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Summary

We consider the large-sparse symmetric linear systems of equations that arise in
the solution of weak constraint four-dimensional variational data assimilation. These
systems can be written as saddle point systems with a 3×3 block structure but block
eliminations can be performed to reduce them to saddle point systems with a 2 × 2
block structure, or further to symmetric positive definite systems. In this paper, we
analyse how sensitive the spectra of these matrices are to the number of observations
of the underlying dynamical system. We also obtain bounds on the eigenvalues of
the matrices. Numerical experiments are used to confirm the theoretical analysis and
bounds.
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1 INTRODUCTION

Data assimilation estimates the state of a dynamical system by combining observations of the system with a prior estimate. The
latter is called a background state and it is usually an output of a numerical model that simulates the dynamics of the system. The
impact that the observations and the background state have on the state estimate depends on their errors whose statistical prop-
erties we assume are known. Data assimilation is used to produce initial conditions in numerical weather prediction (NWP)1, 2,
as well as other areas, e.g. flood forecasting3, research into atmospheric composition4, and neuroscience5. In operational appli-
cations, the process is made more challenging by the size of the system, e.g. the numerical model may be operating on 108 state
variables and 105 − 106 observations may be incorporated6, 7. Moreover, there is usually a constraint on the time that can be
spent on calculations.
The solution, called the analysis, is obtained by combining the observations and the background state in an optimal way. One

approach is to solve a weighted least-squares problem, which requires minimising a cost function. An active research topic in
this area is the weak constraint four-dimensional variational (4D-Var) data assimilation method8–14. It is employed in the search
for states of the system over a time period, called the assimilation window. This method uses a cost function that is formulated
under the assumption that the numerical model is not perfect and penalises the weighted discrepancy between the analysis and
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the observations, the analysis and the background state, and the difference between the analysis and the trajectory given by
integrating the dynamical model.
Effective minimisation techniques need evaluations of the cost function and its gradient that involve expensive operations

with the dynamical model and its linearised variant. Such approaches are impractical in operational applications. One way to
approximate the minimum of the weak constraint 4D-Var is to use a Gauss-Newton method15 that requires minimising a series
of linearised quadratic cost functions and using the minima to update the state estimate. The state estimate update is found by
solving sparse symmetric linear systems using an iterative method16.
To increase the potential of using parallel computations when computing the state update with weak constraint 4D-Var, Fisher

and Gürol12 introduced a symmetric 3 × 3 block saddle point formulation. These resulting large linear systems are solved using
Krylov subspace solvers14, 16, 17, whose convergence is affected by the spectra of the coefficient matrices. We derive bounds for
the eigenvalues of the 3 × 3 block matrix using the work of Rusten and Winther18. Also, inspired by the practice in solving
saddle point systems that arise from interior point methods19, 20, we reduce the 3 × 3 block system to a 2 × 2 block saddle point
formulation and derive eigenvalue bounds for this system. We also consider a 1 × 1 block formulation with a positive definite
coefficient matrix, which corresponds to the standard method8, 9. Some of the blocks in the 3 × 3 and 2 × 2 block saddle point
coefficient matrices, and the 1×1 block positive definite coefficient matrix depend on the available observations of the dynamical
system. We present a novel examination of how adding new observations influence the spectrum of these coefficient matrices.
In Section 2, we formulate the data assimilation problem and introduce weak constraint 4D-Var with the 3 × 3 block and

2 × 2 block saddle point formulations and the 1 × 1 block symmetric positive definite formulation. Eigenvalue bounds for the
saddle point and positive definite matrices and results on how the extreme eigenvalues and the bounds depend on the number
of observations are presented in Section 3. Section 4 illustrates the theoretical considerations using numerical examples, and
concluding remarks and future directions are presented in Section 5.

2 VARIATIONAL DATA ASSIMILATION

The state of the dynamical system of interest at times t0 < t1 < ... < tN is represented by the state vectors x0, x1,… , xN with
xi ∈ Rn. A nonlinear model mi that is assumed to have errors describes the transition from the state at time ti to the state at time
ti+1, i.e.

xi+1 = mi(xi) + �i+1, (1)
where �i represents the model error at time ti. It is further assumed that the model errors are Gaussian with zero mean and
covariance matrix Qi ∈ Rn×n, and that they are uncorrelated in time, i.e. there is no relationship between the model errors at
different times. In NWP, the model comes from the discretization of the partial differential equations that describe the flow
and thermodynamics of a stratified multiphase fluid in interaction with radiation1. It also involves parameters that characterize
processes arising at spatial scales that are smaller than the distance between the grid points21. Errors due to the discretization
of the equations, errors in the boundary conditions, inaccurate parameters etc. are components of the model error22.
The background information about the state at time t0 is denoted by xb ∈ Rn. xb usually comes from a previous short range

forecast and is chosen to be the first guess of the state. It is assumed that the background term has errors that are Gaussian with
zero mean and covariance matrix B ∈ Rn×n.
Observations of the dynamical system at time ti are given by yi ∈ Rpi . In NWP, there are considerably fewer observations

than state variables, i.e. pi << n. Also, there may be indirect observations of the variables in the state vector and a compar-
ison is obtained by mapping the state variables to the observation space using a nonlinear operator i. For example, satellite
observations used in NWP provide top of the atmosphere radiance data, whereas the model operates on different meteorologi-
cal variables, e.g. temperature, pressure, wind etc.23 Hence, values of meteorological variables are transformed into top of the
atmosphere radiances in order to compare the model output with the observations. In this case, the operatori is nonlinear and
complicated. Approximations made when mapping the state variables to the observation space, different spatial and temporal
scales between the model and some observations (observations may give information at a finer resolution than the model), and
pre-processing, or quality control, of the observations (see, e.g. Section 5.8 of Kalnay1) comprise the representativity error24.
The observation error is made up of the representativity error combined with the error arising due to the limited precision of
the measurements. It is assumed to be Gaussian with zero mean and covariance matrix Ri ∈ Rpi×pi . The observation errors are
assumed to be uncorrelated in time7.
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2.1 Weak constraint 4D-Var
In weak constraint 4D-Var, the analysis xa0, x

a
1,… , xaN is obtained by minimising the following nonlinear cost function

J (x0, x1,… , xN ) =
1
2
(x0 − xb)TB−1(x0 − xb) +

1
2

N
∑

i=0
(yi −i(xi))TR−1i (yi −i(xi)) (2)

+ 1
2

N−1
∑

i=0
(xi+1 − mi(xi))TQ−1

i+1(xi+1 − mi(xi)).

This cost function is referred to as the state control variable formulation. Here the control variables are defined as the variables
with respect to which the cost function is minimised, i.e. x0, x1,… , xN in (2). Choosing different control variables and obtaining
different formulations of the cost function is possible8. If the model is assumed to have no errors (i.e. xi+1 = mi(xi)), the
cost function simplifies as the last term in (2) is removed; this is called strong constraint 4D-Var. Rejecting this perfect model
assumption and using weak constraint 4D-Var may lead to a better analysis9.
Iterative gradient-based optimisation methods are used in practical data assimilation7, 25. These require the cost function and

its gradient to be evaluated at every iteration. In operational applications, integrating the model over the assimilation window
to evaluate the cost function is computationally expensive. The gradient is obtained by the adjoint method (see, e.g., Section
2 of Lawless7 and Section 3.2 of Talagrand25 for an introduction), which is a few times more computationally expensive than
evaluating the cost function. This makes the minimisation of the nonlinear weak-constraint 4D-Var cost function impractical.
Hence, approximations have to be made. We introduce such an approach in the next section.

2.2 Incremental formulation
Minimisation of the 4D-Var cost function in an operational setting is made feasible by employing an iterative Gauss-Newton
method, as first proposed by Courtier et al.26 for the strong constraint 4D-Var. In this approach, the solution of the weak constraint
4D-Var is approximated by solving a sequence of linearised problems, i.e. the l-th approximation of the state is

x(l+1)i = x(l)i + �x
(l)
i , i ∈ {0, 1,… , N}, (3)

where �x(l)i is obtained as the minimiser of the linearised cost function

J �(�x(l)0 , �x
(l)
1 ,… , �x(l)N ) = (�x

(l)
0 − b

(l))TB−1(�x(l)0 − b
(l)) (4)

+ 1
2

N
∑

i=0
(H (l)

i �x
(l)
i − d

(l)
i )

TR−1i (H
(l)
i �x

(l)
i − d

(l)
i )

+ 1
2

N−1
∑

i=0
(M (l)

i �x
(l)
i − �x

(l)
i+1 − �

(l)
i+1)

TQ−1
i+1(M

(l)
i �x

(l)
i − �x

(l)
i+1 − �

(l)
i+1),

where b(l) = x(l)0 −x
b, d(l)i = yi−i(x

(l)
i ), �

(l)
i = x(l)i −mi−1(x

(l)
i−1) (as in (1)) andM

(l)
i andH (l)

i are the modelmi and the observation
operatori, respectively, linearised at x

(l)
i . Minimisation of (4) is called the inner loop. The l-th outer loop consists of updating

the approximation of the state (3), linearising the model mi and the observation operatori, and computing the values b(l), d(l)i
and �(l)i . This cost function is quadratic, which allows the use of effective minimisation techniques, such as conjugate gradients
(see Chapter 5 of Nocedal and Wright27). In NWP, the computational cost of minimising the 4D-Var cost function is reduced by
using a version of the inner loop cost function that is defined for a model with lower spatial resolution, i.e. on a coarser grid28.
We do not consider such an approach in the subsequent work, because our results on the change of the spectra of the coefficient
matrices and the bounds (that are introduced in the following section) hold for models with any spatial resolution.
For ease of notation, we introduce the following four-dimensional (in the sense that they contain information in space and

time) vectors and matrices. These vectors and matrices are indicated in bold.

x(l) =

⎛

⎜

⎜

⎜

⎜

⎝

x(l)0
x(l)1
⋮
x(l)N

⎞

⎟

⎟

⎟

⎟

⎠

, �x(l) =

⎛

⎜

⎜

⎜

⎜

⎝

�x(l)0
�x(l)1
⋮
�x(l)N

⎞

⎟

⎟

⎟

⎟

⎠

,b(l) =

⎛

⎜

⎜

⎜

⎜

⎝

b(l)

−�(l)1
⋮

−�(l)N

⎞

⎟

⎟

⎟

⎟

⎠

, d(l) =

⎛

⎜

⎜

⎜

⎜

⎝

y0 −0(x
(l)
0 )

y1 −1(x
(l)
1 )

⋮
yN −N (x

(l)
N )

⎞

⎟

⎟

⎟

⎟

⎠

,
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where x(l), �x(l),b(l) ∈ R(N+1)n and d(l) ∈ Rp, p = ΣNi=0pi. We also define the matrices

L(l) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

I
−M (l)

0 I
−M (l)

1 I
⋱ ⋱
−M (l)

N−1 I

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, H(l) =

⎛

⎜

⎜

⎜

⎜

⎝

H (l)
0
H (l)
1
⋱

H (l)
N

⎞

⎟

⎟

⎟

⎟

⎠

,

where I ∈ Rn×n is the identity matrix, L(l) ∈ R(N+1)n×(N+1)n and H(l) ∈ Rp×(N+1)n. We define the block diagonal covariance
matrices

D =

⎛

⎜

⎜

⎜

⎜

⎝

B
Q1

⋱
QN

⎞

⎟

⎟

⎟

⎟

⎠

and R =

⎛

⎜

⎜

⎜

⎜

⎝

R0
R1

⋱
RN

⎞

⎟

⎟

⎟

⎟

⎠

,

D ∈ R(N+1)n×(N+1)n and R ∈ Rp×p. The state update (3) may then be written as

x(l+1) = x(l) + �x(l),

and the quadratic cost function (4) becomes

J �(�x(l)) = 1
2
||L(l)�x(l) − b(l)||2D−1 +

1
2
||H(l)�x(l) − d(l)||2R−1 , (5)

where ||a||2A−1 = aTA−1a. We omit the superscript (l) for the outer iteration in the subsequent discussions. The minimum of (5)
can be found by solving linear systems. We discuss different formulations of these in the next three subsections.

2.2.1 3 × 3 block saddle point formulation
In pursuance of exploiting parallel computations in data assimilation, Fisher and Gürol12 proposed obtaining the state increment
�x by solving a saddle point system (see also Freitag and Green14). New variables are introduced

� = D−1(b − L�x) ∈ R(N+1)n, (6)
� = R−1(d −H�x) ∈ Rp. (7)

The gradient of the cost function (5) with respect to �x provides the optimality constraint

0 =LTD−1(L�x − b) +HTR−1(H�x − d)
= − (LT� +HT�). (8)

Multiplying (6) by D and (7) by R together with (8), yields a coupled linear system of equations:

3

⎛

⎜

⎜

⎝

�
�
�x

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

b
d
0

⎞

⎟

⎟

⎠

, (9)

where the coefficient matrix is given by

3 =
⎛

⎜

⎜

⎝

D 0 L
0 R H
LT HT 0

⎞

⎟

⎟

⎠

∈ R(2(N+1)n+p)×(2(N+1)n+p). (10)

3 is a sparse symmetric indefinite saddle point matrix that has a 3 × 3 block form. Such systems are explored in the opti-
mization literature19, 20, 29. When iteratively solving these systems, it is usually assumed that calculations involving the blocks
on the diagonal are computationally expensive, while the off-diagonal blocks are cheap to apply and easily approximated. How-
ever, in our application, operations with the diagonal blocks are relatively cheap and the off-diagonal blocks are computationally
expensive, particularly because of the integrations of the model and its adjoint in L and LT .
Recall that the sizes of the blocks R, H and HT depend on the number of observations p. Thus, the size of 3 and possibly

some of its characteristics are also affected by p. The saddle point systems that arise in different outer loops vary in the right
hand sides and the linearisation states of L and H.
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Because of the memory requirements of sparse direct solvers, they cannot be used to solve the 3 × 3 block saddle point
systems that arise in an operational setting. Iterative solvers (such as MINRES30, GMRES31) need to be used. These Krylov
subspace methods require matrix-vector products with 3 at each iteration. Note that the matrix-vector product 3q, qT =
(qT1 , q

T
2 , q

T
3 ), q1, q3 ∈ R(N+1)n, q2 ∈ Rp, involves multiplying D and LT by q1, R andHT by q2, and L andH by q3. These may be

performed in parallel. Furthermore, multiplication of each component of each block matrix with the respective part of the vector
qi can be performed in parallel. The possibility of multiplying a vector with the blocks in L and LT in parallel is particularly
attractive, because the expensive operations involving the linearised modelMi and its adjointMT

i can be done at the same time
for every i ∈ {0, 1,… , N − 1}.

2.2.2 2 × 2 block saddle point formulation
The saddle point systems with 3 × 3 block coefficient matrices that arise from interior point methods are often reduced to 2 × 2
block systems19, 20. We now explore using this approach in the weak constraint 4D-Var setting.
Multiplying equation (6) by D and eliminating � in (8) gives the following equivalent system of equations

2

(

�
�x

)

=
(

b
−HTR−1d

)

, (11)

where
2 =

(

D L
LT −HTR−1H

)

∈ R2(N+1)n×2(N+1)n. (12)

The reduced matrix 2 is a sparse symmetric indefinite saddle point matrix with a 2 × 2 block form. Unlike the 3 × 3 block
matrix3, its size is independent of the number of observations.2 involves the matrix R−1, which is usually available in data
assimilation applications. The computationally most expensive blocks L and LT are again the off-diagonal blocks.
Solving (11) in parallel might be less appealing than (9): for a Krylov subspace method, the (2, 2) block −HTR−1H need not

be formed separately, i.e. only operators to perform the matrix-vector products with HT , R−1 and H need to be stored. Hence, a
matrix-vector product2q, qT = (qT1 , q

T
2 ), q1, q2 ∈ R(N+1)n, requires multiplyingD and LT by q1, L andH by q2 (which may be

done in parallel) and subsequently R−1 by Hq2, followed by −HT by R−1Hq2. Hence, the cost of matrix-vector products for the
3× 3 and 2× 2 block formulations differs in the cost of matrix-vector products with R and R−1, and the 2× 2 block formulation
requires some sequential calculations. However, notice that the expensive calculations that involve applying the operators L and
LT (the linearised model and its adjoint) can still be performed in parallel.

2.2.3 1 × 1 block formulation
The 2 × 2 block system can be further reduced to a 1 × 1 block system, that is, to the standard formulation (see, e.g., Trémolet8
and A. El-Said10 for a more detailed consideration):

(LTD−1L +HTR−1H)�x = LTD−1b +HTR−1d.

Observe that the coefficient matrix

1 = LTD−1L +HTR−1H (13)

= (LT HT )
(

D−1 0
0 R−1

)(

L
H

)

is the negative Schur complement of
(

D 0
0 R

)

in3. The matrix1 is block tridiagonal and symmetric positive definite, hence

the conjugate gradient method by Hestenes and Stiefel32 can be used. The computations with the linearised model in L at every
time step can again be performed in parallel. However, the adjoint of the linearised model in LT can only be applied after the
computations with the model are finished, thus limiting the potential for parallelism.

3 EIGENVALUES OF THE SADDLE POINT FORMULATIONS

The rate of convergence of Krylov subspace iterative solvers for symmetric systems depends on the spectrum of the coefficient
matrix (see, for example, Section 10 in the survey paper17 and Lectures 35 and 38 in the textbook33 for a discussion). Simoncini
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and Szyld34 have shown that any eigenvalues of the saddle point systems that lie close to the origin can cause the iterative solver
MINRES to stagnate for a number of iterations while the rate of convergence can improve if the eigenvalues are clustered.
In the following, we examine how the eigenvalues of the 3×3, 2×2 and 1×1 block matrices3,2, and1 change when new

observations are added. This is done by considering the shift in the extreme eigenvalues of these matrices, that is the smallest
and largest positive and negative eigenvalues. We then present bounds for the eigenvalues of these matrices. The bounds for the
spectrum of 3 are obtained by exploiting the earlier work of Rusten and Winther18. We derive bounds for the intervals that
contain the spectra of2 and1.

3.1 Preliminaries
In order to determine how changing the number of observations influences the spectra of 3, 2, and 1, we explore the
extreme singular values and eigenvalues of some blocks in3,2 and1. We state two theorems that we will require. Here we
employ the notation �k(A) to denote the k-th largest eigenvalue of a matrix A and subscripts min and max are used to denote
the smallest and largest eigenvalues, respectively.

Theorem 1 (See Section 8.1.2 of Golub and Van Loan35). If A and C are n × n Hermitian matrices, then

�k(A) + �min(C) ≤ �k(A + C) ≤ �k(A) + �max(C), k ∈ {1, 2,… , n}.

Theorem 2 (Cauchy’s Interlace Theorem, see Theorem 4.2 in Chapter 4 of Stewart and Sun36). IfA is an n×nHermitian matrix
and C is a (n − 1) × (n − 1) principal submatrix of A (a matrix obtained by eliminating a row and a corresponding column of
A), then

�n(A) ≤ �n−1(C) ≤ �n−1(A) ≤⋯ ≤ �2(A) ≤ �1(C) ≤ �1(A).

In the following lemmas we describe how the smallest and largest singular values of (LT HT ) (here L and H are as defined
in Section 2.2) and the extreme eigenvalues of the observation error covariance matrix R change when new observations are
introduced. The same is done for the largest eigenvalues ofHTR−1H assuming that R is diagonal. In these lemmas the subscript
k ∈ {0, 1,… , (N+1)n−1} denotes the number of available observations and the subscript k+1 indicates that a new observation
is added to the system with k observations, i.e. matrices Rk ∈ Rk×k and Hk ∈ Rk×(N+1)n correspond to a system with k

observations and Rk+1 and Hk+1 correspond to the system with an additional observation. We write Rk+1 =
(

Rk r
rT �

)

and

Hk+1 =
(

Hk
ℎTk+1

)

, where r ∈ Rk, � ∈ R1, � > 0 and ℎk+1 ∈ R(N+1)n correspond to the new observation.

Lemma 1. Let !min and !max be the smallest and largest singular values of (LT HT
k ), and �min and �max be the smallest and

largest singular values of (LT HT
k+1). Then

!2min ≤ �2min and !2max ≤ �2max
i.e. the smallest and largest singular values of (LT HT ) increase or are unchanged when new observations are added.

Proof. We consider the eigenvalues of LTL + HT
kHk and LTL + HT

k+1Hk+1, which are the squares of the singular values of
(LT HT

k ) and (L
T HT

k+1), respectively (see Section 2.4.2 of Golub and Van Loan
35). We can write

HT
k+1Hk+1 =

(

HT
k ℎk+1

)

(

Hk
ℎTk+1

)

= HT
kHk + ℎk+1ℎTk+1.

Then by Theorem 1,
!2min + �min(ℎk+1ℎ

T
k+1) ≤ �2min, k ∈ {0, 1,… , (N + 1)n − 1},

and since ℎk+1ℎTk+1 is a rank 1 symmetric positive semidefinite matrix, �min(ℎk+1ℎTk+1) = 0.
The proof for the largest singular values is analogous.

Lemma 2. Consider the observation error covariance matrices Rk ∈ Rk×k and Rk+1 ∈ R(k+1)×(k+1). Then

�min(Rk+1) ≤ �min(Rk) and �max(Rk) ≤ �max(Rk+1), k ∈ {0, 1,… , (N + 1)n − 1},

i.e. the largest (respectively, smallest) eigenvalue ofR increases (respectively, decreases), or is unchangedwhen new observations
are introduced.
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Proof. When adding an observation, a row and a corresponding column are appended to Rk while the other entries of Rk are
unchanged. The result is immediate by applying Theorem 2.

Lemma 3. If the observation errors are uncorrelated, i.e. R is diagonal, then

�max(HT
kR

−1
k Hk) ≤ �max(HT

k+1R
−1
k+1Hk+1), k ∈ {0, 1,… , (N + 1)n − 1},

i.e. for diagonal R, the largest eigenvalue of HTR−1H increases or is unchanged when new observations are introduced.

Proof. The proof is similar to that of Lemma 1. For diagonal Rk+1:

R−1k+1 =
(

R−1k
�−1

)

, � > 0.

Then
HT
k+1R

−1
k+1Hk+1 =

(

HT
k ℎk+1

)

(

R−1k
�−1

)(

Hk
ℎTk+1

)

= HT
kR

−1
k Hk + �−1ℎk+1ℎTk+1.

Hence, by Theorem 1,

�max(HT
kR

−1
k Hk) + �−1�min(ℎk+1ℎTk+1) ≤ �max(HT

k+1R
−1
k+1Hk+1), k ∈ {0, 1,… , (N + 1)n − 1},

and since �min(ℎk+1ℎTk+1) = 0 the result is proved.

Notation
In the following, we use the notation given in Table 1 for the eigenvalues of 3, 2 and 1, and the eigenvalues and singular
values of the blocks within them. We use subscripts min and max to denote the smallest and largest eigenvalues or singular
values, respectively, and �min denote the smallest nonzero singular value of (LT HT ). In addition, || ⋅ || denotes the L2 norm.

Matrix 3 2 1 D HTR−1H R
Eigenvalue 
i �i �i  i �i �i

Matrix (LT HT ) L
Singular value �i �i

TABLE 1 Notation for the eigenvalues and singular values.

We also use

�min = min{ min, �min}, (14)
�max = max{ max, �max}. (15)

3.2 Bounds for the 3 × 3 block formulation
To determine the numbers of positive and negative eigenvalues of3 given in (10), we write3 as a congruence transformation

3 =
⎛

⎜

⎜

⎝

D 0 L
0 R H
LT HT 0

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

D 0 0
0 R 0
LT HT I

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

D−1 0 0
0 R−1 0
0 0 −LTD−1L −HTR−1H

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

D 0 L
0 R H
0 0 I

⎞

⎟

⎟

⎠

= L̂B̂L̂T ,

where I ∈ R(N+1)n×(N+1)n is the identity matrix. Thus, by Sylvester’s law of inertia (see Section 8.1.5 of Golub and Van Loan35),
3 and B̂ have the same inertia, i.e. the same number of positive, negative, and zero eigenvalues. Since the blocks D−1, R−1
and LTD−1L +HTR−1H = 1 are symmetric positive definite matrices, 3 has (N + 1)n + p positive and (N + 1)n negative
eigenvalues. In the following theorem, we explore how the extreme eigenvalues of 3 change when new observations are
introduced.

Theorem 3. The smallest and largest negative eigenvalues of 3 either move away from the origin or are unchanged when
new observations are introduced. The same holds for the largest positive eigenvalue, while the smallest positive eigenvalue
approaches the origin or is unchanged.



8 DAUŽICKAITĖ ET AL

Proof. Let3,k denote3 where p = k. To account for an additional observation, a row and a corresponding column is added
to 3, hence3,k is a principal submatrix of3,k+1. Let

�−(N+1)n(3,k) ≤ �−((N+1)n−1)(3,k) ≤⋯ ≤ �−1(3,k) < 0 < �1(3,k) ≤⋯ ≤ �(N+1)n+k(3,k)

be the eigenvalues of3,k, and

�−(N+1)n(3,k+1) ≤ �−((N+1)n−1)(3,k+1) ≤⋯ ≤ �−1(3,k+1) < 0 < �1(3,k+1) ≤⋯ ≤ �(N+1)n+k+1(3,k+1)

be the eigenvalues of3,k+1. Then by Theorem 2:

smallest negative eigenvalues ∶ �−(N+1)n(3,k+1) ≤ �−(N+1)n(3,k),
largest negative eigenvalues ∶ �−1(3,k+1) ≤ �−1(3,k),
smallest positive eigenvalues ∶ �1(3,k+1) ≤ �1(3,k),

largest positive eigenvalues ∶ �(N+1)n+k(3,k) ≤ �(N+1)n+k+1(3,k+1).

To obtain information on not only how the eigenvalues of 3 change because of new observations, but also on where the
eigenvalues lie when the number of observations is fixed, we formulate intervals for the negative and positive eigenvalues of3.

Theorem 4. The negative eigenvalues of3 lie in the interval

I− =
[1
2

(

�min −
√

�2min + 4�2max
)

, 1
2

(

�max −
√

�2max + 4�
2
min

)]

(16)

and the positive eigenvalues lie in the interval

I+ =
[

�min,
1
2

(

�max +
√

�2max + 4�2max
)]

, (17)

where �min, �max, and �i are defined in (14), (15), and Table 1.

Proof. Lemma 2.1 of Rusten andWinther18 gives eigenvalue intervals for matrices of the formA =
(

C E
ET 0

)

. Applying these

intervals in the case C =
(

D 0
0 R

)

and ET =
(

LT HT
)

yields the required results.

We further present two corollaries that describe how the bounds in Theorem 4 change if additional observations are introduced
and conclude that the change of the bounds is consistent with the results in Theorem 3.

Corollary 1. The interval for the positive eigenvalues of3 in (17) either expands or is unchanged when new observations are
added.

Proof. First, consider the positive upper bound 1
2

(

�max +
√

�2max + 4�2max
)

. By Lemma 1, �2max increases or is unchanged when
additional observations are included. If �max = �max, the same holds for �max (by Lemma 2). If �max =  max, changing the
number of observations does not affect �max. Hence, the positive upper bound increases or is unchanged.
The positive lower bound �min is unaltered if �min =  min. If �min = �min, the bound decreases or is unchanged by Lemma 2.

Corollary 2. If �max =  max, the upper bound for the negative eigenvalues of3 in (16) is either unchanged or moves away from
the origin when new observations are added. If �min =  min, the same holds for the lower bound for negative eigenvalues in (16).

Proof. The results follow from the facts that  max and  min do not change if observations are added, whereas �min and �max
increase or are unchanged by Lemma 1.

If �max = �max or �min = �min, it is unclear how the interval for the negative eigenvalues in (16) changes, because
√

�2min + 4�2max
can increase, decrease or be unchanged, and both �max and

√

�2max + 4�
2
min can increase or be unchanged.
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3.3 Bounds for the 2 × 2 block formulation
2 given in (12) is equal to the following congruence transformation

2 =
(

D L
LT −HTR−1H

)

=
(

D 0
LT I

)(

D−1 0
0 −LTD−1L −HTR−1H

)(

D L
0 I

)

,

where I ∈ R(N+1)n×(N+1)n is the identity matrix. Then by Sylvester’s law, 2 has (N + 1)n positive and (N + 1)n negative
eigenvalues. The change of the extreme negative and positive eigenvalues of 2 due to the additional observations is analysed
in the subsequent theorem. However, the result holds only in the case of uncorrelated observation errors, unlike the general
analysis for3 in Theorem 3.

Theorem 5. If the observation errors are uncorrelated, i.e. R is diagonal, then the smallest and largest negative eigenvalues of
2 either move away from the origin or are unchanged when new observations are added. Contrarily, the smallest and largest
positive eigenvalues of2 approach the origin or are unchanged.

Proof. Matrices D and L do not depend on the number of observations. In Lemma 3, we have shown that HT
k+1R

−1
k+1Hk+1 =

HT
kR

−1
k Hk + �−1ℎk+1ℎTk+1, (� > 0) for diagonal R. Hence, when2,k denotes2 with p = k, we can write

2,k+1 = 2,k +
(

0 0
0 −�−1ℎk+1ℎTk+1

)

= 2,k + 2,

where 2 has negative and zero eigenvalues. Let

�−(N+1)n(2,k) ≤⋯ ≤ �−1(2,k) < 0 < �1(2,k) ≤⋯ ≤ �(N+1)n(2,k)

be the eigenvalues of2,k, and

�−(N+1)n(2,k+1) ≤⋯ ≤ �−1(2,k+1) < 0 < �1(2,k+1) ≤⋯ ≤ �(N+1)n(2,k+1)

be the eigenvalues of2,k+1. By Theorem 1,

smallest negative eigenvalues ∶ �−(N+1)n(2,k) − �−1�max(ℎk+1ℎTk+1) ≤ �−(N+1)n(2,k+1) ≤ �−(N+1)n(2,k),
largest negative eigenvalues ∶ �−1(2,k) − �−1�max(ℎk+1ℎTk+1) ≤ �−1(2,k+1) ≤ �−1(2,k),
smallest positive eigenvalues ∶ �1(2,k) − �−1�max(ℎk+1ℎTk+1) ≤ �1(2,k+1) ≤ �1(2,k),

largest positive eigenvalues ∶ �(N+1)n(2,k) − �−1�max(ℎk+1ℎTk+1) ≤ �(N+1)n(2,k+1) ≤ �(N+1)n(2,k).

We further search for the intervals in which the negative and positive eigenvalues of2 lie. We follow a similar line of thought
as in Silvester and Wathen37, with the energy arguments for any non-zero vector w ∈ R(N+1)n

 min||w||2 ≤ wTDw ≤  max||w||2, (18)
−�max||w||2 ≤ −wTHTR−1Hw ≤ −�min||w||2, (19)

�min||w|| ≤ ||LTw|| ≤ �max||w||, (20)
�min||w|| ≤ ||(LT HT )Tw|| ≤ �max||w||. (21)

Theorem 6. The negative eigenvalues of2 lie in the interval

I− =
[

1
2

(

 min − �max −
√

( min + �max)2 + 4�2max

)

, min
{

�1, max
{

�2, �3
}}

]

, (22)

where

�1 =
1
2

(

 max − �min −
√

( max + �min)2 + 4�2min

)

, (23)

�2 = −�−1max�
2
min, (24)

�3 =
1
2

(

 max −
√

 2max + 4�
2
min

)

, (25)
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and the positive ones lie in the interval

I+ =
[

1
2

(

 min − �max +
√

( min + �max)2 + 4�2min

)

, 1
2

(

 max − �min +
√

( max + �min)2 + 4�2max

)]

. (26)

Proof. Assume that (uT , vT )T , u, v ∈ R(N+1)n is an eigenvector of2 with an eigenvalue � . Then the eigenvalue equations are

Du + Lv = �u, (27)
LTu −HTR−1Hv = �v. (28)

We note that if u = 0 then v = 0 by (27) and if v = 0 then u = 0 by (28). Hence, u, v ≠ 0.
First, we consider � > 0. Equation (28) gives v = (I�+HTR−1H)−1LTu, where I ∈ R(N+1)n×(N+1)n. The matrix I� +HTR−1H

is positive definite, hence nonsingular. We multiply (27) by uT and use the previous expression for v to get

uTDu + uTL(I� +HTR−1H)−1LTu = � ||u||2. (29)

The eigenvalues of (I� +HTR−1H)−1 in increasing order are (� + �max)−1,… , (� + �min)−1. Then

uTL(I� +HTR−1H)−1LTu ≥ 1
� + �max

||LTu||2

≥ 1
� + �max

�2min||u||
2 [by (20)].

Hence, this inequality together with (18) and (29) gives

� ||u||2 ≥  min||u||2 +
1

� + �max
�2min||u||

2

and solving
�2 + (�max −  min)� −  min�max − �2min ≥ 0

results in
� ≥ 1

2

(

 min − �max +
√

( min + �max)2 + 4�2min

)

.

Similarly, using the upper bound from (18) and employing (29) yields the upper bound

� ≤ 1
2

(

 max − �min +
√

( max + �min)2 + 4�2max

)

.

Now consider the case � < 0. Since D − �I is positive definite, from (27) u = −(D − �I)−1Lv. Using this expression and
multiplying (28) by vT gives

−� ||v||2 = vTLT (D − �I(N+1)n)−1Lv + vTHTR−1Hv. (30)
Then using (19), (20) and the fact that the smallest eigenvalue of (D − �I)−1 is ( max − � )−1 results in inequality

−� ||v||2 ≥ �2min||v||
2 1
 max − �

+ �min||v||2,

which can be expressed as
�2 − ( max − �min)� − �min max − �2min ≥ 0,

and its solution gives the upper bound

� ≤ 1
2

(

 max − �min −
√

( max + �min)2 + 4�2min

)

= �1. (31)

Notice that the bound (31) takes into account information on observations only if the system is fully observed. Otherwise,
p < (N + 1)n and �min = 0.
We obtain an alternative upper bound for the negative eigenvalues, that depends on the observational information and might

be useful for the fully observed case, too. Equation (30) may be written as

−� ||v||2 = vT (LT HT )
(

(D − �I)−1 0
0 R−1

)(

L
H

)

v.

Using (21) the previous equation gives inequality
� ≤ −�2min�,
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where � = min{�−1max, (−� +  max)
−1}. If � = �−1max, the upper bound is

� ≤ −�−1max�
2
min = �2.

If � = (−� +  max)−1, the following inequality
�2 −  max� − �2min ≥ 0

gives the bound

� ≤ 1
2

(

 max −
√

 2max + 4�
2
min

)

= �3.

Hence,
� ≤ max{�2, �3}. (32)

The required upper bound follows from (31) and (32)
Next, we obtain the lower bound for the negative eigenvalues. Using equation (30) with the largest eigenvalue of (D − �I)−1

and other parts of (19) and (20) yields

−� ||v||2 ≤ �2max||v||
2 1
 min − �

+ �max||v||2.

Solving
�2 − ( min − �max)� − �max min − �2max ≤ 0

results in
� ≥ 1

2

(

 min − �max −
√

( min + �max)2 + 4�2max
)

.

We observe that if the system is not fully observed, then p < (N + 1)n and �min = 0, and the upper bound for the positive
eigenvalues and the upper bound for the negative eigenvalues (23) in Theorem 6 reduces to (2.11) and (2.13) of Silvester and
Wathen37.
We are interested in how the bounds in Theorem 6 change if additional observations are introduced. The change to the upper

negative bound in (22) depends on which of (23), (24) or (25) gives the bound. Hence, in Corollary 3 we comment on when
(25) is larger than (24) and Corollary 4 describes a setting when the negative upper bound is given by (25).

Corollary 3.
max{�2, �3} = �3 ⇐⇒

1
2
( max +

√

 2max + �
2
min) ≥ �max.

Proof. max{�2, �3} = �3 if and only if
1
2

(

 max −
√

 2max + 4�
2
min

)

≥ −�−1max�
2
min.

Rearranging this inequality gives
 max + 2�−1max�

2
min ≥

√

 2max + 4�
2
min.

Squaring both sides with further rearrangement results in

�2min(�
−1
max max + �

−2
max�

2
min − 1) ≥ 0.

Since �2min > 0, this is equivalent to
�2max − �max max − �

2
min ≤ 0,

from which it follows that
�max ≤

1
2

(

 max +
√

 2max + 4�
2
min

)

.

Corollary 3 can be used to check if the assumption in the following corollary holds.

Corollary 4. If the system is not fully observed and max{�2, �3} = �3, then the upper bound for the negative eigenvalues of
2 is given by (25).
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Proof. The singular values of L and (LT HT ) are the square roots of the eigenvalues of LTL and LTL +HTH, respectively.
Hence, by Theorem 1,

�2min + �min(H
TH) ≤ �2min,

where �min(HTH) ≥ 0, since HTH is symmetric positive semidefinite. Also, if p < (N + 1)n, then HTR−1H is singular, i.e.
�min = 0, and from (23) and (25)

�1 =
1
2

(

 max −
√

 2max + 4�
2
min

)

≥ 1
2

(

 max −
√

 2max + 4�
2
min

)

= �3 = max{�2, �3}.

We further describe how the negative upper bound changes if it is given by (23) or (25), including the case described in
Corollary 4.

Corollary 5. If the upper bound for the negative eigenvalues of 2 in (22) is given by �1 or �3, then the bound moves away
from the origin or stays the same when new observations are added.

Proof. �1 does not change while the system is not fully observed. When the system becomes fully observed, �min > 0 and �1
decreases. �3 decreases or stays the same by Lemma 1.

Note that if the negative upper bound in (22) is given by �2, it is unclear how the bound changes with the number of obser-
vations, since both �max and �2min increase or stay the same. The same is true for the positive bounds in (26). Only �max and �min
depend on the available observations and they are contained in elements with positive and negative signs.
The result in Corollary 5 that applies for 2 with a general R is consistent with the result in Theorem 5 that considers 2

with a diagonalR. The same holds for the result in the following corollary, that determines how the lower bound for the negative
eigenvalues of2 changes in the special case of uncorrelated observational errors.

Corollary 6. If the observation error covariance matrix R is diagonal, the negative lower bound in (22) moves away from the
origin or stays the same when additional observations are introduced.

Proof. The result follows by applying Lemma 3 to see how �max changes.

In the following corollary, we consider the intervals for the positive eigenvalues of 3 and 2 with a fixed number of
observations. It suggests that we may expect the positive eigenvalues of2 to be more clustered than those of3.

Corollary 7. The interval for the positive eigenvalues of2 is contained in the interval for the positive eigenvalues of3, i.e.
[1
2

(

 min − �max +
√

( min + �max)2 + 4�2min
)

, 1
2

(

 max − �min +
√

( max + �min)2 + 4�2max
)]

⊆
[

�min,
1
2

(

�max +
√

�2max + 4�2max
)]

.

Proof. As observed in Corollary 4,
�2max + �min(H

TH) ≤ �2max,
with �min(HTH) ≥ 0. Also, by definition �max ≥  max and the following inequality for the upper bound for the positive
eigenvalues of3 holds

1
2

(

�max +
√

�2max + 4�2max
)

≥ 1
2

(

 max +
√

 2max + 4�2max
)

.

Thus, we show that the upper bound for positive eigenvalues of3 is larger than the upper bound for positive eigenvalues of2:
1
2

(

 max +
√

 2max + 4�2max
)

≥ 1
2

(

 max − �min +
√

( max + �min)2 + 4�2max
)

⇐⇒ �min +
√

 2max + 4�2max ≥
√

( max + �min)2 + 4�2max

(squaring both sides and simplifying) ⇐⇒ 2�2max + �min
√

 2max + 4�2max ≥  max�min + 2�2max

(rearranging) ⇐⇒ 2(�2max − �
2
max) ≥ �min( max −

√

 2max + 4�2max). (33)

Inequality (33) always holds because the left hand side is positive and the right hand side is negative.
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We also show that the lower bound for the positive eigenvalues of 3 is smaller than the lower bound for the positive
eigenvalues of2:

�min ≤
1
2

(

 min − �max +
√

( min + �max)2 + 4�2min
)

.
Note that by definition �min ≤  min and the following inequality always holds

 min ≤
1
2

(

 min − �max +
√

( min + �max)2 + 4�2min
)

,

because it can be simplified to

 min + �max ≤
√

( min + �max)2 + 4�2min
(squaring both sides) ⇐⇒ ( min + �max)2 ≤ ( min + �max)2 + 4�2min

⇐⇒ 0 ≤ 4�2min.

3.4 Bounds for the 1 × 1 block formulation
The system matrix1 given by (13) is symmetric positive definite and so its eigenvalues are positive. We determine how these
change due to additional observations when the observation errors are uncorrelated (as for the extreme eigenvalues of 2 in
Theorem 5).

Theorem 7. If the observation errors are uncorrelated, i.e.R is diagonal, then the eigenvalues of1 move away from the origin
or are unchanged when new observations are added.

Proof. Let 1,k denote 1 where p = k. Then 1,k+1 = LTD−1L +HT
k+1R

−1
k+1Hk+1 = 1,k + �−1ℎk+1ℎTk+1. The result follows

by applying Theorem 1.

We formulate spectral bounds for 1 that depend on the largest and smallest eigenvalues of D and R, and the largest and
smallest singular values of (LT HT ).

Theorem 8. The eigenvalues of1 lie in the interval

I+ =
[

�2min∕�max, �
2
max∕�min

]

,

where �i and �i are defined in Table 1, and (14) and (15).

Proof. Assume that u ∈ R(N+1)n is an eigenvector of1. Then the eigenvalue equation premultiplied by uT can be written as

�||u||2 = uT (LT HT )
(

D−1 0
0 R−1

)(

L
H

)

u,

where � is an eigenvalue of1. The smallest and largest eigenvalues of
(

D−1 0
0 R−1

)

are �−1max and �
−1
min, respectively. The bounds

follow from the following inequalities that are obtained using (21):

�||u||2 ≥ �−1maxu
T (LT HT )

(

L
H

)

u ≥ �−1max�
2
min||u||

2,

�||u||2 ≤ �−1minu
T (LT HT )

(

L
H

)

u ≤ �−1min�
2
max||u||

2.

The following corollary explains how the upper bound for the eigenvalues of 1 changes with the addition of new obser-
vations. This result that applies for 1 with a general R is consistent with Theorem 7 that considers 1 with a diagonal
R.

Corollary 8. The upper bound in Theorem 8 moves away from the origin or is unchanged when new observations are added.

Proof. If �min = �min, �min decreases by Lemma 2. Otherwise �min does not change. The result follows by applying Lemma 1 to
determine the change to �max.
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It is unclear how the lower bound in Theorem 8 changeswith respect to the number of observations, because both the numerator
and denominator grow or stay unchanged by Lemmas 1 and 2, respectively.

3.5 Alternative bounds
Alternative eigenvalue bounds for symmetric saddle point matrices have been formulated by Axels-
son and Neytcheva38. These depend on the eigenvalues of the matrices LTD−1L, R, D and 1, and
� = max{|�i(

−1∕2
1 LTD−1L−1∕2

1 )|, i = 1,… , (N + 1)n}.

Theorem 9 (From Theorem 1 (c) of Axelsson and Neytcheva38). The negative eigenvalues of3 lie in the interval

I− =
[

1
2

(

�max −
√

�2max + 4�max�max(1)
)

, 1
2

(

�min −
√

�2min + 4�min�min(1)
)]

and the positive ones lie in the interval

I+ =
[

�min,
1
2

(

�max +
√

�2max + 4�max�max(1)
)]

.

Note that the lower bound for the positive eigenvalues in Theorem 9 is the same as in Theorem 4.

Theorem 10 (From Theorem 1 (a) and (b) of Axelsson and Neytcheva38). The negative eigenvalues of2 lie in the interval

I− =
⎡

⎢

⎢

⎣

−�max(1),
−�min(1)

1 + ��min(1)
 min

⎤

⎥

⎥

⎦

,

and the positive ones lie in the interval

I+ =
[

 min,
1
2

(

 max +
√

 2max + 4 max�max(LTD−1L)
)]

. (34)

We observe that the bound (34) for the positive eigenvalues, unlike our bound in Theorem 6, is independent of the number
of observations. Also, in practical applications it may not be possible to compute the upper bound for the negative eigenvalues
because of the � term.

4 NUMERICAL EXPERIMENTS

4.1 System setup
We present results of numerical experiments using the Lorenz 96 model39, where the evolution of the space variables Xj , j ∈
{1, 2,… , n}, is governed by a set of n coupled ODEs:

dXj

dt
= −Xj−2Xj−1 +Xj−1Xj+1 −Xj + F

with periodic boundary conditions. In our experiments, we set n = 40 and F = 8, since the system shows chaotic behaviour
with the latter value. The equations are integrated using a fourth order Runge-Kutta scheme40. The space increment is taken to
be Δx = 1∕n = 2.5 × 10−2 and the time step is set to Δt = 2.5 × 10−2. The system is run forN = 15 time steps.
The assimilation system is set up for identical twin experiments, i.e. the true state xt that has Gaussian model errors �i

(described in the Section 2) is generated and observations yi are obtained by adding noise to xt. The error covariancematrices that
are used to generate the model error in xt and the observation error in yi are also used for the assimilation, i.e. in the 3×3 block,
2×2 block and 1×1 block matrices. These error covariance matrices do not change over time. The observation error covariance
matrix is Ri = �2oIpi , where pi is the number of observations at time ti, (diagonal Ri is a common choice in data assimilation
experiments13, 14) and the model error covariance matrix is equal to the background error covariance matrix Qi = B = �2bCb,
where Cb is a Second-Order Auto-Regressive correlation matrix41 with correlation length scale 1.5 × 10−2. In our experiments,
the parameters are chosen so that the observations are close to the real values of the variables, and the background and the model
errors are low, in particular, we set �o = 10−1, which is about 5% of the mean of the values in xt, and �b = 5 × 10−2. yi consists
of direct observations of the variables Xj , j ∈ {1, 2,… , n} at time ti, hence the observation operator i is linear.
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Matrix 1st 2nd 3rd

3 [−2.25,−6.18 × 10−2] [−2.25,−5.97 × 10−2] [−2.25,−6.00 × 10−2]
[1.70 × 10−3, 2.25] [1.70 × 10−3, 2.25] [1.70 × 10−3, 2.25]

2 [−1.00 × 102,−6.50 × 10−2] [−1.00 × 102,−6.43 × 10−2] [−1.00 × 102,−6.46 × 10−2]
[1.78 × 10−3, 2.15] [1.79 × 10−3, 2.15] [1.79 × 10−3, 2.15]

1 [1.16, 6.32 × 103] [1.10, 6.31 × 103] [1.11, 6.31 × 103]

TABLE 2 Spectral intervals for the matrices3,2, and1 at the first 3 outer loops.

All computations are performed using Matlab R2016b. In particular, the eigenvalues are computed using the Matlab function
eig. If only extreme eigenvalues are needed, eigs is used, and the extreme singular values are given by svds.

4.2 Dependence on outer loop
We first investigate whether the spectra of the matrices 3, 2 and 1 depend on the outer loop of the incremental approach.
In this experiment, every 4tℎ model variable at every 2nd time step is observed. The saddle point and positive definite systems
are solved using the Matlab direct solver "\". The intervals for the eigenvalues at the first 3 outer loops are presented in Table 2.
Note that in these experiments, the extreme negative and positive eigenvalues oscillate around the same values throughout the
outer loops and the order of change is no larger than 10−2. We have run additional outer loops, but the intervals remain similar.
Hence, in our subsequent experiments we consider only the first outer loop.

4.3 Eigenvalue bounds
We present numerically calculated eigenvalue bounds and eigenvalues of 3, 2 and 1 and illustrate their change with the
number of observations and the quality of the spectral estimates, presented in Section 3. We consider the following observation
networks that have different numbers of observations (p):

a) 1 observation at the final time t15,

b) 20 observations, observing every 8tℎ model variable at every 4tℎ time step (at times t3, t7, t11, t15),

c) 80 observations, observing every 4tℎ model variable at every 2nd time step (at times t1, t3, t5, t7, t9, t11, t13, t15),

d) 160 observations, observing every 2nd model variable at every 2nd time step (at the same times as in observation network c),

e) 320 observations, observing every 2nd model variable at every time step,

f) 640 observations, fully observed system.

In Figure 1, we plot the eigenvalues of the matrices 3, 2, and 1 together with the bounds from Theorems 4, 6, and
8, respectively, for each of the observation networks a-f. In these experiments, as expected from Theorem 3, as the number
of observations increases, the smallest and largest negative and the largest positive eigenvalues of 3 move away from the
origin and the smallest positive eigenvalue approaches the origin. Also, as determined in Corollary 1, the upper bound for the
positive eigenvalues of3 presented in Figure 1(I) grows and the lower bound stays the same (because the eigenvalues of R do
not change) when more observations are added. The change is too small to observe in the plots, hence we report the extreme
eigenvalues of 3 and the intervals from Theorem 4 for the networks a, c, e and f in Table 3. Moreover, the negative bounds
for the eigenvalues of 3 in Figure 1(II) move away from the origin. This agrees with Corollary 2, because here �min =  min.
However, in this setting �max = �max and the same Corollary cannot be used to explain the change to the upper bound. In general,
the outer bounds (the largest positive and the smallest negative) for the eigenvalues of 3 are tight and the inner bounds (the
smallest positive and the largest negative) get tighter as the number of observations increases.
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(I) (II)

(III) (IV)

(V)

FIGURE 1 Semi-logarithmic plots of the positive and negative eigenvalues of the matrices 3 ((I) and (II)) and 2 ((III) and
(IV)), and the positive eigenvalues of1 in (V) for the different observation networks (a-f). Eigenvalues are denoted with merged
blue dots. The filled black squares mark the bounds for eigenvalues of3 in Theorem 4,2 in Theorem 6, and1 in Theorem 8.
Note that the smallest negative eigenvalues of2 coincide with the bounds.

The positive eigenvalues of2 displayed in Figure 1(III) approach the origin as observations are added, whereas the negative
eigenvalues in Figure 1(IV) move away from it. This is consistent with Theorem 5, which holds for this experiment because we
have chosen diagonal R. The lower bounds for the positive and negative eigenvalues of2 stay the same when the observation
network is changed, because the largest eigenvalue �max of HTR−1H does not change with our choice of H and R. The constant
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O.n. I− Eigenvalues I+ Eigenvalues
a [−2.193,−2.66 × 10−2] [−2.192,−2.99 × 10−2] [5.93 × 10−4, 2.198] [3.56 × 10−3, 2.195]
c [−2.249,−5.88 × 10−2] [−2.247,−6.18 × 10−2] [5.93 × 10−4, 2.254] [1.70 × 10−3, 2.251]
e [−2.360,−1.28 × 10−1] [−2.358,−1.31 × 10−1] [5.93 × 10−4, 2.365] [1.13 × 10−3, 2.362]
f [−2.410,−9.96 × 10−1] [−2.408,−9.96 × 10−1] [5.93 × 10−4, 2.416] [9.14 × 10−4, 2.413]

TABLE 3 Computed spectral intervals and bounds for 3 from Theorem 4 for different observation networks (O.n.).

O.n. I− Eigenvalues I+ Eigenvalues
a [−1.0005 × 102,−2.83 × 10−2] [−1.0001 × 102,−2.99 × 10−2] [6.03 × 10−4, 2.196] [3.91 × 10−3, 2.195]
c [−1.0005 × 102,−6.07 × 10−2] [−1.0002 × 102,−6.50 × 10−2] [6.03 × 10−4, 2.196] [1.78 × 10−3, 2.148]
e [−1.0005 × 102,−1.29 × 10−1] [−1.0004 × 102,−1.33 × 10−1] [6.03 × 10−4, 2.196] [1.15 × 10−3, 2.101]
f [−1.0005 × 102,−1.00 × 102] [−1.0005 × 102,−1.00 × 102] [6.03 × 10−4, 5.42 × 10−2] [9.35 × 10−4, 5.15 × 10−2]

TABLE 4 Computed spectral intervals and bounds for 2 from Theorem 6 for different observation networks (O.n.).

O.n. I+ Eigenvalues
a [9.72 × 10−2, 8.11 × 103] [3.23 × 10−1, 6.30 × 103]
c [4.05 × 10−1, 8.53 × 103] [1.16, 6.32 × 103]
e [1.75, 9.40 × 103] [5.21, 6.35 × 103]
f [1.00 × 102, 9.80 × 103] [1.00 × 102, 6.40 × 103]

TABLE 5 Computed spectral intervals and bounds for 1 from Theorem 8 with different observation networks (O.n.).

negative lower bound is consistent with Corollary 6. The numerical values of the intervals from Theorem 6 and of the extreme
eigenvalues of 2 for the networks a, c, e and f are presented in Table 4. The upper positive bound moves towards the origin
when the system becomes fully observed and is constant for the other networks, because the smallest eigenvalue �min ofHTR−1H
is non zero only for the fully observed system. The negative upper bound for the spectrum of 2 is given by �1 in (23) for the
fully observed system and �3 in (25) otherwise, and moves away from the origin, in agreement with Corollary 5. Notice that the
eigenvalue bounds are tight. Also, the numerical results confirm the statement of Corollary 7 that the interval for the positive
eigenvalues of3 contains the bounds for positive eigenvalues of2.
Note that2 has p distinct eigenvalues that coincide with the negative lower bound in the plots. The distinct eigenvalues are

explained by the bounds for individual eigenvalues in Corollary 9 in Appendix A, because in our experiments HTR−1H has
eigenvalues that are equal to �−2o = 102 and the largest singular value �max of L is less than 10. Hence, there are p eigenvalues
of2 in the interval [−110,−90] and (N + 1)n − p eigenvalues no further than 10 from the origin.
The eigenvalues of 1 and their bounds presented in Figure 1(V) move away from the origin when more observations are

used. This is as expected, because Theorem 7 holds for our choice of diagonalR. The variation of the bounds is explained by the
fact that with our choice of R values of �min and �max do not change, and �min and �max grow. Such behaviour of the upper bound
agrees with Corollary 8. However, as can be seen in Table 5 the upper value of the intervals in Theorem 8 are too pessimistic.
Better eigenvalue clustering away from the origin when more observations are used can speed up the convergence of iterative

solvers when solving the 1 × 1 block formulation. However, nothing definite can be said about the 3 × 3 block and 2 × 2 block
formulations: the negative eigenvalues become more clustered, but the smallest positive eigenvalues approach the origin when
new observations are introduced.
We also calculate the alternative eigenvalue bounds given in Theorems 9 and 10. With the choice of parameters and obser-

vations considered in this section, the bounds given in these theorems are not as sharp as those in Theorems 4 and 6. However,
this is not always the case, as is illustrated in Tables 6 and 7. Here �o = 1.5, �b = 1 and the observation network d is used.
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Eigenvalues of3 Bounds from Th. 4 Bounds from Th. 9
[−1.93,−1.38 × 10−2] [−2.17,−5.83 × 10−3] [−5.10,−1.33 × 10−2]
[2.98 × 10−1, 3.59] [2.37 × 10−1, 3.81] [2.37 × 10−1, 7.53]

TABLE 6 Computed spectral intervals and bounds for3 from Theorems 4 and 9 for observation network d with �o = 1.5 and
�b = 1.

Eigenvalues of2 Bounds from Th. 6 Bounds from Th. 10
[−1.97,−1.39 × 10−2] [−2.33,−5.83 × 10−3] [−15.79,−1.33 × 10−2]
[3.00 × 10−1, 3.51] [2.38 × 10−1, 3.74] [2.37 × 10−1, 7.51]

TABLE 7 Computed spectral intervals and bounds for 2 from Theorems 6 and 10 for observation network d with �o = 1.5
and �b = 1.

5 CONCLUSIONS

Weak constraint 4D-Var data assimilation requires the minimisation of a cost function in order to obtain an estimate of the state
of a dynamical system. Its solution can be approximated by solving a series of linear systems. We have analysed three different
formulations of these systems, namely the standard system with 1 × 1 block symmetric positive definite coefficient matrix 1,
a new system with a 2 × 2 block saddle point coefficient matrix 2, and the version with 3 × 3 block saddle point coefficient
matrix3 of Fisher and Gürol12. We have focused on the dependency of the coefficient matrices on the number of observations.
We have found that the spectra of3,2 and1 are sensitive to the number of observations and examined how they change

when new observations are added. The results hold with any choice of the blocks in 3, whereas we can only make inference
about the change of the spectra of2 and1 for uncorrelated observation errors (diagonal R). We have shown that the negative
eigenvalues of both 3 and 2 move away from the origin or are unchanged when observations are added. The smallest and
largest positive eigenvalues of 2, as well as the smallest positive eigenvalue of 3, approach the origin or are unchanged,
whereas the largest positive eigenvalue of3 moves away from the origin or is unchanged. The smallest and largest eigenvalues
of 1 move away from the origin or are unchanged. The extreme eigenvalues may cause convergence problems for Krylov
subspace solvers, hence wemay expect the small positive eigenvalues of2 and3 to cause these issues when new observations
are added.
We have used the work of Rusten and Winther18 to determine the bounds for the spectrum of 3 and derived novel bounds

for the spectral intervals of the saddle point matrix2 and the positive definite matrix1. We have observed that the change to
the intervals due to new observations is consistent with the change of the extreme eigenvalues of the matrices. Our numerical
experiments agree with these findings. In general, the bounds for the saddle point matrices are tight whereas the upper bounds
for the positive definite matrix are too pessimistic.
Previous work on the 3 × 3 block saddle point system considered iteratively solving the problem when inexact constraint

preconditioners of Bergamaschi et al.42 are used (see, Fisher and Gürol12, Freitag and Green14, Gratton et al.13). It was shown
that such a preconditioning approach is not optimal and further research into effective preconditioning is still an open question.
Since the convergence of Krylov subspace solvers depends on the spectrum of the coefficient matrix, a better understanding of
the spectrum of 3, 2 and 1 may help in finding a suitable preconditioner for these matrices. We suggest that including the
information on observations coming from the observation error covariance matrix R and the linearised observation operator H
could be beneficial for preconditioning, given that the spectra of all the considered matrices depend on the observations.
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APPENDIX

A BOUNDS FOR INDIVIDUAL EIGENVALUES OF 3 AND 2

We derive bounds for the individual eigenvalues of3 and2 (Theorems 13 and 14, respectively). First, we state two theorems
that are used in deriving these bounds. The notation of Table 1 is used.

Theorem 11 (See Theorem 3 in Silvester43). If A =
(

C E
F G

)

, C,E, F ,G ∈ Rn×n, and FG = GF , then

det(A) = det(CG − EF ).

Theorem 12 (Jordan-Wielandt Theorem, see Theorem 4.2 in Chapter 1 of Stewart and Sun36). Let

UHAV =
(

Σ 0
0 0

)

, Σ = diag(�1,⋯ , �n)

be the singular value decomposition of A ∈ Cm×n, m ≥ n. Then the eigenvalues of the matrix

C =
(

0 A
AH 0

)

are ±�1,⋯ ,±�n, corresponding to the eigenvectors
(

ui
±vi

)

, i = 1,⋯ , n, where ui and vi are the i-th columns of U and V ,

respectively. C also has m − n zero eigenvalues with eigenvectors
(

ui
0

)

, i = n + 1,⋯ , m.

Theorem 13. Let !i, i = 1,… , (N + 1)n + p be the i-th value in { k, �j|k = 1,… , (N + 1)n, j = 1,… , p} (the set of
eigenvalues of D and R). Then the k-th eigenvalue of3 is bounded by

positive eigenvalues: !k − �max ≤ 
k ≤ !k + �max, k = 1,… , (N + 1)n + p,
negative eigenvalues: − �max ≤ 
k+(N+1)n+p < 0, k = 1,… , (N + 1)n.

Proof. We can write3 as a sum of two symmetric matrices:

3 =
⎛

⎜

⎜

⎝

D 0 L
0 R H
LT HT 0

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

D 0 0
0 R 0
0 0 0

⎞

⎟

⎟

⎠

+
⎛

⎜

⎜

⎝

0 0 L
0 0 H
LT HT 0

⎞

⎟

⎟

⎠

= S3x3D + S3x3L .

The spectrum of S3x3D is the union of the eigenvalues of D, R and zeros. By Theorem 12, the eigenvalues � of the indefinite
matrix S3x3L are the singular values of (LT HT ) with plus and minus signs, thus �min = −�max and �max = �max.
The result follows from applying Theorem 1 to the matrices S3x3D and S3x3L .

Theorem 14. The eigenvalues of2 are bounded by

positive eigenvalues:  k − �max ≤ �k ≤  k + �max, k = 1,… , (N + 1)n.
negative eigenvalues: − �k − �max ≤ �k+(N+1)n ≤ −�k + �max, k = 1,… , (N + 1)n, (A1)

Proof. As in Theorem 13, we express2 as a sum of two symmetric matrices

2 =
(

D 0
0 −HTR−1H

)

+
(

0 L
LT 0

)

= S2x2D + S2x2L .

The rest of the proof is analogous to that of Theorem 13.
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Corollary 9. If there are p < (N + 1)n observations, (A1) in Theorem 14 becomes

−�max ≤�k+(N+1)n ≤ 0, k = 1,… , (N + 1)n − p,
−�k − �max ≤�k+2(N+1)n−p < −�k + �max, k = 1,… , p.

Proof. The result follows from noticing that −HTR−1H has (N + 1)n − p zero eigenvalues.
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