the core orbitals to the KED, which again need to
be pseudized within a radius for practical calculations. The
rapidly varying part of the function, close to the nucleus,
is replaced by a smooth curve, using the same procedure
described earlier in this section, by Eqs. (19), (20), and (21)
and setting L = 0, as the contribution from core electrons
is spherically symmetric. We use the NLCC for the kinetic
energy density in an similar fashion to NLCC of the charge
density [25].
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TABLE I. Comparison of energy levels of valence orbitals of
neutral and isolated atoms, calculated considering all electrons (AE)
and the ultrasoft pseudopotential scheme (PS), using the Becke-
Johnson exchange potential.

AE (eV) PS (eV) � (eV)

1s −110.143 −110.119 −0.024Be 2s −5.915 −5.915 0.000

2s −38.209 −38.208 −0.001Ne 2p −14.914 −14.912 −0.002

2s −82.396 −82.386 −0.010
Mg 2p −48.985 −48.974 −0.011

3s −4.997 −4.997 0.000

3s −25.109 −25.108 −0.001Ar 3p −11.353 −11.353 0.000

3s −47.820 −47.818 −0.002
Ca 3p −29.168 −29.167 −0.001

4s −3.990 −3.990 0.000

3d −11.703 −11.701 −0.002Zn 4s −6.084 −6.084 0.000

4s −23.123 −23.123 0.000Kr 4p −10.248 −10.248 0.000

4d −13.649 −13.648 −0.001Cd 5s −5.663 −5.664 0.000

III. RESULTS

We first performed benchmark calculations on our
KED pseudopotential generation scheme against all-electron
calculations to establish its validity. Our tests included iso-
lated atoms and various properties of condensed systems. In
all our calculations with the Tran-Blaha or Becke-Johnson
exchange potential, we used the correlation part of LDA [26].
The pseudopotentials were generated using the on-the-fly
scheme implemented in the CASTEP code with the modifica-
tions described in the previous section. We used the pseudopo-
tential parameters defined in the C17 library in CASTEP.

A. Calculations on isolated atoms

We studied the energy levels of isolated atoms and com-
pared the self-consistent exchange potentials of the all-
electron and pseudocalculations. We solved the KS equations
on a logarithmic radial grid using the atomic solvers built in
the CASTEP code, with the relativistic effects treated by the
technique suggested by Koelling and Harmon [27]. The Tran-
Blaha exchange potential is ill-defined for systems containing
large voids, due to the construction of c as an integral of the
cell volume: the choice of volume is arbitrary. This is indeed
the case of isolated atoms, hence we opted for the original
Becke-Johnson potential [9] in this test, expressed as c = 1 in
Eq. (1). We also compared the exchange-correlation potential
of the pseudoatom to the all-electron solution to establish the
validity of our pseudopotential scheme.

Table I lists the orbital energies of a set of closed shell
atoms, calculated by solving the KS equations for all electrons
and for the valence electrons only, using ultrasoft pseudopo-
tentials, with the Becke-Johnson exchange potential. The

orbital energies of the valence states of the pseudoatoms
show excellent agreement with their all-electron counterparts,
within 2 meV across the range. We note that the energies
of the semicore states included in Be, Ne, and Mg show a
larger deviation than the valence states, which is due to the
fact that only a single ultrasoft projector was used for these
states. However, the agreement is reasonable, and we expect
that the discrepancy will not cause any significant effect in a
practical calculation.

To demonstrate the accuracy of the pseudopotential, we
compared the exchange-correlation potential functions from
all-electron and pseudopotential calculations, on the same
set of atoms. Figure 2 demonstrates that outside of rc, the
exchange-correlation potential curves match very accurately,
and within rc the potential of the pseudoatom becomes a
smooth function.

B. Band structure calculations

The main purpose of developing the Tran-Blaha exchange
potential was to improve the description of the electronic
band structure of solids within DFT, and in particular, the
band gaps, which are often severely underestimated in LDA
and GGA. An appropriate benchmark for the KED-including
pseudopotential scheme is therefore comparing the calculated
band structure to all-electron results. We used the selection of
bulk semiconductor crystals with the GGA-optimized struc-
tural parameters from Ref. [28]. We used the ELK software
package [11], a full-potential, linearized augmented plane-
wave code, to perform the all-electron calculations, using the
default species files. ELK employs a combination of local-
orbital and augmented plane-wave basis functions, whose
size was set by the vhighq keyword, which is recommended
by the ELK manual to obtain highly converged results. The
pseudopotential calculations were carried out with a modified
version of CASTEP 17.2. We used Monkhorst-Pack k-point
grids [29] with a 0.025 Å−1 spacing to sample the Bril-
louin zone, and the basis_precision : extreme setting
in CASTEP for the energy cutoff of the plane-wave basis.

The greatest shortcoming of pseudopotential calculations
with the Tran-Blaha potential is that α and β used in Eq. (10)
are fitted based on the all-electron density, which is available
neither at the point when the pseudopotentials are generated,
nor during the calculation. In order to have access to the
all-electron density and its gradient, they would need to be
reconstructed, but this would not be practical on a Fourier grid
representation. To benchmark our approach of generating and
using pseudopotentials, we used the self-consistent values of
c obtained from the all-electron calculations. The parameter
c was fixed for both the pseudopotential generation and the
electronic structure calculation. The results obtained using
this approach are directly comparable to those of all-electron
calculations, but for practical calculations, where c is un-
known, this method is clearly unfeasible.

To study the effect of employing different choices of c at
various stages of a calculation we performed band structure
calculations with the following options, where c̃ is the value
calculated from the pseudodensity, and c is the parameter used
in calculating the exchange potential, as in Eq. (1):
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FIG. 2. The Becke-Johnson exchange and LDA correlation potential in a set of closed shell atoms, with all electrons included in the
calculation (AE, solid line) and only valence electrons in a pseudopotential calculation (PS, dashed line). The inset shows the difference
between the all-electron and pseudopotential calculation.

(i) A series of runs where c was set to c̃, calculated
from the pseudocharge density, and allowed to vary self-
consistently during the plane-wave calculation. Pseudopoten-
tials were generated at c̃SC at the beginning of each run. This
process is repeated until c̃ does not change between runs. This
could be a realistic option in a production run for a compound
where the all-electron c is not available beforehand.

(ii) Pseudopotentials generated using the all-electron cAE,
but c̃, as calculated from the pseudocharge density, was used
as c, and allowed to vary self-consistently during the plane-
wave calculation.

(iii) Pseudopotentials generated using the Becke-Johnson
potential, i.e., c = 1, and c̃, as calculated from the pseu-
docharge density, was used as c and allowed to vary self-
consistently during the calculation.

(iv) To demonstrate the effect of using pseudopotentials
generated with a completely different class of function-
als, we ran calculations with PBE pseudopotentials, using
the appropriate all-electron cAE value in the plane-wave
calculation.

To give a general impression on how accurately we expect
band gaps calculated from pseudopotential DFT match all-
electron DFT, we also carried out calculations with the PBE
functional, using the appropriate PBE pseudopotentials.

It is informative to examine the self-consistent values of c.
Figure 3 compares the self-consistent c of the pseudopotential
calculations to those of the all-electron calculations. Even
though there is a strong correlation, the pseudopotential c
values are consistently underestimated, with the Becke-
Johnson type pseudopotentials being the furthest from the
all-electron results. We note that it might be possible to refit
the α and β values in the expression for c [Eq. (10)], but it is
outside of the scope of this work, and such a reparametrization
would be rather limited, being only applicable to a given set
of pseudopotentials.

The calculated band gaps and self-consistent c values are
listed in Table II and also shown in Fig. 4. With c fixed
throughout the calculation, we are able to reproduce the all-
electron band gaps with our KED-enabled pseudopotentials
with a root-mean-square error (RMSE) of 60 meV. For com-
parison, using the PBE GGA exchange-correlation functional,
a similar performance is achieved at 30 meV RMSE. Being
able to reproduce such a sensitive all-electron property is a
good indication that the KED-supporting ultrasoft pseudopo-
tentials are accurate and a viable alternative to all-electron and
PAW calculations.

In practice, it is not uncommon to use pseudopotentials
in a calculation which were generated with mismatching
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TABLE II. Calculated band gaps and self-consistent c values of a selection of semiconductors. AE(TB) and AE(PBE) are all-electron
calculations using the Tran-Blaha potential and PBE, respectively. Pseudopotential generation and electronic structure calculations were run
at c fixed at the all-electron self-consistent value cAE, or 1 (corresponding to the Becke-Johnson potential) or c was let to vary during the
calculation (c̃SC).d We also present results where the PBE pseudopotentials were used. Band gap values where the difference between the
all-electron and pseudopotential calculation was greater than 0.2 eV are boldface.

AE(TB) c = cAE c = c̃SC c = c̃SC c = c̃SC c = cAE AE(PBE) PBE
PP: c = cAE PP: c = c̃SC PP: c = cAE PP: c = 1 PP: PBE PP: PBE

c EG (eV) c̃ EG (eV) c̃ EG (eV) c̃ EG (eV) c̃ EG (eV) EG (eV) EG (eV) EG (eV)

InSb 1.20 0.10 1.18 0.07 1.18 0.00 1.18 0.00 1.18 0.01 0.09 0.00 0.00
BN 1.30 5.79 1.26 5.79 1.25 5.73 1.25 5.65 1.25 5.55 5.09 4.46 4.45
GaSb 1.20 0.58 1.18 0.56 1.18 0.49 1.18 0.47 1.18 0.62 0.90 0.00 0.00
MgO 1.43 6.83 1.41 6.78 1.41 6.66 1.41 6.70 1.42 6.91 6.70 4.44 4.43
BaTe 1.20 2.31 1.18 2.22 1.18 2.20 1.18 2.18 1.18 2.21 2.20 1.66 1.57
GaP 1.21 2.34 1.18 2.32 1.18 2.25 1.18 2.23 1.18 2.22 2.13 1.56 1.57
MgSa 1.23 4.13 1.20 3.97 1.20 3.93 1.20 3.85 1.20 3.79 3.59 2.74 2.75
GaNb 1.33 2.71 1.30 2.64 1.30 2.61 1.30 2.54 1.30 2.99 3.11 1.49 1.49
AlAs 1.18 2.23 1.15 2.21 1.15 2.18 1.15 2.14 1.15 2.14 2.23 1.51 1.51
BP 1.17 1.89 1.12 1.89 1.12 1.79 1.12 1.77 1.11 1.74 1.52 1.26 1.27
MgSe 1.21 2.99 1.20 2.84 1.20 2.88 1.20 2.80 1.20 2.86 3.01 1.76 1.77
CdSe 1.27 1.92 1.26 1.88 1.26 1.79 1.26 1.80 1.26 1.74 1.59 0.49 0.50
SiC 1.20 2.29 1.15 2.27 1.14 2.22 1.14 2.13 1.14 2.11 1.82 1.38 1.38
LiF 1.56 12.69 1.55 12.60 1.55 12.58 1.55 12.57 1.56 12.96 12.68 8.75 8.83
BAs 1.21 1.75 1.18 1.73 1.18 1.71 1.18 1.68 1.18 1.71 1.78 1.21 1.22
BaS 1.26 3.29 1.24 3.19 1.23 3.12 1.23 3.10 1.23 3.06 2.97 2.24 2.15
ZnTe 1.23 2.31 1.21 2.28 1.21 2.19 1.21 2.17 1.21 2.45 2.89 1.05 1.09
AlN 1.30 5.53 1.25 5.54 1.24 5.36 1.24 5.36 1.24 5.53 5.61 4.17 4.17
C 1.27 4.92 1.19 4.89 1.18 4.69 1.18 4.71 1.17 4.69 4.13 4.13 4.12
MgSc 1.26 5.09 1.23 5.01 1.23 4.89 1.23 4.88 1.23 5.02 4.95 3.35 3.36
InP 1.22 1.45 1.19 1.40 1.19 1.28 1.19 1.25 1.19 1.40 1.81 0.45 0.45
GaNd 1.33 3.15 1.31 3.15 1.31 3.05 1.31 3.04 1.31 3.46 3.55 1.91 1.91
CuCl 1.33 1.76 1.31 1.77 1.31 1.70 1.30 1.66 1.31 2.29 2.82 0.51 0.52
Si 1.13 1.24 1.09 1.23 1.09 1.14 1.09 1.12 1.09 1.11 1.08 0.62 0.62
BaSe 1.24 2.89 1.23 2.81 1.22 2.78 1.22 2.76 1.23 2.67 2.81 2.03 1.95
CuBr 1.31 1.65 1.28 1.61 1.28 1.59 1.28 1.51 1.29 2.12 2.83 0.41 0.43
CdS 1.29 2.63 1.26 2.58 1.26 2.43 1.26 2.42 1.25 2.48 2.67 1.03 1.06
CdTe 1.24 1.69 1.22 1.66 1.22 1.57 1.22 1.57 1.22 1.59 1.70 0.58 0.61
MgTe 1.19 3.46 1.18 3.41 1.18 3.35 1.18 3.35 1.18 3.42 3.65 2.30 2.31
AlP 1.16 2.40 1.12 2.39 1.11 2.29 1.11 2.26 1.11 2.22 2.14 1.63 1.64
GaAs 1.23 1.67 1.21 1.64 1.21 1.57 1.21 1.55 1.21 1.72 1.83 0.52 0.52
AgI 1.27 2.67 1.25 2.59 1.25 2.56 1.25 2.54 1.26 2.63 2.75 0.90 0.91
AgF 1.47 2.55 1.47 2.54 1.45 2.45 1.46 2.49 1.46 2.58 2.75 -0.34 -0.34
ZnO 1.41 2.67 1.39 2.59 1.38 2.53 1.38 2.43 1.40 3.55 3.68 0.86 0.80
InN 1.32 0.82 1.29 0.80 1.28 0.72 1.28 0.72 1.29 0.84 0.68 0.02 0.02
ZnS 1.28 3.66 1.25 3.60 1.25 3.44 1.25 3.38 1.25 3.87 4.39 1.99 2.00
InAs 1.23 0.74 1.21 0.70 1.21 0.62 1.21 0.62 1.21 0.62 0.56 0.00 0.00
Ge 1.21 0.51 1.19 0.50 1.19 0.43 1.19 0.41 1.19 0.56 0.68 0.00 0.00
CaO 1.41 5.24 1.38 5.29 1.38 5.18 1.38 5.18 1.38 5.12 5.24 3.66 3.66
ZnSe 1.27 2.70 1.25 2.63 1.25 2.57 1.25 2.54 1.26 2.82 2.94 1.13 1.13
AlSb 1.16 1.81 1.13 1.80 1.13 1.76 1.13 1.73 1.13 1.77 1.92 1.24 1.24

RMSE 0.06 0.13 0.15 0.23 0.42 0.03

aRocksalt structure.
bZincblende structure.
cWurtzite structure.
dNote that in the first two cases the self-consistent c̃, an output of the calculation, does not necessarily coincide with the fixed c value, used in
the calculation of the exchange potentials.

exchange-correlation functionals. We studied the effect of
the choice of exchange-correlation functional in the pseu-
dopotential by calculating the band gaps on the same set
of materials, using pseudopotentials generated with PBE,

and with c fixed at the corresponding all-electron value. It
is striking that this approach produces an order of magni-
tude less accurate results on average, with some significant
outliers.
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FIG. 3. The Tran-Blaha c̃ parameter computed from the self-
consistent pseudocharge density with ultrasoft pseudopotentials
for all the semiconducting materials in our database, compared
to the c parameter obtained from all-electron calculations, using
the Tran-Blaha exchange potential. Squares: The pseudopotentials
were generated using the self-consistent c parameter obtained from
the all-electron calculations, circles: pseudopotentials generated with
the BJ potential, downward triangles: c fixed at the value obtained
from all-electron calculation for both the pseudopotential generation
and electronic structure calculation, and upward triangles: final c in a
series of calculations for each compound where pseudopotentials for
each run were generated using the self-consistent c̃.

In the general case, as we mentioned above, the all-electron
c is not available in advance. Therefore we studied the more
realistic scenario when c, computed from the pseudodensity, is
allowed to vary self-consistently during the calculations. This
leads to less accurate band gaps compared to the all-electron
results, due to the fact that c no longer matches the all-
electron c; effectively a different exchange potential is being
used. In actuality, using pseudopotentials generated with the
Becke-Johnson potential leads to a loss of accuracy, but even
self-consistent calculations can be improved significantly if
pseudopotentials are generated at c set to the corresponding
all-electron value.

In order to study a material where c is unknown, for practi-
cal purposes, one could employ a procedure when calculations
are “bootstrapped” using pseudopotentials generated with the
Becke-Johnson exchange potential, and iteratively improving
c by each time reconstructing the pseudopotential with the
new c, until self-consistence is achieved. According to our
tests, self-consistence is achieved in a few steps, and being
able to reuse the densities from the previous calculation means
the increase of the cost of computation is not significant.
The accuracy of this approach is comparable to that of using
pseudopotentials generated at cAE, making it a viable option
for practical calculations.

We also studied how well the dispersion of the band ener-
gies can be reproduced in the pseudopotential calculation. As
an example, the band structure of CaO is plotted in Fig. 5, with
a the all-electron and pseudopotential calculations matching
to the width of the line. For comparison, we added the PBE
and GW [30] results, to illustrate the vast improvement in

FIG. 4. Distribution of errors in band gaps calculated with ul-
trasoft pseudopotentials (EG,PSP), relative to all-electron calculations
(EG,AE). cAE indicates c values fixed at the all-electron values, c̃SC

means c was allowed to vary self-consistently during the calculation,
and we also included PBE reference calculations. PP defines the
pseudopotential, based on the exchange potential used for generating
it: PBE, Becke-Johnson (c = 1), c fixed at the all-electron values
(c = cAE) or the self-consistent c̃SC. The numbers in brackets show
the RMS error in the band gaps. The inset shows the errors of the
calculations as function of the all-electron band gaps.

the location of the conduction bands, but also to show that
the shape of the conduction bands is somewhat less well
reproduced, this being a general feature of the TB potential,
not a result of the pseudopotential approximation.

C. NMR calculations

NMR is an often used experimental technique to deter-
mine the atomistic structure of matter. Assisting this, NMR

FIG. 5. The band structure of CaO along high-symmetry lines.
Blue dashed lines calculated by PBE, red solid lines are the result of
the Tran-Blaha exchange potential, with c = 1.410 (the all-electron
value), black dotted lines are the all-electron results with the Tran-
Blaha exchange, and green squares represent the GW values [30].
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FIG. 6. Calculated isotropic shieldings of 19F compared to ex-
perimental isotropic shifts. Red circles and black triangles are results
obtained with the Becke-Johnson exchange potential, in pseudopo-
tential and all-electron calculation [33], respectively. Blue stars
and green diamonds are PBE results obtained with pseudopotential
GIPAW [34] and all-electron calculations [33], respectively.

parameters are routinely calculated from first principles, and
DFT calculations have been found to be reliable for a wide
range of systems. In solids, DFT calculations with GGA
functionals, combined with GIPAW [31,32] show remarkable
accuracy for isotropic shielding and J-coupling parameters,
with a few notable exceptions, for example, fluorides.

The Becke-Johnson exchange potential was shown to
improve the NMR shielding in a set of inorganic fluoride
compounds [33], using an all-electron approach to solve
the electronic structure problem. In this current work, we
use some of these results to validate our implementation
of KED-supporting pseudopotentials. We computed the 19F
NMR shieldings of LiF, NaF, KF, CsF, and BaF2 with the
Becke-Johnson exchange potential using the GIPAW method
as implemented in CASTEP. The results are summarized in
Fig. 6, showing that we are able to reproduce the slope of
the shielding vs experimental shift points of the all-electron
calculations.

IV. CONCLUSION

Meta-generalized gradient approximation functionals are
gaining popularity in electronic structure calculations, with

some implementations providing considerable improvements
over GGA functionals [7]. An often used input variable is
the kinetic energy density, which needs to be pseudized in a
plane-wave basis to enable practical calculations. We present
a scheme which extends ultrasoft pseudopotentials to support
kinetic energy densities, and implemented it in the CASTEP

code. We have carried out calculations to benchmark the
performance and reliability of KED-enabled pseudopotentials
in a range of systems, showing that all-electron results can
be reproduced accurately, given the exchange potential can be
kept consistent. We note that this mechanism of generating
pseudopotentials can be extended in a straightforward manner
to mGGA functionals, as demonstrated by our related work on
the SCAN functional [35].

More specifically, regarding the Tran-Blaha potential, we
found that the c parameter, responsible to inform the potential
about the global electronic structure, cannot be reproduced
precisely using the pseudodensity. This somewhat limits the
usability of the Tran-Blaha potential in a pseudopotential cal-
culation, as the exchange potential becomes implicitly pseu-
dopotential dependent. We suggest practical workarounds this
problem, and provided extensive benchmarks to inform the
community on the expected accuracy and reliability of these
options. Another avenue, although outside of the scope of this
work, would be reparametrization of the Tran-Blaha potential,
based on pseudodensities.

Finally, we explored the work flow of using pseudopo-
tentials generated with different exchange-correlation func-
tional or potential than the the one used in the self-consistent
calculation. We found that this approach leads to significant
differences in the resulting electronic structure compared
to all-electron calculations, and conclude that this practice
should be avoided.
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