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Using 3-D relativistic fluid equations the dynamics for the plasma beat 

wave generated by two circularly polarized electromagnetic waves with 

Gaussian profiles is obtained. Unlike the linear theory we find there 

is a strong cross field coupling between the longitudinal and radial 

electric field components of the beat wave resulting in a nonlinear 

phase change and energy transfer between these two components. The 

resulting beat wave structure being controlled more by this cross-field 

coupling than by the other nonlinear terms such as the nonlinear 

coupling to the laser beams with the result that the accelerating 

region of the plasma beat wave is much more restrictive than previously 

calculated. 
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Introduction 

Recently there has been considerable interest in the nonlinear 

excitation of large amplitude plasma waves by beating two laser beams 

in an underdense plasma (1 , 2 ) as a particle accelerator and known as 

the .beat-wave accelerator. The scheme depends on the generation'of a 

large amplitude plasma wave with a plasma velocity close to the 

velocity of light. Such a wave can be produced by beating two co­

linear laser beams, with frequencies and wavenumber (w1,k1) and (w 2 ,k2) 

in a plasma where the frequency and wavenumber of the plasma wave 

satisfy the following renonance conditions 

w1 - w2 = wp, k1 - k2 = kp where wp, kp are the frequency and 

wavenumber of the plasma wave resulting from Raman forward scattering. 

The laser beams exert a periodic force (the ponderomotive force) on the 

electrons to produce charge separation and hence plasma oscillations at 

the resonant frequency wp = (4~e2n0 /me)½. If wp << w1,2 then the phase 

velocity of the plasma wave vph = wp/kp is equal to the group velocity 

of the laser vg = c(l - wp2 /w1,22 )½ which is almost equal to the speed 

of light c in an underdense plasma. 

Previous studies on the nonlinear behaviour of the large amplitude 

plasma wave have concentrated mostly on the one-dimensional treatment 

and considered only the longitudinal component. However, there is also 

a ponderomotive force associated with the transverse spatial variation 

of the pump profile. Most laser beams have a Gaussian transverse 

profile. This transverse ponderomotive force produces a transverse 

variation of the plasma beat wave giving rise to a periodic 

radial electric field. The importance of these radial electric fields 
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as a possible focussing mechanism has been noted by several authors 

(3- 6). Ruth and Chao (3) first pointed out that the radial electric 

field-in quadrature with the longitudinal field, produces a strong 

defocusing force over the first half of the accelerating phase range 

and a strong focusing force over the second half. This results in the 

acceptable accelerating phase range of only Sn/16. It has also been 

pointed out (5) that the radial field could be used in place of 

quadrapole magnets to provide the final focusing of an accelerated 

beam. The radial fields can also set up betatron oscillations (6) for 

the injected particles which could limit the accelerating or focusing 

schemes. 

The theory for the generation of radial fields in the beat-wave 

accelerator for Gaussian pump profiles has been previously considered 

(6) but only for the linear case where the longitudinal field and 

radial field of the plasma are treated as independent variables being 

coupled only to the driving pump fields and not to each other. In this 

paper account is taken of the cross field coupling between the 

longitudinal and transverse components of the Langmuir wave which is 

excited by the beating between two laser beams with Gaussian cross 

sections. It is shown that the effect of the cross field coupling 

between the longitudinal and radial fields of the plasma wave allows 

for energy transfer between these components as well as introducing a 

nonlinear phase. The two field components are found to be only in 

phase for a particular radial position. These new effects combine to 

severely limit the region over which focusing or accelerating of the 

charged particles can take place. Another important concept introduced 

in the paper is a radial dependent plasma frequency and a frequency 
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misma·tch which is also radially dependent. This has the effect of 

causing the centre of the wave to saturate at a value lower than the 

wings. This effect has already been seen in simulations carried out by 

Mori (7). 

The nonlinear equations describing the longitudinal and radial electric 

fields of the plasma beat~wave are derived in cylindrical co-ordinates 

and solved numerically assuming no pump depletion and compared with the 

linear independent solutions. 

2. Model and derivations of the nonlinear equations 

We shall consider a uniform unmagnetised infinite plasma in which two 

Gaussian profile laser beams propagate colinearly with frequencies much 

greater than the plasma frequency. The plasma model we use to analyse 

the problem is the relativistic fluid equations for electrons together 

with Maxwell's equations in cylindrical coordinates, the ions are 

assumed to be immobile and provide overall charge neutrality. The use 

of the relativistic treatment is necessary when it comes to examine the 

plasma beat wave which is driven to very large amplitudes such that the 

electron quiver velocity in both longitudional and radial directions 

approaches the velocity of light. Previous papers ( 3 , 4 , 6) concerning 

the three dimensional aspects of the problem have computed the 

longitudional and radial field components for the non-relativistic 

situation. In this paper we will consider the weakly relativistic 

limit where y = (1 - ::!.... 2 /c2 )-½ "' 1 + ½ ::!_ 2 /c2 , where v is the electron 

quiver velocity. We will also ignore Raman cascading and pump 

depletion. 
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(1) 

(2) 

' (3) 

'v • E = 4rrp 

where P = ym~ , .:I..= - env , p = -e(n-n0 ), n is the electron density 

and m0 is the electron rest mass. 

Introducing the scalar <I> and vector.!. potentials such that 

1 aA E = -Y<I> - _ - and B = V x A 
Cat - -

equation (1) can be written as 

a (yv -~A)= -.Y(c2y -.=.~) +v x (Y x (y~- _:_ A)) at - m
0

c - m
0 

m
0

c -

Taking the curl of equ. (5) results in 

a_r = V X 0::_ X f_) , 
dt -

with f = V x (y~ - e ~ 
m

0
c 

From the initial condition f(t = o) = o and equation (6) it is 

concluded that f(t) = o and equation (5) reduces to the following 

equation of motion 

ap = - eE - m V(c2y) rt o-

(4) 

(5) 

(6) 

(7) 

Using a multiple time scale analysis where the fast and slow timescales 

are the inverse laser and electron plasma frequencies respectively and 

using the expressions P=m yv, y2 =l+P1
2/m 2c2+P2 /m 2c2 , equation (7) is 

- 0 - 0 0 

reduced to the following differential equation 
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(8) 

where <Yi>= (1 + P 21 m 2 c2 )½ p = e A ol o , -ol m c ..:.:o 
0 

~ is the low frequency plasma electric field fNL is the ponderomotive 

force due to the high frequency laser beams and is given by 

(9) 

and<> represents averaging over the fast laser period time scale. 

In deriving equation (8) we have assumed ~p = 4~en~, neglecting 

magnetic field effects and second harmonic terms associated with the 

plasma and electromagnetic waves. The equation was also derived in the 

weakly relativistic limit such that v2/c2 << 1. The ponderomotive 

force iNL is calculated assuming circularly polarized pump waves with 

Gaussian transverse profile. For the total pump wave amplitude we 

assume in terms of the vector potential~ 

A,=~+~ 
= A

0 
exp(-r2 /w

0
2 ) 

2 A A 

I (xcos(kiz - wit)+ ysin(kiz - w1t)) 
i=l 

where w
0 

represents the beam width of the two pumps. 

Equation (10) can be written as 

A,= 2A
0
exp(-r2 /w

0
2 ) [;cos(kfz/2 - wft/2) + ysin(kfz/2 - wft/2)]x 

cos(k z/2 - w t/2) s s 

- l::.w 

-(10) 

(11) 

(12) 
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Using equation (11) P01 and <y1) are given by 

p 2 /m 2 c2 _ 4e
2 

A 2 ( 2 2 / 2) 2 (k /2 /2) ol O - ~ 0 exp - r w0 cos sz - wst 
0 

and 

<Yi>= 1 + 2a 2exp(-2r2 /w 2 )(1 + cos(k z - 6wt)] 
0 0 p 

resulting in the ponderomotive force being given by 

FuL = -a 2m c2V{exp(-2r2 /w 2 )(1 + cos (kpz - 6wt)]} 
-~ 0 0 - 0 

where a 2 = e2A 2 /m 2c2 << 1 
0 0 0 

Using equation (15) to represent ~Land the following normalized 

variables 

T = 6Wt 

E = (ek /m w 2 )E 
p O p -p 

Z = k z p 

equation (8) becomes 

a [<y > {l + t(a§)2}aI] + (w /6w)
2

E = - a 2v(exp(-2R2/(k w )2 )x 
~ 1 -;r. ;r.- p - o- po 

(1 + case) J 

-(13) 

-(14) 

-(15) 

(16) 

-(17) 

where 0=Z-T and the gradient can be written in dimensionless variables 
as 

,. ,. 
V = ra + za 

aR az 

(18) 

where x = 12/k w and v2 (R) = a 2 exp(-R2x2)/(l + a 2 exp(-R2x2)) p O O 0 

results in the following expression for the electric field E of the 

plasma wave · 

-v2exp(Rx)2V{exp-(Rx)2[1 + case]} (19) 
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We have introduced into equation (19) a "radial dependent" plasma 

frequency and frequency mismatch also dependent on radial position 

given by 

respectively. 

Separating the electric field E into its components fn cylindrical 

geometry such that 

,. ,. 
_§_ (R,Z,r) = rEr(R,Z,r) + zEz(R,Z,r) -(20) 

And substituting this expression for_§_ into equation (19) and carrying 

out the gradient operation yields to leading order the following 

equations for Er and Ez 

(21) 

where Ez and Er satisfy the initial conditions 

Er(,=0) = o, Er/ ,=O = 0 

E (,=O) = o, Ez/ ,=O = 0 z 

(22) 

and the dot represents time derivative 

In order to solve the two coupled equations (21) we set Er= KV and 

Ez = Ku and use the following scaling K2 = e:, v2 /K = e: where K is 

1/, 
proportional to the pump strength (K = v'') and e: is the small expansion 

parameter (e: = v~). This results in the following two coupled 

equations 

v+(l+e:cr)[l 

~ + (1 + e:cr)[l - le:~2 - ½e:v2-]v - (1 + e:o)e::i~v = e:sin0 
2 

(23a) 

(23b) 
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where.a is a detuning parameter such that f 2 (R) = 1 + Eo(R) and 

a 2 = 2x2R. Equation (23) represents the desired coupled set of 

equations that have ~een solved numerically, with the results displayed 

in figures l(a-c) and 2(a,b), for functions of the form: 

u(Z,R,T) = al (T,R) cos[Z-T + ~l(T)] 

v(Z,R,T) = a2 (T,R) sin[Z-T + ~2(T)] 

with the radial variables R entering as a parmeter through the 

ponderomotive force (a2 ). 

(24a) 

(24b) 

These equations represent a strongly coupled system. In the absence of 

the last term on the r.h.s of equation (23) solutions can be obtained 

analytically in terms of Jacobi elliptic funtions which yield periodic 

behaviour. In the presence of this term the two components of the 

logitudinal wave exchange energy, it also introduces a nonlinear phase 

difference. Figure 1 represents the solution for perfect frequency 

matching with the detuning factor o(R) = 0. All solutions are obtained 

with the same pump intensity a 2 ~ 0.01 but at different radial 
0 

positions. The solid line represents the longitudinal electric field 

amplitude a 1(T) while the dashed line represents the transverse 

electric field amplitude a2(T) for radial distances corresponding to 

R = 0.1 (la), R = 1.5 (lb) and R = 3 (le). Close to the axis (R<l) the 

longitudinal field is initially the dominant field, this field 

component grows and saturates well before the transverse component, 
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however d~e to the coupling term in equation (23) the transverse 

component continues to grown and eventually reaches almost the same 

value. For larger radial values i.e. R = 1.5, and R = 3 both fields 

grow together reaching similar values in the same time with the 

transverse field component being sometimes greater than the 

longitudinal field component. 

Fig 2 a-b represent solutions for the same pump intensity a 2 = 0.01 
0 

and beam width kpwo = 3 and with radius R = 1.5 and R = 3 respectively 

but with the detuning parameter cr = 1. Here we observe even more 

remarkable changes in the two electric field components, especially the 

double peaked behaviour of the radial component. Notice also that the 

amplitudes in the wings attain larger values than those close to the 

axis. A comparison of the maximum values of both field components at 

different radial positions show that the saturation is not strongly 

dependent on€ on time scales of order €-i. 

The phases of the waves also show remarkable behaviour: very rapid 

phase changes take place for all solutions with the phases changing 

independently with no well defined phase difference, unlike the 

solutions of the two uncoupled equations (6). 

Conclusions 

We have extended the original calculation on the generation of 

longitudinal plasma waves by a Gaussian profile pump in a cylindrical 

coordinate system to include the nonlinear coupling between the 

longitudinal and transverse components. This nonlinear coupling is a 
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consequence of the relativistic mass variation of the electron. In 

order to make the problem tractable we have neglected magnetic field 

generation i.e. we have assumed E to be irrotational, which was also 

assumed in the uncoupled· system (6). Unlike the uncoupled system where 

the solution for!_ was found to be irrotational the coupling makes _the 

present solution non-irrotational so that magnetic field effects should 

be taken into account for consistency. However, using a multiple time 

scale analysis on the full problem it is found that the zero order term 

is still irrotational (8 ). 

We also considered the weakly relativistic limit allowing us to expand 

the Lorentz factor in terms of the smallness parameter v2 /c2 and 

neglected instabilities such as Raman cascade and modulational 

instabilities. The solutions of the two coupled equations describing 

the wave show radically different behaviour compared to the uncoupled 

case. There is now no preferred phase between the two components of 

the wave which will result in no well defined region for focusing or 

accelerating coherently. The amplitudes of the wave are also quite 

different with the radial field sometimes exceeding the longitudinal 

field. We have also noted a radial frequency dependence which allows 

the wings to grow to larger values than the centre which is in 

agreement with simulation results r). Using the simplified model 

described in the paper we have been able to investigate more details 

arising with the generation of beat waves, which have been observed in 

simulations. A more detailed study including the magnetic field 

generation and a discussion of instabilities arising from the nonlinear 

coupling between the two components is at present underway and will be 

reported in a much fuller version. 
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Figure Captions 

Fig. l(a-c): The full line represents the amplitude a1 and phase ~l 

for the longitudinal electric field component, and the broken line 

represents the amplitude a2 for the radial field component and phase 

difference ~l - ~2• The laser intensities are assumed equal with 

a
0

2 = 0.01 and laser beam width kpwo = 3 with no detuning (a= O) but 

at different radial positions (a) R = 0.1, (b) R = 1.5, (c) R = 3. The 

-1 time is in units of wpe • 

Fig. 2(a-b). Same as figures 1 (b-c) but including detuning a= 1. 
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