6 Alfred Hofmann et al.

HYPERMEDATA Approach: A Way to Systems Integration

Karel Skoupý1, Jana Kohoutková1, Miroslav Benešovský1, Keith G. Jeffery2
1 Masaryk University Brno, Institute of Computer Science, Botanická 68a

602 00 Brno, Czech Republic
skoupy@fi.muni.cz, {kohoutkova, mben}@ics.muni.cz

2 Information Systems Engineering, DCI, CLRC Rutherford Appleton Laboratory

Chilton, Didcot, OXON OX11 0QX, United Kingdom

kgj@rl.ac.uk
Abstract. The paper provides an overview of the Hypermedata language specifically designed to support integration of heterogeneous information systems. The core of Hypermedata integration is data interchange resting upon a sufficiently complex and powerful language allowing to describe both intra- and inter-schema relationships of individual systems. The language uses declarative descriptions of data schemas, and functional expressions for constraints inside schemas and for conversion rules defining transformations of data instances under various schemas. Metadata describing data schemas, as well as transformation specifications, is internally represented as oriented graphs. The evaluator of functional data expressions utilises lazy evaluation.
1 Introduction

The idea of the Hypermedata project, proposed to the EC Copernicus programme, was to design architecture supporting integration of autonomous information systems in healthcare. The requirement was that individual integrated systems retain their independence, as far as their existence and future development are concerned, but will appear to the user as a seamless system through a uniform user interface.

There exists a large body of research on integration of heterogeneous distributed database systems. The major solution techniques, such as global schema ([5],[6]), catalog metadata ([4]), meta-translation ([3]) and various forms of knowledge-based mediation, all provide a facility for a query to be transformed to the target information sources. The Hypermedata project set out to solve the problem of data exchange by the reconciliation of heterogeneous schemas and the transformation of instances under those schemas. Similarly to common data standards, the Hypermedata exchange utilises a jointly agreed exchange superstructure into which data structures of individual systems are converted while keeping their internal structure mutually hidden.

The paper provides an overview of the Hypermedata architecture, and of the language used for descriptions of data schemas and transformation rules. The functional aspects of the language are described in more detail, and illustrated on examples.

2 System Architecture

The basic architecture of the Hypermedata system is quite straightforward:

Fig. 1. Transformation of data instances from HIS A to standard exchange interface (Canonical Schema) and further to HIS B
For the application area (healthcare here), a standard canonical exchange schema is proposed, and each participating hospital information system (HIS) provides a specification of its export schema. A special formal language is developed capable to describe both data schemas and inter-schema relationships. In this language, a specification is provided of the canonical schema, HIS export schema, and of the rules for controlling the conversion process of data instances from the HIS schema to or from the canonical one. Both the schemas and conversion specifications are then internally represented as oriented graphs: the graphs define structures of the schemas as well as the flow of data instances inside the exchange system. The whole process is presented to the user through a hypermedia interface.

3 The Language

The Hypermedata language uses declarative descriptions for data schemas, and functional expressions for constraints inside schemas and for conversion rules defining transformations of data instances under various schemas.

The relationships between the objects in schemas (structural definitions) and the transformation rules are internally represented as oriented graphs with differentiated types of nodes and edges ([8]). This internal representation is utilised in building special data expressions, and opens further possibilities for graph comparison (analysis) of source and target schemas leading to automatic generating of conversion rules. (More information can be found in project documentation.)

The following sections will describe, and illustrate on examples, the three basic parts of the Hypermedata language – data definition, functional data expressions, and transformation definition.

3.1 Data Definition

The Hypermedata language combines features of three levels of data modelling: the conceptual one, the intensional one, and the logical one. The primary goal is to cover the conceptual level – entities, roles, associations, complex types etc. Additionally, there has to be a simple and transparent correspondence between the conceptual schema description and the data file format representing the logical level (similar to the relational model). It is for pragmatic reasons that all object attributes are specified, including those that are not interesting from the conceptual point of view – e.g., attributes realising the associations. At the logical level, a set of instances (data tuples) corresponds to every conceptual object containing attributes (entity or complex association). The intensional level, represented by constraints, naturally merges with the other two levels by specifying how the conceptual objects correspond to the logical sets of tuples. (E.g., conceptual attributes of association instance are also instances of connected entities, and this connection is determined by conditions – typically on the values of primary and foreign keys which are represented as items of logical tuples.)

Schema is defined as a sequence of definitions of types, functions, constants, entities, and associations.
Basic data types have corresponding types in relational databases, or can be easily represented. Complex data types are composed of basic types using (possibly nested) type constructors. Besides basic and simple data types, there is also a way to create a new named type that may be reused by referencing its name.

Two object types are distinguished in the language – entity types and association types. The declaration of an entity contains constraints defining properties of the conforming instances of this object type. Any entity can have an ISA clause defining a relationship implementing entity hierarchy, and the inheritance of entity attributes. An association is an object type defining relationships between entities, instances being tuples of entity objects (instances of entity types). The declaration contains associational predicate (specifying which tuples of entities are the elements of the association), constraints (defining properties of the conforming instance), cardinality constraints, and a list of attributes in case of a complex association.

Examples of Data Definition. Schema A example:
ENTITY superworkpl

 HAS pk_sup:integer; postcode:char[7]; city:char[25]; ……

 KEY pk_sup; UNDER pk_sup<>null; END

ENTITY workplace

 HAS pk_wpl:integer; postcode:char[7]; city:char[25]; ……

 KEY pk_wpl; UNDER pk_wpl<>null; END

ASSOC wpl_swpl CONN workplace[0,*], superworkpl[0,1]

 WHEN workplace.pk_sup==superworkpl.pk_sup; END

Examples of Data Definition. Canonical schema example:
ENTITY Workpl

 HAS ID_Wpl:integer; FK_SupWpl:integer; FK_Adr:integer; ……

 KEY ID_Wpl; UNDER ID_Wpl<>null; END

ENTITY Address

 HAS ID_Adr:integer; Postcode:char[5]; City:char[25]; ……

 KEY ID_Adr; UNDER ID_Adr<>null; END

ASSOC SuperWorkpl CONN sub: Workpl[0,*], super: Workpl[0,1]

 WHEN sub.FK_SupWpl==super.ID_Wpl; END

ASSOC Wpl_Adr CONN Workpl[0,*], Address[1,1]

 WHEN FK_Adr==ID_Adr; END

In the graph representation of Hypermedata data definition, both nodes and edges are of two types. The node type differs for entities and associations, the edge type differs for associations and ISA relationships (edges leading from an association to the connected entities are coloured differently from edges leading from an entity to its super-entities in ISA relationships).
3.2 Functional Data Expressions

Functional data expressions in Hypermedata language are evaluated over an instance of the data schema. The language contains common built-in functions and operators for numeric arithmetics and list processing, and also special operators for accessing data in schema instances.

Data expressions are based on functional language with lazy evaluation. This type of a language was chosen because of its efficient processing of database queries and opening a space for series of optimisations. Higher efficiency is achieved by evaluating arguments in functions only if they are required to compute the result (e.g., when processing very long lists of which only a few starting items are needed). In query execution, only as much of the result of the query as is inspected is created ([1]).

In a functional language, all expressions are referentially transparent (the value of any expression is unchanging, i.e. is independent of the order of evaluating other expressions, and has no side effects on values of other expressions). This brings benefits for verification or simpler notations at the price of disallowing destructive updates. In the Hypermedata case there are ideal conditions for the use of a functional language – the source schemas are read-only, i.e. they fulfil referential transparency. The conversion system is designed so that the already transformed instances need not be referenced (the schema is static and expressions already evaluated and stored are never changed, or referred to, during the flow of transformation).

The most interesting list processing operator in a functional language is list comprehension (also known as ZF-expression) supporting more sophisticated iteration. The usual form of such expression is:

[<expression> | <list_generator> ... & ... <list_selector> ...]

The result of evaluating the comprehension is a new list, computed of one or more existing (source) lists: the elements of the new list are determined by repeatedly evaluating <expression>, as controlled by the qualifiers (<list_generator>, <list_selector>, or a sequence of these). <list_generator> serves for generating the source list (or a Cartesian product of source lists), and <list_selector> is a Boolean-valued expression providing selection from the source list (must be satisfied for an element to be included in the result). Thus, each element of the selected list is transformed using the <expression>, and all the individual results together form the resulting list. Functional expressions may include applications of recursively defined functions which makes the language computationally powerful (can be proved as Turing-complete), and allows for very efficient implementation. In the Hypermedata language the qualifiers were extended by the let qualifier of the form: variable := expression.

Besides direct use, list comprehensions are used in Hypermedata for constructing special data expressions that are based on schema structure. A few special operators are listed below with semantics explained in terms of list comprehensions:

· Operators '+>' and '–>' allow to access associated entities in binary associations. Operator +> provides, for a particular instance of an entity (instance expr of from_entity), the list of all instances of another entity (to_entity) associated to this instance by an association (assoc). Operator –> provides the first item of the list.

Syntax:
expr +> assoc

Semantics:
[<to_entity variable>

| <let qualifier for instance expr of from_entity>;

 <generator for to_entity>;

 <WHEN conditions of assoc>]

The graph representation of data definition is used here to find to_entity when from_entity and assoc are given, and to verify that the construction is unambiguous.

· Operator SETOF allows to access sets of instances of any object (entity or associa​tion) of a given type from a particular schema instance.

Syntax:
SETOF assoc
Semantics:
[<compound association instance>

| <generators for connected entities>;

 <WHEN conditions of assoc>]

where <compound association instance> stands for an instance of the association assoc connecting instances of entities that are values of variables in generators in appropriate order, and <generators for connected entities> stands for a sequence of generators. The generators have the form variable <– SETOF entity where variable is named according to the declaration of entity in assoc.

· Operator JOIN

Syntax:
[expr JOIN assoc | qualifiers]

Semantics:
[expr
| <generators for connected entities not bound in qualifiers>;

 <qualifiers>;

 <WHEN conditions of assoc>]
3.3 Transformation Definition

Transformation is a process of generating an instance of the target schema from an instance of the source schema. It means building lists of instances of entities and associations (and their attributes) in the target schema from lists of instances from the source schema. This process is controlled by transformation rules serving for decomposition of the transformation into blocks which describe the way instances of one target entity (or target association) are constructed from instances of source entities.

The transformation rule has the form:

BUILD rule_name: target_object <– source_object

 LET <let q0ualifiers>

 WHEN
<selector conditions>

 ASSIGN
<target object attribute 1> := expression1;

<target object attribute 2> := expression2;……

 END

where rule_name is optional, target_object specifies the target entity or association having attributes (the object, i.e. the list of its instances, can be constructed as a union of results of more rules), and source_object specifies (possibly more) source entities or associations (each source object can be used in more than one rule). Specification of selector conditions determines which instances of the source list are to be transformed, and in the assignment section, transformation expressions over instances of source objects produce values for each target object attribute (using data expressions described in the previous sections). The attribute assignment section may be preceded by a LET section assigning expressions from the source schema to variables (to be referenced from the assignment section). One or several assignments are used for either identifying the currently created instance of target object (primary key) or identifying an object related by association (foreign key).

Since data expressions are functional without side effects, they can be used as transformation expressions and list selectors. Indeed, the construction target_object <– source_object is a list generator making the variable target_object range over the elements of source_object list (for generality we can permit more than one source object). WHEN clause then specifies the source list selector. In a classical functional language the result is computed as complete tuples; in the case of Hypermedata transformation rules, individual transformation expressions are provided for each named item (but common sub-expressions can be shared using the LET section) so the difference is only syntactic. Another difference is that some transformation expressions can reference also other than the source objects using the operations of accessing associated objects (operator –>). In fact, this is a combination of list generator and list selector although such expressions affect only the resulting values, not the cardinality of the resulting set (this depends exclusively on the qualifiers).

Examples of Transformation Definition. Transformation from Canonical schema to HIS A schema:

FUNCTION getSuperWpl (wpl: TYPEOF Workpl): TYPEOF Workpl

 { (super JOIN SuperWorkpl | sub := wpl); }

BUILD superworkpl <- Workpl

 LET a:=->Wpl_Adr; WHEN getSuperWpl(Workpl) = null;

 ASSIGN pk_sup:=gen_id(); city:=a.City;

 postcode:=TransfPC(a.PostCode); …… END

BUILD workplace <- Workpl

 LET sw := getSuperWpl(Workpl); WHEN super<>null;

 ASSIGN pk_wpl:=gen_id(); pk_sup:=gen_FK(superworkpl,sw);

 city:=a.City; postcode:=TransfPC(a.PostCode); …… END

Note on Keys. Special built-in functions gen_id, gen_fk and gen_FK are provided for generating unique primary and foreign keys.

4 Links and Related Work

The paper outlined the basic Hypermedata architecture and data exchange principles, and concentrated on principal features and properties of the data&transformation definition language. Some interesting features of the Hypermedata system that are under further development remained outside the scope of the paper – such as the analyser (semi-automatically generating transformation definitions, based on graph comparisons of data schemas), or the hypermedia viewer/browser (providing uniform presentation of the exchanged data, again based on the internal graph representation). Detailed description of these components can be found in the Hypermedata project documentation.

The authors of the paper wish to acknowledge the EC Copernicus Programme that provided funds to carry out the work on the project, and to set a base for further theoretical work as well as healthcare applications.

References

1.
Paton, N., Cooper, R., Williams, H., Trinder, P.: Database Programming Languages. Prentice-Hall, 1996. Chapter 4: Functional Data Languages.
2.
Dick, R.S., Steen, E.B. (eds.): The Computer-Based Patient Record. National Academy Press, Washington, D.C., 1991.

3.
Howells, D.I.; Fiddian, N.J., Graw, W.A.: A Source-to-Source Meta-Translation System for Relational Query Languages. Proceedings VLDB13, Brighton, 1987.

4.
Jeffery, K.G., Lay, J.O., Miquel, J.F., Zardan, S., Naldi, F., Vannini Parenti, I.: IDEAS: A System for International Data Exchange and Access for Science. Information Processing and management 25(6) pp 703‑711. 1989.

5.
Saltor, F., Castalanos, M., Garcia-Solaco, M.: Suitability of Data Models as Canonical Models for Federated Databases. SIGMOD Record 20,4. 1991.

6.
Sheth, A.P., Larson, J.: Federated Database Systems for Managing Heterogeneous, Distributed and Autonomous Databases. ACM Computing Surveys 22,3. 1992.

7.
Peyton John, S.L.: The Implementation of Functional Programming Languages. Prentice-Hall, 1987.
8.
Šmídek, M.: Tools for Systematic Program Testing. PhD thesis, J.E.Purkyně University, Brno, 1985.
9.
Gray, P.M.D.: Logic, Algebra and Databases. Ellis Horwood, 1984.

Convertor

Canonical to HIS B

Convertor

HIS A to Canonical

Exchange Interface

Canonical Schema

HIS B

HIS A

