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Abstract

This paper considers the number of inner iterations required per outer iteration for
the algorithm proposed by Conn et al. (1992a). We show that asymptotically, under
suitable reasonable assumptions, a single inner iteration suffices.

1 Introduction

In this paper, we consider the nonlinear programming problem

minimize f(x) (1.1)
zER™
subject to the general constraints
ci(z)>0, i=1,...,m, (1.2)
and the specific simple bounds
I<z<u. (1.3)

We assume that the region B = {z € R" | | < 2 < u} is non-empty and may be
infinite. We do not rule out the possibility that further simple bounds on the variables are
included amongst the general constraints (1.2) if that is deemed appropriate. Indeed, it is
conceivable that all simple bounds should be handled this way. Furthermore, we assume
that

AS1. f(z) and the ¢;(z) are twice continuously differentiable for all z in B.

Our exposition will be conveniently simplified by taking the lower bounds as identically

equal to zero and the upper bound as infinity for a subset of A def {1,2,....,n} in (1.3)
and by assuming that the remaining variables are either not subjected to simple bounds
or their simple bounds are treated as general constraints. Thus, in most of what follows,
B={z€ R"|z; >0for all j € N}}, where A}, C N is the index set of bounded variables.
The modification required to handle more general bounds is indicated at the end of the
paper.

The approach we intend to take is that of Conn et al. (1992a) and is based upon incor-
porating the equality constraints via a Lagrangian barrier function whilst handling upper
and lower bounds directly. The sequential, approximate minimization of the Lagrangian



barrier function is performed in a trust region framework such as that proposed by Conn
et al. (1988a).

Our aim in this paper is to consider how these two different algorithms mesh together.
In particular, we aim to show that ultimately very little work is performed in the itera-
tive sequential minimization algorithm for every iteration of the outer Lagrangian barrier
algorithm. This is contrary to most analyses of sequential penalty and barrier function
methods in which the effort required to solve the inner iteration subproblems is effectively
disregarded, the analysis concentrating on the convergence of the outer iteration (see for
instance the books by Fiacco and McCormick, 1968 and Bertsekas, 1982. Exceptions to
this are the sequential penalty function method analyzed by Gould, 1989, and the sequen-
tial augmented Lagrangian algorithm considered by Conn et al., 1992¢).

This work was primarily motivated by observations that the authors made when testing
a prototype of their large-scale nonlinear programming package LANCELOT, release B (see
Conn et al., 1992b for a description of release A), which is includes an implementation of
the algorithms discussed in this paper. It was often apparent that only a single iteration of
the inner iteration subroutine SBMIN was ultimately required for every outer iteration of
our sequential Lagrangian barrier program. While the conditions required in this paper to
turn this observation to a proven result are relatively strong (and we feel probably about
as weak as is possible), the package frequently exhibits the same behaviour on problems
which violate our assumptions.

We define the concepts and notation that we shall need in section 2. Our algorithm is
fully described in section 3 and analyzed in sections 4 and 5.

2 Notation

Let g(z) denotes the gradient V, f(z) of f(z). Similarly, let A(2) denote the Jacobian of
¢(z), where
e(x) = [er(2), - em(@)]" (2.1)
Thus
A(z)! = [Ver(2),--- Ve ()] (2.2)

We define the Lagrangian and Lagrangian barrier functions as

Uz, A) = f(z) — i Aici(z), (2.3)

and

U(z,A,s) = f(z) — i_”: Aisilog(ci(z) + si), (2.4)

respectively, where the components A; of the vector A are positive and known as Lagrange
multiplier estimates and where the elements s; of the vector s are positive and known as
shifts. We note that £(z, \) is the Lagrangian with respect to the general constraints only.

Let g,(z,A) and H,(z, ) respectively denote the gradient, V,{(z,)), and Hessian,
Vaol(z,)), of the Lagrangian. We define the vector A by

T Aisi
Ai(z, A, 8) = (@) + 57

for all 1 < i < m. We note that V, {(z,)\) = V,¥(z, ]\, s).
We denote the non-negativity restrictions by

(2.5)

zeB={zeR"|z; >0 forall je AN} (2.6)



where NV, C A/. We will make much use of the projection operator defined componentwise
by
I, ifaz; <l
(Plz,lu)); = q u; ifz; > uy (2.7)
x; otherwise.

This operator projects the point z onto the region defined by the simple bounds (1.3). Let
P(z,v,l,u) =2 — Plz — v,l,ul. (2.8)

Furthermore, define P[z] = P[z,[,oc] and P(z,v) = P(z,v,l,00), where [; = 0 for j € N}
and —oo otherwise.
Let 2(%) ¢ B and A(*%) be given values of 2 and \. If h(z, A,...) is any function of z,
A, ..., we shall write A(¥) as a shorthand for h(x(k), AK) -
(k)

For any z(¥) we have two possibilities for each component z;’,j =1,...,n, namely

(i) j € Myand 0 < $§k) < (V¥R or

(ii) j € Ny or (V,¥(H); < xgk),

where N} Lt A \ N} is the index set of free variables. We shall call all xgk) that satisfy
(k)

(¢) dominated variables while the remaining

notice that, as z*) € B,

are floating variables. It is important to

(P(z®, v, 50, = xgk) whenever xgk) is dominated, (2.9)

while
(P(z®) v, ¥®)Y)), = (v,8K), otherwise. (2.10)

If 2* is the limit point of the (sub-)sequence {2} e, we partition A into four index
sets related to the two possibilities () and (¢7) above and the corresponding z*. We define

Dy def {j e Vb xgk) is dominated for all k£ € K sufficiently large},
Fo Nyu{jeN] xg-k) is floating for all k € K sufficiently large and 27 > 0},
F, {j e Mp] xgk) is floating for all £ € K sufficiently large but 2} = 0} and
F YAN\DIUFUF.
(2.11)
We also define ot

A(z) E {i|ei(z) <0},

the sets of inactive (strictly satisfied) and active (violated or just satisfied) constraints at
the point z. We develop our algorithm so that the set A* = A(z*) at any limit point of
our generated sequence is precisely the set of constraints for which ¢;(z*) = 0. We also
write 7% = Z(z*).

We will use the notation that if 7; and [J; are any subsets of A" and H is an n by n
matrix, H[z, 7, is the matrix formed by taking the rows and columns of H indexed by
J1 and J; respectively. Likewise, if A is an m by n matrix, Az is the matrix formed by
taking the columns of A indexed by J;.

We denote the (appropriately dimensioned) identity matrix by I; its j-th column is e;.
A vector of ones is denoted by e.



We will use a variety of vector and subordinate matrix norms. We shall only consider
norms || - ||, which are consistent with the two-norm, that is, norms which satisfy the
inequalities

L L
[oll= < aglvflz and |[ollz < ago]- (2.13)

for all vectors v and some constant ap > 1, independent of z. It then follows that, for any
pair of two-norm-consistent norms || - ||, and || - ||,

[o]= < aol[vlly and [[v]ly < aof[v]l-- (2.14)

If r is any m-vector whose i-th component is r;, we use the shorthand r = [r;|2,.
Furthermore, if r is as above and 7 is a subset of {1,2,---,m}, [ri]ics is just the vector
whose components are the r;, i € J. Consequently, ||[r;]"2|| = ||7||.

Following Conn et al. (1992a), we now describe an algorithm for solving (1.1), (1.2)
and (2.6).

3 Statement of the algorithm

In order to solve the problem (1.1), (1.2) and (2.6), we consider the algorithmic model
given in Figure 1. We shall call the vector P(w(k),vz\ll(k)) the projected gradient of the
Lagrangian barrier function or the projected gradient for short. The norms || - ||y and || - [|¢
are normally chosen to be either two or infinity norms.

Our decreasing sequence of p®)s is given by p*) = uo(r)kj, but any monotonic de-
creasing sequence of (¥)’s converging to zero if Step 4 is executed an infinite number of
times will suffice. It is also irrelevant, in theory, as to how we find a suitable point z*)
satisfying (3.5). However, from a practical perspective, a suitable point is found by an
iterative procedure. In our algorithm, it is normal to try to start this inner iteration from,
or close to, the solution to the last one. Indeed, from the point of view of the results we
are about to establish, this is crucial. Such a starting point is desirable as function and
derivative information from the conclusion of one inner iteration may be passed as input
to the next. However, we need to bear in mind the requirement (3.6) may preclude us from

(%)

; ~ < 0for some 7. This issue
is considered in depth in Conn et al. (1992a), where it is shown that ¢;(z(*)) 4 SEkH) >0

for all 1 < ¢ < m when Step 3 of Algorithm 3.1 is executed, while techniques for finding a
suitable alternative starting point when Step 4 occurs are given.

picking such a starting point as it is possible that c,-(ac(k_l))—l—s

The main purpose of this paper is to show that asymptotically we take one inner iter-
ation per outer iteration. More specifically, under certain assumptions, we first show that
(3.8) is eventually satisfied at each outer iteration. We then show that, under additional
assumptions, it is possible to satisfy the convergence test (3.5) after a single iteration of
the algorithm given in Conn et al. (1988a).

The specific inner iteration algorithm we shall consider is given in Figure 2.

There are a number of possible ways of choosing 'y(()k’j) and 7§k,j) in Step 4. The
simplest is merely to pick 7(()1979) = 70 and fy:gk’] ) = ~3; other alternatives are discussed by

Conn et al. (1992h).

It remains to give a description of the starting point, initial trust region radius and
approximation to the Hessian of the Lagrangian, and of the calculation that is performed
in Step 2 of Algorithm 3.2.

Let 0 < 8 < 1. We let

. k-1 _ .
k1) { 0 if 0 < 2% < o(v,u*-1); and je N, (3.17)

J
k—1 .
;- ) otherwise,



Algorithm 3.1 [Outer-iteration Algorithm)]

Step O : [Initialization] The strictly positive constants
N0, Wo, Ow, Bu, n, Bp,an <1, 7<1, p<], 12<],w, K1l and n, K1
for which
1-(1+ay) ! <a, <min(l,e,) and B, <min(l,4,).
are specified. A positive forcing parameter, i(%), is given. Set

M(O) = min(ﬂ(o)’ 72)’ w(o) = WO(M(O))Q‘” and ,'_,(0) = no(u(o))afl R

(3.1)

(3.2)

(3.3)

An initial estimate of the solution, 265t ¢ B, and vector of positive Lagrange multiplier

estimates, A0, for which ¢;(z€5%) + ,u(o)()\go))‘“ > 0 are specified. Set k =0.
Step 1 : [Inner iteration] Compute shifts
s = u® )™,
fori=1,....m. Find z*) € B such that
1Pz, v, g )|, < w®

and
ci(x(k)) + sgk) >0, for i=1,....,m.

Step 2 : [Test for convergence] If
1Pz, Vo ¥ )|, < wi and [[fe; ()4 (2B, A0, sl <,
stop. If

[[es@®) 2,20, 5®) ) ||| < p®,

c

=1

execute Step 3. Otherwise, execute Step 4.
Step 3 : [Update Lagrange multiplier estimates] Set

AGHD = 3 (20, A(B) 5(k)),
ak+D = k)

'u(k‘l‘l) = min(ﬁ(k‘l‘l), ’)/2),
WD = ) (D)) B
pHD = () (B 1)),

Increase k by one and go to Step 1.
Step 4 : [Reduce the forcing parameter] Set

AEFD = \(F),
gD = k)
pEHD) = min(a+D ),
w(k+1) Wo(,u(k-l_l))a“'a
77(k+1) — UO(N(k+1))a"-

Increase k by one and go to Step 1.
End of Algorithm 3.1

(3.4)

(3.5)

(3.6)

(3.9)

(3.10)

Figure 1: Outer-iteration algorithm




Algorithm 3.2 [Inner-iteration Algorithm)]

Step O : [Initialization] The positive constants p < n < 1 and v0 < 72 < 1 < 73 are
given. The starting point, 29, ¢ nonnegative convergence tolerance, w™®), an initial
trust region radius, A% o symmetric approzimation, B*9 to the Hessian of
the Lagrangian, Hy(z®%) X*)) and a two-norm-consistent norm || - | are specified.
Compute \I'(:L’(k’o), AR s(k)) and its gradient. Set the inner iteration counter j = 0.

Step 1 : [Test for convergence] If
|P(z®9) v, k||, < w®) (3.11)
set z%) = £(%3) qnd stop.

Step 2 : [Significantly reduce a model of the Lagrangian barrier function)]
Construct a quadratic model,

m3) (g0 4 p) % g () AR ()Y 4 pT ()| Ay (R)) (3.12)
+%pT(_B(k7J) + A(m(k1.7))TD(k)(x(kyl))A(I(kJ)))p’
of U(z + p, A®) 4*)Y  where DX*)(z) is the m by m diagonal matriz whose i-th
f ¥(z + p, AW, utt), y g
diagonal is
A\ (F) (k)
DW(g); ;= — Lt (3.13)
(ci(x) + 52

Compute a step p*7) which significantly reduces the value of the model,
m(kyj)(x'(kvj) +p)

Step 3 : [Compute a measure of the effectiveness of the step] Compute
T (zF:3) 4 pkad) AF) 5(B)) and the ratio

ql(m(kyj)’ )\(k)’ s(k)) — \Il(l‘(k"]) + p(k:j)’ A(k), s(k))

(k7j) Pr—
P = T () — ) () plk)) (3-14)
Step 4 : [Accept or reject the step] Set
) (k,5) (k:3)  4f p(kad)
(kj+1) _ ) 250+ p i p) >
* _{ z(k7) otherwise, (3.15)

and .
. ,Y(()k,J)A(k,j) if ptkbd) < T
AEI+D) ) AR) if u< p®d) < (3.16)
,ng,J)A(k,J') otherwise,

where ')/ék’j) € [v0,1) and 7:(3k’j) €[1,vs].

Step 5 : [Updating] If necessary, compute the gradient of \If(?z(k’j+1),)\(k),u(k)) and a
further approzimation to the Hessian of the Lagrangian B*:J+1) | Increment the inner
iteration counter j by one and go to Step 1.

End of Algorithm 3.2

Figure 2: Inner-iteration algorithm




and choose

3.18
k=1)  otherwise. ( )

2 (k,0) _ { 7k=1) 1f C(i(k_l)) 4 s® >0

Thus variables which are significantly dominated at the end of the (k — 1)-st iteration are
set to their bounds while the remainder are left unaltered. This choice is made since, under
a suitable non-degeneracy assumption (AS7 in section 4), the set of dominated variables
is asymptotically the same as the set of variables which lie on their bounds (see, Conn et
al., 1992a, Theorem 5.4). Furthermore, under a second non-degeneracy assumption (AS5
in section 4), the assignment 20 = 3(=1) is gnaranteed for k sufficiently large. Our
choice of z(¥9) then encourages subsequent iterates to encounter their asymptotic state as
soon as possible.
We also pick A% 5o that

AR > | P(ak0), v, w0 ¢ (3.19)

for some positive constants k and ¢ < 1 (typical values might be kK = 1 and ¢ = 0.9). This
value is chosen so that the trust region does not interfere with the asymptotic convergence
of the algorithm, while providing a reasonable starting value in the earlier stages of the
method.

Finally B(*:9) is taken to be any sufficiently good symmetric approximation to the
Hessian of the Lagrangian function at z®). We qualify what we mean by “sufficiently
good” in the next section but suffice it to say that exact second derivatives satisfy this
property and are often to be recommended.

The calculation in Step 2 is performed in two stages.

1. Firstly, the so-called generalized Cauchy point, z€*3) = z(*k3) 4 pC*kJ) ig deter-
mined. This is merely an approximation to the first local minimizer of the quadratic
model, m(k’])(x(k’]) +p), along the Cauchy arc. The Cauchy arcis the path a®D) 4 p
where

p=p* () € Pl — 19,0 (@®D) A, 1)), 1, 0] - o), (3:20)
as the parameter ¢ increases from 0, which finishes when the path first intersects the

boundary of the trust region, '
Iplle < A®), (3.21)

for some two-norm-consistent norm || - ||;. Thus the Cauchy arc is simply the path
which starts in the steepest descent direction for the model but which is subsequently
“bent” to follow the boundary of the “box” region defined by the feasible region (2.6)
(or, in general, (1.3)) and which stops on the boundary of the trust region (3.21).
The two or infinity norm is normally chosen, the latter having some advantages as
the trust region is then aligned with the feasible region (2.6). (Indeed, it is possible
to extend the Cauchy arc along the boundary of the trust region when the infinity
norm is used. Further reduction of the quadratic model along this extended Cauchy
arc may prove beneficial.)

The method proposed by Conn et al. (1988a) calculates the exact generalized Cauchy
point by marching along the Cauchy arc until either the trust region boundary is
encountered or the model starts to increase. An alternative method by Moré (1988)
finds an approximation p©*7) = p(k’j)(tc(k’j)) which is required to lie within the
trust-region and to satisfy the Goldstein-type conditions

) () 4 ) (1Y) < B (K 4y o) (1€ RN (k) AE) (8D
(3.22)



and , , .
+C (k.5) >y or 1C (k.9 > 1./27513("/’7«7)7 (3.23)

where tL(%:7) > 0 is any value for which

(3.24)
or

||p(k7j)(tL(kﬁj))||t > yy AlkI) (3.25)

and the positive constants puq, po, 1, V9 and v3 satisfy the restrictions py; < pg < 1,
vy < 1 and v3 < 1. Condition (3.22) ensures that a sufficient reduction in the model
takes place at each iteration while condition (3.23) is needed to guarantee that every
step taken is non-negligible. Moré shows that it is always possible to pick such a
value of ¢ (%) using a backtracking linesearch, starting on or near to the trust region
boundary. Similar methods have been proposed by Calamai and Moré (1987), Burke
and Moré (1988), Toint (1988) and Burke et al. (1990).

2. Secondly, we pick p(*) so that z(*7) + p(k:7) lies within (2.6), ||p(k’j)||t < By Ak

and

> B3[mEd) (z(*:9)) — (k) (z(k3) 4 pCRIY] > (3.26)

for some positive f2 > 1 and F3 < 1. In fact, we typically choose 2 = 3 = 1,
in which case we are merely requiring that the computed step gives a value of the
model which is no larger than the value at the generalized Cauchy point.

In order to accelerate the convergence of the method, it is normal to try to bias the
computed step towards the Newton direction.

The convergence analysis given by Conn et al. (1988a) for Algorithm 3.1 indicates that
it is desirable to construct improvements beyond the Cauchy point only in the subspace of
variables which are free from their bounds at the Cauchy point. In particular, with such a
restriction and with a suitable non-degeneracy assumption, it is then shown that the set
of variables which are free from their bounds at the solution is determined after a finite
number of iterations. This has the advantage of allowing one to analyze the asymptotic
convergence rate of the method purely as if it were an unconstrained calculation, merely
by focusing on the set of free variables.

Let F be a subset of N and let D = A/ \ F. Furthermore, let
H'(kv]) dgf B(kvj) + A(m(kvj))TD(k)(x(kJ))A(x(k’])) (327)

denote the composite approximation to the Hessian of the Lagrangian barrier function.

The specific algorithm we shall consider is summarized in Figure 3. In Step 2 of
this method, the value of p;r; would normally be computed as the aggregate step after
a number of Conjugate Gradient (CG) iterations, where CG is applied to minimize the
model in the subspace defined by the free variables. The CG process will end when either
a new bound is encountered or the convergence test (3.30) is satisfied. Algorithm 3.3 is
itself finite as the number of free variables at each pass of Step 2 is strictly monotonically
decreasing. See the paper by Conn et al. (1988b) for further details.



Algorithm 3.3 [Algorithm to significantly reduce the model]

Step O : [Initialization] Select positive constants v < 1, £ < 1, 2 > 1 and
p3 < L.

Step 1 : [Calculate the generalized Cauchy point] Calculate an approzima-
tion to the the generalized Cauchy point z€*J) = z(*.3) 4 pC*I) yging one
of the previously mentioned techniques. Compute the set of variables, FC*:J),
which are free from their bounds at z€*9) . Set ¢ = z€*:9) 5 = p¢*d) gnd
F = Folkg),

Step 2 : [Further improve the model] Let C(82) = SN 7(52), where

S={pr|e®) +peB and pp = p[cp(]k’j)} (3.28)

and

T(B2) =A{pA | lpll: < B A% and pp] = p[%(]k’j)}. (3.29)

If pir) lies on the boundary of T (), set p®9) = p and stop. (If || - ||; is
the infinity norm, it is possible to transfer components of F which lie on the
trust-region boundary to D and to continue.) Otherwise, recompute piF] So
that (3.26) is satisfied and either pir) lies strictly interior to C([3y) with

kj k,j k,j
1H G o + (V2 + HE D)l

. . . . 3.30
< min(y,[|P(a®9), v, @ kD)6 - | Pk, v u k)|, 530

or piF) lies on the boundary of C(f32). Reset xr| to xx] + pi7]-

Step 3 : [Test for convergence] If p;r lies strictly interior to C([3;) and (3.30)

is satisfied or if it is decided that sufficient passes have been made, set p¥+J) = p
and stop. Otherwise remove all of the indices in F for which pyr); lies on the
boundary of S and perform another pass by returning to Step 2.

End of Algorithm 3.3

Figure 3: Algorithm to significantly reduce the model




10

4 Convergence analysis

We wish to analyze the asymptotic behaviour of Algorithm 3.1, that is in the case where
w, = 7% = 0. We require the following additional assumptions.

AS2. The matrix A(z*)[4+ 7, is of full rank at any limit point z* of the sequence {z(0)}
generated by Algorithm 3.1 with the set F; defined by (2.11).

Under these assumptions we have the following result.

Theorem 4.1 [Conn et al., 1992a, Theorem 4.4 | Assume that AS1 and AS2 hold, that

*

x* is a limit point of the sequence {x(k)} generated by Algorithm 3.1 and that
S S S— 4.1

fori=1,--- m. Then z* is a Kuhn-Tucker (first order stationary} point for (1.1), (1.2)
and (2.6) and the corresponding subsequences of {A\¥)} and {V,¥*)} converge to a set of
Lagrange multipliers, \*, and the gradient of the Lagrangian, g,(z*,\*), for the problem,
respectively.

Now consider the following further assumptions.

AS3. The second derivatives of the functions f(z) and the ¢;(z) are Lipschitz continuous
at all points within an open set containing B.

AS4. Suppose that (z*, \*) is a Kuhn-Tucker point for the problem (1.1), (1.2) and (2.6),

and
A Y {iei(2*) =0 and Ar >0} (42)
A3 Y {ilei(2*) =0 and Ar =0} '

and
T NpU{j € Nolge(z*,1)); =0 and a3 > 0} (43)

g ¢ {7 € Npl(ge(2*,A%)); =0 and 27} = 0}.

Then we assume that the matrix

( (CE ,)\j[jﬂ (A(x*)[A,J])T) (4.4)

J] 0

is non-singular for all sets A and J, where A is any set made up from the union of
A} and any subset of Aj and J is any set made up from the union of 73 and any
subset of 7.

AS5. (Strict complementary slackness condition 1) Suppose that (z*,A*) is a Kuhn-
Tucker point for problem (1.1), (1.2) and (2.6). Then

A; = {ilei(z") =0 and A =0} = 0. (4.5)

AS6. Algorithm 3.1 has a single limit point, x*.

Under these additional assumptions, we are able to derive the following result.
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Theorem 4.2 [Conn et al., 1992a, Theorems 5.3 and 5.5] Assume that AS1-AS6 hold.
Then there is a constant fimin > 0 such that the penalty parameter u*) generated by
Algorithm 3.1 satisfies %) = pimin for all k sufficiently large. Furthermore, z¥) and ;\EZ),]
satisfy the bounds

10®) 27y < @ (tmin) 3 and (NS = X )aegllg < ar(pamin) TP, (4.6)

for the two-norm-consistent norm ||.||g and some positive constants a, and ay, while each

|;\l(-k)|, 1 € IT*, converges to zero at a Q-superlinear rate.

We shall now investigate the behaviour of Algorithm 3.1 once the penalty parameter
has converged to its asymptotic value, ptin. There is no loss of generality in assuming that
we restart the algorithm from the point which is reached when the penalty parameter is
reduced for the last time. We shall call this iteration & = 0 and will start with £(©) = fiin.
By construction, (3.7) is satisfied for all k¥ and the updates (3.9) are always performed.
Moreover,

k)

w( = wO(Nmin)aw-l—kﬁw

and %) = 10 (jumin )70, (4.7)

We require the following extra assumptions.

AST. (Strict complementary slackness condition 2) Suppose that (z*,A*) is a Kuhn-
Tucker point for problem (1.1), (1.2) and (2.6). Then

T2 ={j € Npl(ge(2™,X")); =0 and z; =0} = 0. (4.8)
ASS8. If 7, is defined by (4.3), the approximations B*) satisfy

* * k7 k7
(B — V(@™ M)z zgpi My < vllplg N5, (4.9)

for some positive constants v and ¢ and all k sufficiently large.

AS9. Suppose that (z*, \*) is a Kuhn-Tucker point for the problem (1.1), (1.2) and (2.6),
and that 7y is defined by (4.3). Then we assume that the second derivative ap-
proximations B*© have a single limit, B* and that the perturbed Kuhn-Tucker
matrix

* *\T
B£J1,71] A(x* )[A*#ﬁ]l (4.10)
A(z")par ) —(Dige a0)”
is non-singular and has precisely m negative eigenvalues, where D* is the limiting

diagonal matrix with entries

(A1) tmin i i € A"

0 ifieZ” (4.11)

D5, = tim DO, = {
’ k—oo

Assumptions AS5 and AS7 are often known as strict complementary slackness conditions.
We observe that ASS8 is closely related to the necessary and sufficient conditions for super-

linear convergence of the inner iterates given by Dennis and Moré (1974). We also observe
that AS9 is entirely equivalent to requiring that the matrix

By g+ A(x*)[TMﬂD[*A,yA*]A(x*)[A%] (4.12)

is positive definite (see, for instance, Gould, 1986). The uniqueness of the limit point
in AS9 can also be relaxed by requiring that (4.12) has its smallest eigenvalue uniformly
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bounded from below by some positive quantity for all limit points B* of the sequence
B®0) Moreover it is easy to show that that AS4, AS5 and AS7 guarantee AS9 provided
that fimin is sufficiently small and sufficient second-order optimality conditions (see Fiacco
and McCormick, 1968, Theorem 4) hold at z* (see Wright, 1992, Theorem 8, for the
essence of a proof of this in our case). Although we shall merely assume that AS9 holds
in this paper, it is of course possible to try to encourage this eventuality. We might, for
instance, insist that Step 4 of Algorithm 3.1 is executed rather than Step 3 so long as
the matrix H*: is not positive definite. This is particularly relevant if exact second
derivatives are used.

We now show that if we perform the step calculation for Algorithm 3.2 using Al-
gorithm 3.3, a single iteration of Algorithm 3.2 suffices to complete an iteration of Al-
gorithm 3.1 when k is sufficiently large. Moreover, the solution of one inner-iteration
subproblem, z(*=1) and the shifted starting point for the next inner iteration (3.18) are
asymptotically identical. We do this by showing that, after a finite number of iterations,

1) moving to the new starting point does not significantly alter the norms of the pro-
g g g
jected gradient or constraints. Furthermore, the status of each variable (floating or
dominated) is unchanged by the move;

(ii) the generalized Cauchy point 2¢(®:0) occurs before the first “breakpoint” along the

Cauchy arc — the breakpoints are the values of ¢ > 0 at which the Cauchy arc
changes direction as problem or trust region bounds are encountered. Thus the set
of variables which are free at the start of the Cauchy arc 2(*9 and those which are
free at the generalized Cauchy point are identical;

(iii) any step which satisfies (3.30) also satisfies pjz ] lies strictly interior to C(32). Thus
a single pass of Step 2 of Algorithm 3.3 is required;

(iv) the step p®*©) is accepted in Step 4 of Algorithm 3.2;

(k1)

(v) the new point satisfies the convergence test (3.11); and

(vi) 2(F+10) — 2 (k)
We have the following theorem.

Theorem 4.3 Assume that assumptions AS1-AS9 hold and that the convergence toler-
ances 3, and (3, satisfy the ertra condition

B < (1 + min(&,¢))ars,. (4.13)

Then for all k sufficiently large, a single inner iteration of Algorithm 3.2, with the step
computed from Algorithm 3.3, suffices to complete an iteration of Algorithm 3.1. Moreover,
the solution to one inner iteration subproblem provides the starting point for the next
without further adjustment, for all k sufficiently large.

Proof. In order to make the proof as readable as possible, we will make frequent use
of the following shorthand: the iterates will be abbreviated as

:C (k) (3.15)

9 5 = k) GLD e

A7) 08 = p10) B8 y (k). (4.14)

T = =
the shifts as
= s(k+1) (4.15)

bl
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and the Lagrange multiplier estimates as
A= AE) 5 X = A0 = Nz, A, ) = AT = AEHD and A = X2®, At sT). (4.16)

Other quantities which occur at inner iterations (k 4+ 1,0) and (k 4 1,1) will be given
suffices @ and + respectively. Thus H® = H*+10) and g+ = gk+Ll),
Recall, we have used Theorem 4.2 to relabel the sequence of iterates so that

1P(e®), v, 70|y < wolpimin) e HH (4.17)

and

H [Ci(x(k));\gk)/(/\(_k))%]m

£3

. 1H < 10(eanin )27 P (4.18)
= C

for all £ > 0. Let Q be any closed, bounded set containing the iterates ™) and z(*+1.0)

We shall follow the outline given above.

(i) Status of the starting point. The strict complementary slackness assumption AS7
ensures that for all k sufficiently large, each variable belongs exclusively to one of the sets
F1 and Dy (see Conn et al., 1992a, Theorem 5.4); moreover,

ge(z™,X"); =0 forall jeF and 2zj>0 forall je FinN (4.19)

and
x;‘ =0 and glg(x*,)\*)j >0 forall 7€ Dy. (4'20)

As one of xg-k) and Vx\Ilg-k) (= V.Ll(x,));) converges to zero while its partner converges
to a strictly positive limit for each j € A} (assumption AS7), we may define nontrivial

regions which separate the two sequences for all k£ sufficiently large. Let

def 0

€x = min max[z}, g,(z", A\*);] > 0, (4.21)

146 jeN,

where 6 is as in (3.17). Then there is an iteration k¢ such that for variables in Fy,

|x(k) — 2} <€ and |Vz\If§-k)| < €4, (4.22)

j
while for those in Dy,
e <&, and |V, 8® - g (a* 1)), < e (4.23)

for all k > ko. Hence, for those variables in Dy, (4.21) and (4.23) give that

o) < e = Olmip max{a}, gu(a™, A);] - €] < Olge(™ X, — ] < (VM) (2.20)

Thus, by definition (3.17), igk)
j € FiNNy and k > ko, xg-k) H(VZ\I/("”))]' and hence, using (3.17), :Eg.k) = z; for all
j € Fy. Thus &) converges to z*.

The other strict complementary slackness assumption, AS5, ensures that each con-
straint belongs exclusively to one of the sets 7* and A*, for all k sufficiently large. More-

over,

= 0 for each ;7 € Dy when k > kp. Similarly, when

¢i(z*)=0 and A >0 forall 1€ A" (4.25)

and
¢i(z*) >0 and A7 =0 forall ie€I”. (4.26)
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and thus one of ¢;(z(*)) and /\l(-k-H) converges to zero while its partner converges to a
strictly positive limit for each «.

Using the shorthand introduced in (4.14)—(4.15), we have that ¢;(z) 4+ s > ¢;(z) > 0
for each i € 7* and all k sufficiently large. Thus, as # converges to 2* and s; converges
to zero, 2¢;(z*) > ¢;(2) + s} > Le;(z*) > 0 for all i € T and k sufficiently large. On the
other hand, if i € A%, ¢;(z)+ s] > 0 for all k (see Conn et al., 1992a, Lemma 3.1). In this
case, as sl-+ converges to s7 = Umin(AF)** > 0 and ¢;(z) converges to zero, the convergence
of # to * and A] to A* implies that 2s} > ¢;(%)+ s} > Ls¥ > 0 for all k sufficiently large.
Hence, from (3.18), 2% = 7 and thus there is an integer k; > ko for which

e ) z; forall jeF
2 = { 0" forall j €Dy, (4.27)
for all & > k4.
We next let r be any real number and consider points on the line
def &
z(r) = ¢+ r(z¥ — ). (4.28)

We firstly show that the diagonal matrix D(z(r)) is bounded for all 0 < r < 1, where D
is given by (3.13). As z and z% both converge to z*, the definition (3.13) implies that

D(z(r)) converges to the matrix D
bound

*
2,20

satisfying (4.11), as k increases. Thus, we have the

| D(z(r))l2 < a1/jimin (4.29)

where a; % 2/[[(AF)1=2A]™ , ||2, for all k sufficiently large. It also follows from the con-
vergence of z and z% to z* and that of s; to s? that there is an integer k; > k; for
which

0 < fei(2™) < ei(z(r))+ sgl) < 2¢(2*) forall t€I” (4.30)

and
0 < Ltmin(A))™ < ci(2(r)) + s < 2pmin(A])** for all i € A%, (4.31)

for all k sufficiently large and [ > k.
We now consider the starting point % for the next inner iteration in detail. Firstly,
combining (2.9), (2.13) and (4.27), we have that

12® — 2ll. < aoll Pla, Vol (x, A, ))lly < aowolpmin) ™ (4.32)

for any two-norm-consistent norm ||.||..

We may bound the change in ¢(z), due to the shifted starting point, using the integral
mean value theorem (see, eg, Dennis and Schnabel, 1983, page 74), the boundedness of
A(z) (assumption AS1 and the definition of bar)) and inequalities (2.14) and (4.32) to

obtain )
lci(2%) —ci(2)] < | Jy Alz(r))dr|l||z® — 2]l
s (4.33)
< ap@awo(fimin ) TP

where z(r) is given by (4.28) and a3 is an upper bound on ||A(z)||, within Q.

We next bound the differences in gradients of the Lagrangian barrier function at x
and 2?®. Using the integral mean value theorem, the convergence of A = At to A* (The-
orem 4.1), the boundedness of the Hessian of the Lagrangian (with bounded multiplier
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estimates) and the constraint Jacobian within  (assumption AS1) and the inequalities
(2.14), (4.29) and (4.32), we obtain

Vo8 (2%, 0, 8); — Vo T(z, A, 8)] < ||2% — 2|2
el 3 [Ho(z(r), X) + A(2(r)T D((r)) A(z(r))]dr |5

ad(as + alag/umin)wo(umjn)%ww

(L%(ag ‘|’ ala% )WO(Hmin)aw_l—}_kﬁwv

IAIA

(4.34)
where a3 is an upper bound on the two-norm of the Hessian of the Lagrangian function
(with bounded multiplier estimates) within Q. We now use the identity

Mo NS (4.35)
() + s
to derive the relationship
V, (e A, st) = V,U(2® A, s) = S0, < e @;;) ai(2®)
= o (i - o) we®) + o (2 - 2R ) i)
s, (Aletea®) | Nale?)) o g0) (4.36)
ci(z®)

But, considering 7 € A*, picking k sufficiently large so that [A]| < 2|\7| and using the
integral mean value theorem, the relationship c¢(2*) 4+« = 0, the bounds (4.31), (4.32),
(4.33) and the inequalities (3.2) and (4.6), we obtain the bounds

AF(ei() — ei(29))

(e®) s | S doeo(A)T N (Jtrmin )% 7RO (4.37)
and
: ;69;163 < A (ptgmin) ] S @i(2® A+ (2 — 2®))dr|| ]|2® — 2%,
< A (ptmin) " taa (|28 — 2|, + |l2 — 27|,) (4.38)
< 4aa(A])' 7 (@owo(ftmin )™ T FE 4 ag (pimin )2 1 RN )
and hence

AF (C'(z)—ci(z®)) /\+ci(z€9

| Siew (bt 4 Mateh ) o, 00,

< magay | max;e A

)\;I'ci(z@)
ci(xea)-l—s'j'

7

> (4.39)

< A A(fin )7~ RO,
where a4 = 4maga3(2agwo+ a,) max;c 4+(AF)1 =, for any two-norm-consistent norm ||.||..
Furthermore, the superlinear convergence of \; to zero, i € 7%, (4.30) and the boundedness
of the remaining terms implies a bound

137 (P e el et (a0

icTe z9)+s; ci(z®) —I—sj»'
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for some constant az (In fact, this term can be made arbitrarily smaller than (4.39) by
picking k sufficiently large). Thus, combining (4.36), (4.39) and (4.40), we obtain the
componentwise bound

|Vx\I!§B — V. ¥(2%, ), 8),] < (aq+ az)(umjn)a”_Hka*B" (4.41)

for all j € A where we have abbreviated V,¥(z% AT st) as V, U9,
Now consider the variables whose indices j lie in F; for k > k. Firstly, (4.19), (4.21),
(4.22) and (4.27) show that

*

® Yy
xj::cj21+0>0 (4.42)

if j € Np. Secondly, combining (4.34) and (4.41), and using (2.10), (2.14), (3.2) and (4.17),
we derive the inequality

v, 0|
S |VCL’\II? - VCE\I}('%@?AVS)A + |v$\:[l(x®7>‘75)j - vx\Ij(xv)‘vs)ﬂ + |v1’\:[j(x7 )‘75)1|
< ((LA + a'*_’[)(ll'min)ozn_1+ka>ﬂ77 + a(z)(a3 + (Ll(l% )WO(ﬂmin)aw_l-l—kﬁw + aOWO(NIrlin)aw+kﬂw
S a4(ﬂmin)an_1+kakﬁn7

(4.43)

where a4 def as+ az + apwo(1 + ag(as + aya3)). As k increases, the right-hand-side of the
inequality (4.43) converges to zero. Thus, from (4.22) and for k sufficiently large, x? is
floating for each j € Fq, and (2.10) and (4.43) imply that

|P(2®,V,U9)| = |V, U9 < ag(pmin )7~ 0, (4.44)

Conversely, consider the variables which lie in Dy for £ > k2. Then, combining (4.34)
and (4.41), and using (2.14) and (3.2) we obtain the inequality

VU9 -V, ¥(z, A, s),]

< |V2¥F - Vo ¥(2, A, 5);] + Va2 (2P, X, ) = Vo U(2, ), 9))] (4.45)
< (@4 + az)(pmin)*7 =N 1 af(ag + a103)wo(frumin) ¥ T '
< a5(ﬂmin)an_1+kakﬁ",

where a5 def as+ar+ a%wo(ag +ay a%). Thus, for sufficiently large k the right-hand-side of
(4.45) can be made arbitrarily small. Combining this result with (4.23) and the identity

:c?9 = 0, we see that x? is dominated for each j € Dy, and (2.9) and (4.45) imply that

P(2%,v,19) = 2% = 0. 4.46
J J

Therefore, using (2.10), (2.14), (4.44) and (4.46), we have

122, 7,89, = V05, < ao(pmin)® 035, (447
for all k sufficiently large, where ag def aoayllefz||2-
We also need to be able to bound the Lagrange multiplier estimates AT = A(z2®, At st).
We have, from (2.5), that
e
cl@ + sj»'

IANF = A= : (4.48)

But then, recalling (4.38), when 7 € A*, and the superlinear convergence of /\;" to zero,
when ¢ € 7%, together with (3.2), we obtain a bound

X = 3*1ly < s (famin) k150, (4.49)
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for some constant ays+. Thus, combining (4.6) and (4.49), we see that AT converges to \*,
1 € A*, and, because /\?' converges superlinearly to zero when ¢ € 7%,

I3F = A [ly < @y (jumin) 1R, (4.50)

for some constant aye.

(ii) The generalized Cauchy point. We consider the Cauchy arc emanating from z®.
We have shown that the variables in D; are on their bounds; the relationships (4.20),
(4.22), (4.23) and (4.45) imply that VQE\:[/E-3 > 0 for all sufficiently large k¥ and hence that
p®(t); = 0for all t > 0 and j € D;. Thus the variables in D; remain fixed on the bounds
throughout the first inner iteration and

pf%l] =0 (4.51)

for all k sufficiently large.

The remaining variables, those indexed by Fi, are free from their bounds. Because
of Assumption 7 the set J; in assumption AS9 is identical to F; and thus the matrix
(4.12) is positive definite with extreme eigenvalues 0 < Tuin < Tmax, say. Using (4.27) and
inequalities (2.9), (2.10) and (3.5), we deduce that 2% converges to z*. Thus the matrix

@ —_ Rpo eNT +(,.© @
is also positive definite with extreme eigenvalues satisfying
0 < Lpin <72 <78 < 2Mmax, (4.53)

say, for all sufficiently large k. Hence the model (3.12) is a strictly convex function in the
subspace of free variables during the first inner iteration.
We now show that the set

£ {p[]:l] | m@(acEB +p) < m@(ac@) and pip,] = 0} (4.54)

lies strictly interior to the set C(1) (defined in Algorithm 3.3) for all k sufficiently large.
The diameter d of £, the maximum distance between two members of the set (measured
in the two norm), can be no larger than twice the distance from the center of the ellipsoid
defined by £ to the point on £ (the boundary of £) furthest from the center. The center
of £ is the Newton point,

Pix, —(HY = fl])—lvxq;@ (4.55)

[A]

Let pir ) € L and Pip,; = 0 and define v def p — p*. Then, combining (3.12), (4.52), (4.54)
and (4.55), we have that

Sl Hir mym = 21’[*%]}[&,5]1’[*51 +(m®(2® + P*G;F v) = m®(z?))
LEARNER
_ *T @ _ @ (&) -1 @
= ip[ﬂ]ﬂ[ﬂ,fﬂp[ﬂ] = 5V ¥im(Hiz 7)) Ve ¥z

Hence, using the extremal properties of the Rayleigh quotient and (4.56), we have

def *
d*'= dllofr 13 < 40ig Hiz, ryoie)/mo < 8015, Hi, 1]/ Tomin (4.57)
= 8V \IJEBT](H[% A 'Ve \I/ /7rmm < 16[V. ¥ i, 3 /7r
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where |[vfr 1[|2 = MaXpe o €L lvgz,1ll2- Thus, using (2.14), (4.47) and (4.57), any step
within £ satisfies the bolund, '

Iorgllz < d < 41V TG 2/ Toin < 4a0a6(jimin) ™0 i, (453)

for sufficiently large k.
The inequality (4.42) shows that x?, j € Fy NNy, is separated from its bound for all
k sufficiently large while (4.58) shows that all steps within £ become arbitrarily small.
Thus the problem bounds are excluded from £. Moreover (2.13), (3.19), (4.47), (4.51) and
(4.58) combine to give
4a0|| Vo ¥ ll57¢
Tmink

1
Iplle = llppzglle < agllppmll2 < A% (4.59)
for all steps within, or on the boundary of, £. Inequality (4.47) then combines with (4.59)
to show that any such step is shorter than the distance to the trust region boundary for
all k sufficiently large.

Thus £ lies strictly interior to C(1) C C(f2) for all k sufficiently large. But, as all
iterates generated by Algorithm 3.3 satisfy (3.26) and thus lie in £, it follows that both
the generalized Cauchy point and any subsequent improvements are not restricted by the
boundaries of C or C(/33).

It remains to consider the Cauchy step in more detail. The Cauchy arc starts in the
steepest descent direction for the variables in F;. The minimizer of the model in this
direction occurs when T o
Vﬂv\:[j[jtl]vz\:[j[jtl]

= 6T 176 o -
Vo¥iz 1 Hiz, 7)Va¥ir,

t=1t"

(4.60)

and thus, from the above discussion, gives the generalized Cauchy point proposed by Conn
et al. (1988a). We use the definition of %, (2.13), (4.53) and the extremal property of the
Rayleigh quotient to obtain

D 2
IV 25 I

c
m® (2®) - m¥(a® + p°%) = 47|V, 5 |3 > p
max

(4.61)

for this variant of the generalized Cauchy point. Alternatively, if Moré’s (1988) variant is
used, the requirement (3.22) and the definition of the Cauchy arc imply that

m®(2®) — m®(2® + p©e) > ultcea”Vz\I/%l]H%. (4.62)
If the first alternative of (3.23) holds, (4.62) implies that
m®(2®) — m®(2® 4 p©®) > u1V1||VZ\I!F}1]||§. (4.63)

Otherwise, we may use the same arguments as above to show that it is impossible for "
to satisfy (3.25) when k is sufficiently large. Therefore, t“® must satisfy (3.24). Combining
(3.12), (3.24), (4.52) and the definition of the Cauchy arc, we have that

(EOPVYTHG 2 Vel > (1= pa)t" || Vo113 (4.64)

1
2 [F1

Hence, combining (4.53) and (4.64) with the extremal properties of the Rayleigh quotient,
we have that t£® > (1= p12)/Tmax. Thus, when the second alternative of (3.23) holds, this
result and (4.62) give that

m®(2®) —m®(@® + p9) > [va(1 — p2)/Tanax] Ve U 13- (4.65)
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Therefore, (2.14), (4.63) and (4.65) give the inequality
m®(@®) = m®(2® + p°0) > (1 /o) min(vr, va(1 — ) M| Vo ¥ |2 (466)

We shall make use of these results in (iv) below.
(iii) Improvements beyond the generalized Cauchy point. We have that x%] =0,

and, as a consequence of (4.47), ||P(z®,V,¥%)||¢ < v for all k sufficiently large. Hence,
because we have shown that any p in £ lies strictly interior to C, a single pass of Step 2
of Algorithm 3.3 is required. We must pick p to satisfy (3.30) and (3.26) by determining
p?}l] so that

+V, T lly < 1Ve \I/@ ||1+€ (4.67)

@
HHTl FPF] [F1

and

m®(2®) = m®(a® + p®) > B3[m®(2®) - m® (2@ + p©)] (4.68)

for some 3 < 1. The set of values which satisfy (4.67) and (4.68) is non-empty as the
Newton step (4.55) satisfies both inequalities.
It remains to consider such a step in slightly more detail. Suppose that p[G}l] satisfies

(4.67). Let
T[G;-l] = Hg-lvfl]pgl] + VZ\II[G;Q] (4'69)

Then combining (2.13), (4.53), (4.67) and (4.69), we have

Ip{, llg < aol H5 ] l2(llmllg + 1V 2 )

4.70
< 200l [y (L T [5) ot (470)

Thus, combining (4.47) and (4.70), and picking k sufficiently large so that ||Vz\I/F;E1] | <
1, we obtain the bound
||pFB}-1]||g S 4a0a6(#‘min)an_1+kakﬁ"/ﬂ-min- (471)
(iv) Acceptance of the new point. We have seen that
(S
P, =0 (4.72)

and p?}l] satisfies (4.67). As p® can be made arbitrarily small, it follows (as in (4.30) and

(4.31)) from the convergence of 2% to 2* and that of s} to s that there is an integer k3
for which
0 < Llej(z*) < ei(2® +p®) + 5] < 2¢;(2*) forall i€ZI* (4.73)

and
0 < Ltmin(A)* < ¢;(2® + p®) + 5T < 2Umin(A])* for all i€ A%, (4.74)
for all k sufficiently large and [ > k3. Thus
ci(z¥ +p®)+ st >0 (4.75)

for all 1 <z < m and k sufficiently large.
We now wish to show that the quantity

o) = @7 N5t — mP(a® + )
|m®(2®) — m® (29 + p®)|

(4.76)
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converges to zero, ensuring that the new point will prove acceptable in Step 4 of Algo-
rithm 3.2.

Consider first the denominator on the right-hand-side of (4.76). Combining (4.61),
(4.66) and (4.68), we have

m®(29) — m¥(2% + p¥) > a7|| V. ¥ (2%, 2,51 1) (4.77)

g
where a7 = B3 min(1/(4a0Tmax ), 1 min(vy1,v2(1 — p2)/Tmax)/ao). Turning to the numera-
tor on the right-hand-side of (4.76), we use the integral mean value theorem to obtain
\Il(x + p® At sT)
= (a9, /\+ st) +p[@T]v Vo4 3 Jo pia Vae U (@®(1), MY, P )5 70, i
= LA S+ p Ve ‘I’[ 1]
+ flp[@;f (Ve ¥ (@%(t), AT, s7) = Vi U5, g 1o dt
+IP?T] A H@][fl,rl]p?}l] + 2p[f1]H&f1]p&]
= m%(a® +p%) + ép[eg] (Ve U9 — ][}'1 ,fl]P[G;rl]
2T [V B(a(8), A, %) = Vou U] 5, 5105 .

(4.78)
where 2%(¢) = 2% + tp® and we have abbreviated V., (2% At st)as V,, 09,
Considering the last two terms in (4.78) in turn, we have the bounds
GBT D

S —ao(vllp[eirl]llz + I[Vael(z®, ) = Vaal (27, )iz, 7)) {15

using (2.13), (3.27), the definition of the Hessian of the Lagrangian barrier function and
ASS8, and

1
5 [ BT e ¥ (0,051 = Vaa W0, gpf ] < Savaslof [ (450)

using (2.13), the convergence (and hence boundedness) of the Lagrange multiplier esti-
mates and the Lipschitz continuity of the second derivatives of the problem functions
(assumption AS3) with some composite Lipschitz constant ag. Thus, combining (4.70),
(4.76), (4.77), (4.78), (4.79) and (4.80), we obtain

PP~ 1) < 2031+ Vo TG [02
saslfly + ol I+ I[Veet(a®, 3) = Vil A izl (4.81)

2
Q7T min

As the right-hand-side of (4.81) converges to zero as k increases, 7 = 2% + p@ for all &
sufficiently large.
(v) Convergence of the inner iteration at the new point. The relationship (4.75)
ensures that z7 satisfies the feasibility test (3.6). We now show that z* satisfies the
inner-iteration convergence test (3.11).

Firstly, in the same vein as (4.34) , for j € D; we have that

Ve ¥(at, A%, s1); — V, T
< 1%y - Nl o [He(2®(2), A) + A(a®(2))T D*(2®(2)) A(«®(1))]dt |2 (4.82)
< aoas + a1a3/pimin)||p® ),

where 29(t) = 29 + ¢p® and where we use the bound

ID* (z®(t))Il < a1/ timin (4.83)
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for all 0 < t < 1. This latter follows from the definition (3.13) and the convergence of 2%
and, because of (4.72) and (4.71), the convergence of 2% + p® to z*. Thus, as the right-
hand-side of (4.82) can be made arbitrarily small, by taking & sufficiently large, (4.23) and
the identity xj = :C;B = 0 for each 7 € Dy, imply that xj is dominated for each j € D;
while (2.9) and (4.46) imply that

P(zt,V,¥(zt, At sT)),; = :c]+ =0. (4.84)

We now consider the components of P(z%,V, ¥ (2t At st)); for j € Fy. Using the
integral mean value theorem, we have
Vel (et AT, sT)m) = Vel ) +@f01 V”\Il(é@(t)’H””[ﬂfﬂpf'?a]dt o
- [H[Tl FIPA) + Vz\Ij[fl]] + [sz\IIEB B Hea][fl’fl]p[fl] (4'85)

A Var¥(2® (), 0, %) = Vou U8, g pS 1dt

where 2%(¢) = 29 + tp®. We observe that each of the three terms on the right-hand-side
of (4.85) reflects a different aspect of the approximations made. The first corresponds to
the approximation to the Newton direction used, the second to the approximation of a
nonlinear function by a quadratic and the third to the particular approximation to the
second derivatives used. We now bound each of these terms in turn.
The first term satisfies the bound (4.67). Hence, combining (4.47) and (4.67), we
obtain
||H[?fl,f1]p%%] + Vz‘I’%rl]Hg < @bt (i ) (O~ DA+ FharBy (14€) (4.86)

The same arguments as those used to establish (4.79) imply that the second term on the
right-hand-side of (4.85) satisfies the bound

IV ®® — BO)p, mppfll,
< (@l lls + 1(Varl(z®, X%) = Varl(z* A 5111195 o (4.87)
< (ollpglls + aslle® — o[, + anoll3* = Al lIpl,

for some composite Lipschitz constants ag and a19. We may then combine (2.14), (4.6),
(4.17), (4.32), (4.50), (4.71) and (4.87) to obtain the bound

0 ®® — B®Y, 7105,
< [v[(4aoae/Tmin) (ftmin) 7~ PS4 aglag (pmin )21 TR + agwo(pimin) > TFE]
+a10a)s (ijn)a"_Hka*ﬁ"](400616/ijn)(ﬂmjn)a”_HkMBW
(4.88)
for all sufficiently large k. Lastly, the third term on the right-hand-side of (4.85) satisfies
the bound

1
| [ Ve a® @A %) = Voaa ¥, ol < baoaspf, . (4.89)

by the same arguments we used to establish inequality (4.80). We may then combine
(4.71) and (4.89) so that

1
| ] (FarB@® (0.0 %) = Taa W00, ] < Safadag umn 0245200 /2,

(4.90)
for all k sufficiently large.
We now combine equation (4.85) with the inequalities (4.86), (4.90) and (4.88), the
condition £ < 1 and the definitions of ay,(< 1) and ,(> 0) to obtain the bound

||VE\II($+7/\+78+)[T1]H < all(ﬂrnin)a+kﬁv (4'91)
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where )
& = (ay — (1 +max(1,6)), B = ardy(1+min(€,c)) (4.92)

and .
an =+ Sadaday/ml, + (40000 Tmin) (0((40008/ Tin)) (43
tag(ay + apwo) + aroay).

Firstly, observe that the right-hand-side of (4.91) may be made arbitrarily small. There-
fore, (2.10), (4.84) and (4.91) imply that

|P(*, Va (ot X, s, = [ V20t A, 55l < annGomin) 5. (494)
Secondly, define 6 = log,, . (a11/wo). Now let k; be any integer for which

aw+ﬁw_a_6

k ~
12 ﬁ_ﬁw

(4.95)

Then (4.13), (4.94) and (4.95) imply that

||P($+’Vz\:[/($+, /\+78+))||g < all(:umjn)&-l_kﬂ < wO(Mmin)aw+(k+1)Bw =wt (4'96)

for all sufficiently large k& > k;. Thus, the iterate 21 satisfies the inner iteration conver-
gence test (3.5) for all k sufficiently large and we have z(*+1) = z(k+1.1) = g+

(vi) Redundancy of the shifted starting point. Finally, we observe that all the
k+1,0) k)

variables mgk), j € D, lie on their bounds for sufficiently large k. Therefore, ! =zl

and the perturbed starting point is redundant. |

5 The general case

We now turn briefly to the more general problem (1.1)—(1.3). The presence of the more
general bounds (1.3) does not significantly alter the conclusions that we are able to draw.
The algorithms of section 3 are basically unchanged. We now use the region B = {2 € R" |
[ <z <u} — and hence A}, = N'— and replace P(z,v) by P(z,v,l,u) where appropriate.
The concept of floating and dominated variables stays essentially the same. For each iterate
in B we have three mutually exclusive possibilities, namely, (7) 0 < :C;k) -1; < (VI\I/(]“)),',
(i) (V, ¥ W); < 2P, < 0or (iii) oV —u; < (V,20); < 2V
xgk). In case (i) we then have that P(:C(k),VI\I!(k),l,u)i = xg
P(z®) v, o®) [ 4); = xgk) — u; and in case (i) P(z®) v, %) [ 4); = (V,¥*),, The
variables that satisfy (¢) and (7) are said to be the dominated variables, the ones satisfying
(7) are dominated above while those satisfying (i) are dominated below. Consequently, the

—1;, for each component

k) _ l; while in case (i)

sets corresponding to (2.11) are straightforward to define. D; is now made up as the union
of two sets Dy, whose variables are dominated above for all k£ sufficiently large, and D1y,
whose variables are dominated below for all k sufficiently large. F; contains variables
which float for all £ sufficiently large and which converge to values interior to B. Similarly
F3 is the union of two sets, Fy; and Fo,, whose variables are floating for all k sufficiently

large but which converge to their lower and upper bounds respectively. We also replace
(3.17) by

I if 0 < xl(k_l) —1; <O(V, ¢y,
7= ey <y <o (5.1)
(k—1) .
i otherwise.
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With such definitions, we may reprove the results of section 4, extending AS4, AS7T—
AS9 in the obvious way. The only important new ingredient is that Conn et al. (1992a)
indicate that the non-degeneracy assumption AS7 ensures that the iterates are asymptot-
ically isolated in the three sets Fy, Dq; and Diy.

6 Conclusions

We have shown that, under suitable assumptions, a single inner iteration is needed for each
outer iteration of the Lagrangian barrier algorithm. We anticipate that such an algorithm
may prove to be an important ingredient of release B of the LANCELOT package.
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