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Chapter 1

Neutron Transport Codes:

application

In any branch of science, in modern era, it is often not trivial to see, from the results of

an experiment, the analytical model predicted or to get the physical insight hiding behind

them. Scientists need to develop new techniques and refine year by year experimental set-

ups in order to get rid off background and unphysical corrections to the real data. More

problems arise where is physically impossible to remove the backgrounds or, in more simple

cases, predict complex interactions.

In this work we are going to validate the reliability of a new tool of analysis for neu-

tron scattering experiments. There are already a numerous set of software available at the

moment but in most case they are not optimized exclusively on neutron transport. McStas

[1, 2, 3] is a program package relatively new (1999) based on a meta-language designed ray-

tracing calculations for neutrons. The program provides a consistent library of beam line

components that can be easily arranged to reproduce accurately modern beam lines. The

main limitation is that this software is based on thermal neutron scattering, it was originally

developed to simulate a triple-axis spectrometer, so we are extending the energy range of

the simulations trying to replicate a deep inelastic neutron scattering experiment.

The most valuable property of the neutrons is their neutral charge, that permits to such

particles to ignore the Coulomb interaction and penetrate deep inside materials. This is,

of course, a limitation as well: no Coulomb interaction implies difficult manipulation or

confinement/shielding of the particles. Neutrons are usually emitted isotropically and need

to be deflected by subsequent scattering on proper materials in order to guide them along

beam lines. After hitting a sample they scatter again and can interact with many parts
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of an experimental environment before reaching the detector. This adds many different

background contributions and that cannot be predicted and corrected analytically, at least

not all of them.

The first step towards a good experiment design is to choose wisely environment materi-

als. For example: the sample container contribution to the signal needs to be relatively low;

depending on the experiment is often used Vanadium or Aluminum. For neutrons diffrac-

tion experiments the coherent cross section is taken into account (see ch. 2.2.1) and the

Vanadium has a coherent cross section of 0.0184 b, it is transparent to neutrons with energy

of the order of 25 meV. For deep inelastic neutron scattering experiments the Aluminum is

preferable because one use instead the total cross section that is 1.503 b.

The shielding material, on the other hand, need to have strongly interacting properties.

In most cases we use a mixture of different nuclei. Light-weight nuclei (like hydrogen) can

termalize neutrons and lower their energy; then, high-absorbing nuclei capture such slowed

neutrons (like boron, cadmium and gadolinium).

Even considering the best materials choice in every aspect and components, there are

still numerous interaction with basically everything around the sample. At this point we

need some help to handle complex geometries, we can not describe analytically every single

component in the blockhouse, but we can delegate this boring and complex calculations to

computers.

Devoted to describing neutron motion in media and the corresponding laws, neutron

transport theory is the scientific framework at the base of transmutation and activation

reactions, among other topics.[4]

There are two methods for neutron transport calculations: the Monte Carlo method

and the deterministic method. The Monte Carlo method is a numerical method based on

probability and statistical theories. It is based on the concept of random sampling, we

do not need to calculate every possible path taken by the neutron to reach the detector

but only a subset of this set of path. This subset of random paths, however, needs to be

uniform distributed. It can describe the characteristics of randomly moving particles and

the process of physical experiments. In contrast, in the deterministic method, a group of

mathematical-physical equations is first built up to explain the physical characteristics of

the target system. Then, by discretizing the variables including direction, energy, space and

time in these equations, an approximate solution can be obtained with numerical calculation.

Referring to figure 1.1 one can understand the different approach. Suppose one wants

to calculate the ratio between the circle area (gray) and the square area (white). In the

deterministic case (right) one could subdivide N times the total area and counts how many
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Figure 1.1: Schematic

approach difference be-

tween a Monte Carlo

measure (left) and a

deterministic measure

(right).

squares are completely gray. Dividing this number by the total number of squares we

obtain an estimation of π. Solving the same task using a Monte Carlo algorithm is done by

generating N random points inside the main square from a uniform distribution. Calculating

the ratio

lim
N→∞

Points inside the circle
N

= 4π (1.1)

for N → ∞ we obtain an estimation of π. The two approach reach the same result but,

based on the complexity of the geometries, the time needed to obtain a good estimation can

be different. To our case the Monte Carlo technique is the reasonable solution.

In this Thesis we are going to lay the foundation for a new simulation tool, developed in-

side the McStas package, that can help instrument scientists and researchers to analyze and

optimize epithermal neutron scattering experiments performed on the VESUVIO electron

volt spectrometer. Until now there was only one code that could simulate the multiple-

scattering contribution on VESUVIO, the DINSMS code by Mayers et al [5]. The difficulty

to simulate such instrument lies in the various branches of physics involved into a measure.

Both nuclear and condensed-matter physics need to be handled inside the code and most

of the software package available (like MCNPX[6]) are heavily optimized for nuclear inter-

actions. McStas is becoming a standard tool for thermal neutron spectroscopy and most

instruments1 of this type can be easily simulated [7, 8, 9]. In this work we tried to cover

the lack of components (see ch. 4) that can simulate electron Volt neutrons, writing a

new component that uses impulse approximation to describe neutrons interaction. This is a

step forward to correct multiple-scattering contribution in the measure, since the DINSMS

code can only simulate a homogeneous mixture built from the materials of sample and its

container. McStas, on the other hand, can handle distinct geometries and, in future, the

multiple scattering between the geometries.

1A consistent set of already implemented instruments can be found in http://www.mcstas.org/download/

components/
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Chapter 2

Neutron and Matter

2.1 Introduction

Before presenting the computational approach we recall in this chapter some useful and

basic concepts about the neutron-matter interaction.

Basic properties of neutron

mass 1.675× 10−27 kg

charge 0

spin h̄
2

magnetic dipole moment −1.913µN

Most of our discussion is based on the cross-section concept. It characterizes the probability

that a particular interaction will occur. We can define this quantity depending on the

interaction under study: coherent cross-section, incoherent cross-section, neutron-gamma

capture cross-section and so on. The cross-section is typically denoted σ and measured in

units of area . The standard unit for measuring a nuclear cross section is the barn, which is

equal to 10−28 m2 or 10−24 cm2. The concept of a nuclear cross section can be understood

physically in terms of characteristic target area, where a larger (fig 2.1) area means a larger

probability of interaction.

A scattering event of a neutron by a sample is generally characterized by a change in its

momentum and energy. In fig 2.2 we can see a scheme describing an incident particle with

a wavevector ki and angular frequency ωi. After the scattering event the particle has a new

wavevector and angular frequency kf and ωf . One can define the momentum transfer and

the energy transfer:
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Figure 2.1: Graphical detail of var-

ious cross section of 235U. The cross

section are referred to thermal neu-

tron scattering.

h̄ki − h̄kf = h̄q (2.1)

where q = ki − kf , and

E = h̄ω where ω = ωi − ωf (2.2)

Consider a monochromatic beam of neutrons, all with the same energy E, incident

on a target (fig 2.2). Suppose we set up a neutron counter and measure the number of

neutrons scattered in a given direction as a function of their energy, E′. We define the

double differential cross-section by

d2σ

dΩdE′ =

(
Number of neutrons scattered per second into a small solid angle dΩ in

the direction θ,φ with final energy between E′ and E′ + dE′

)
ΦdΩdE′

(2.3)

where Φ is the flux of the incident neutrons. Suppose we do not analyze the energy of

the scattered neutrons, but simply count all the neutrons scattered into the solid angle

dΩ around the direction θ, φ. The cross-section corresponding to these measurements, the

differential cross-section is defined by

dσ

dΩ =
(number of neutrons scattered per second into dΩ in the direction θ, φ )

ΦdΩ (2.4)

The total scattering cross-section is defined by the equation

σtot =
(total number of neutrons scattered per second)

Φ (2.5)
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From the previous definitions one has:

dσ

dΩ =
∫ ∞

0

d2σ

dΩdE′

σtot =
∫ (

dσ

dΩ

)
dΩ

(2.6)

Figure 2.2: A schematic representation of a particle being scattered by a sample. Figure adapted

from ref [10]

Before going deep into the physics of a single reaction (in this thesis we are going to

investigate mainly Compton Scattering in ch. 2.3) we can consider some general derivations

used in this work.

2.1.1 A simple interaction

Consider a thermal neutron,i.e. a neutron with an energy comparable with kBT ' 25meV.

The neutron wavelength is of the order of 10−10 m, much larger than typical distance of

interaction by nuclear forces which cause the scattering (from 10−14 m to 10−15 m). In this

scenario the scattering, analyzed in terms of partial waves [11], comes entirely from the

S waves (azimuthal quantum number l = 0), which are spherically symmetric. We will

consider the origin of the axes to be at the position of the rest nucleus and the z axis along

the direction of k, the wavevector of the incident neutrons. We can represent the incident

neutrons by a plane-wave wavefunction:

ψinc = exp (ikz) (2.7)

As the scattering is spherically symmetric, the wavefunction of the scattered neutrons at

the point r can be written in the form

7



Table 2.1: Table of naming convention of neutrons

Neutrons Energy range Wavelength [Å] Velocity [m/s]

ultra cold ≤ 300 neV ≥ 500 ≤ 8

very cold 300 neV - 0.12 meV 52.2 – 26.1 7.5 – 152

cold 0.12 meV - 12 meV 26.1 – 2.6 152 – 1515

thermal 12 meV - 500 meV 2.6 - 0.9 1515 - 4374

epithermal 500 meV - 1keV 0.9 - 0.28 4374 - 13.8 103

intermediate 1keV - 0.8MeV

fast > 0.8MeV

ψsc = − b
r

exp(ikr) (2.8)

where b is a constant, independent of the angles θ and φ. The magnitude of the wavevec-

tor is unchanged, the energy of thermal neutrons is too small to change the internal energy

of the nucleus. In this first approximation we are taking the position of the nucleus fixed, so

the neutron cannot transfer kinetic energy to the nucleus. The scattering in this assumption

is referred to as elastic: neutron energy is conserved. The quantity b in ψsc is known as the

scattering length. This quantity is complex and the imaginary part is directly connected to

the capture cross section. Some nuclei form a compound nucleus (original nucleus plus the

neutron) with energy close to an excited state. Since the imaginary part of the scattering

length corresponds to absorption, such nuclei strongly absorb neutrons. In principle, one

can calculate the values of b from within nuclear models provided a detailed knowledge of all

the quantum numbers of the neutron and nucleus involved. In practice, the values of b do

not show any trivial dependence on the atomic and atomic mass numbers Z, A, as showed

in Figure 2.3.

Following the previous definitions, we can calculate the cross-section dσ/dΩ for scattering

from a single fixed nucleus. If v is the velocity of both incoming and scattered neutrons, the

number of neutrons passing through an area dS per second is

v dS |ψsc|2 = v dS b
2

r2

= vb2dΩ
(2.9)

The flux of incident neutrons is

Φ = v |ψinc|2 (2.10)
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Figure 2.3: Neutron scattering (top) and absorption (bottom) cross section in function of Atomic

Number up to Sn. Data is retrieved from tables on NIST Center for Neutron Research. 1

From the definition of the cross-section

dσ

dΩ = vb2dΩ
ΦdΩ = b2 (2.11)

so we obtain

σtot = 4πb2 (2.12)

2.2 Neutron Scattering

So far, we have neglected the spin state and magnetic interaction of the neutrons. This

means that a neutron state is completely describer by its momentum, i.e. wavevector. We

are going to derive a general expression for the double differential cross-section d2σ/dΩ dE′

for a specific transition of the scattering system from one of its quantum states to another.

Suppose we have a neutron with wavevector k incident on a scattering system in a status

λ. Denote by ψk the neutron wavefunction and χλ the scattering system wavefunction.

Suppose the neutron interacts via a potential v, the final neutron wavevector is k′ and the

final scattering system state is λ′. If N is the number of nuclei in the scattering system we

write Rj(j = 1, . . . N) the position vector of the jth nucleus, and with r the position of the

neutron.
1https://www.ncnr.nist.gov/resources/n-lengths/list.html
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We start considering the single differential cross section dσ/dΩ representing the sum

of all processes in which the state of the scattering system changes from λ to λ′ and the

neutron changes from k to k′. Namely:

(
dσ

dΩ

)
λ→λ′

= 1
Φ

1
dΩ

∑
k′ in dΩ

Wk,λ→k′,λ′ (2.13)

Where Wi→f is the number of transitions per second from initial to final state. This

quantity can be evaluated through the Fermi’s golden rule

Wk,λ→k′,λ′ = 2π
h̄
ρk′ |〈k′λ′| v |kλ〉|2 (2.14)

Where ρk′ is the number of momentum states in dΩ per unit energy range for neutron

in the state k′

ρk′ = V

2πk
′m

h̄2 dΩ (2.15)

The matrix element is given explicitly by

〈k′λ′|v|kλ〉 =
∫
ψ†k′χ

†
λ′v(R, r)ψλχk dR dr (2.16)

where dR = dR1 dR2 . . . dRN . Using the box normalization we can use as neutron function

ψk = 1√
V

exp(ik · r) (2.17)

using the plane wave for neutron states we can write the matrix element

〈k′λ′|v|kλ〉 =
∫
ψ†k′χ

†
λ′v(R, r)ψλχk dR dr

= 1
V

∫
e−ik

′·rχ†λ′v(R, r)eik·rχλ dR dr
(2.18)

Now the flux of the incident neutrons is the product of their density and velocity, i.e.

Φ = 1
V

h̄

m
k (2.19)

so we finally can write from 2.13(
dσ

dΩ

)
λ→λ′

= k′

k

(
m

2πh̄2

)2
|〈k′λ′| v |kλ〉|2 (2.20)

considering the conservation of energy we write(
d2σ

dΩ dE′

)
λ→λ′

= k′

k

(
m

2πh̄2

)2
|〈k′λ′| v |kλ〉|2 δ(Eλ − Eλ′ + E − E′) (2.21)
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Moving to the Fourier transform we can simplify the mathematics and obtain some useful

results. Consider the Fourier transform of the potential function

〈k′λ|v|kλ〉 =
∑
j

∫
e−ik

′·rχ†λ′vj (r−Rj) eik·rχλ dR dr

=
∑
j

vj(q)〈λ′|eiq·Rj |λ〉
(2.22)

where xj = r−Rj

vj(q) =
∫
vj(xj)eiq·xj dxj (2.23)

〈λ′|eiq·Rj |λ〉 =
∫
χ†λ′e

iq·Rjχλ dR (2.24)

and

q = k− k′ (2.25)

Considering a single fixed nucleus in the origin in 2.22, as to have R1 = 0, and λ′ = λ,

〈k′λ|v|kλ〉 =
∫
χ†λχλ dR1

∫
v(r)eiq·r dr

=
∫
v(r)eiq·r dr

(2.26)

inserting result in 2.20, togheter with k′ = k gives

dσ
dΩ =

(
m

2πh̄2

)2 ∣∣∣∣∫ v(r)eiq·r dr
∣∣∣∣2 (2.27)

Nuclear scattering of the free neutron by the nucleus is mediated by the strong nuclear

force. The wavelength of thermal (several Å) and cold neutrons (up to tens of Angstroms)

typically used for such investigations is 4-5 orders of magnitude larger than the dimension

of the nucleus (femtometres). With these assumptions one can describe the spatial density

function of the nucleus as a delta function. The potential then can be described as

v(r) = aδ(r)

where a is a real constant. Then∫
v(r)eiq·r dr = a

∫
δ(r)eiq·r dr = a (2.28)

but from 2.11 and 2.27 we obtain:

a = 2πh̄2

m
b (2.29)

so at the end we can define the Fermi pseudopotential

v(r) = 2πh̄2

m
bδ(r) (2.30)
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The scattering length defined in 2.8 relates to a fixed nucleus and is know as the bound

scattering length. If the nucleus is free, the scattering must be treated in the centre-of-mass

system. We can use the same result as if the nuclei were fixed, but using µ instead of m

µ = mM

m+M

were M is the mass of the nucleus. The scattering length for this process is called the free

scattering length bf . From the pseudopotential

bf
µ

= b

m
⇒ bf = b

1 +m/M

so, for example, for hydrogen bf = b/2. Now, using the Fourier transform of the pseudopo-

tential and inserting it into 2.21

(
d2σ

dΩ dE′

)
λ→λ′

= k′

k

∣∣∣∣∣∣
∑
j

bj〈λ′
∣∣eiq·Rj

∣∣λ〉
∣∣∣∣∣∣
2

δ(Eλ − Eλ′ + E − E′) (2.31)

so using the integral representation of the δ-function we can write(
d2σ

dΩ dE′

)
λ→λ′

= k′

k

1
2πh̄

∑
jj′

bj′bj

∞∫
−∞

〈λ
∣∣e−iq·Rj′

∣∣λ′〉
× 〈λ′|eiHt/h̄eiq·Rje−iHt/h̄|λ〉e−iωt dt

(2.32)

In real-life experiments we do not measure the cross-section for a specific state transition

λ→ λ′ but we are measuring the 2.3. We need to sum over all final states and than average

over all the initial states. If pλ is the probability that the scattering system is in the state

λ.

d2σ

dΩ dE′ =
∑
λλ′

pλ

(
d2σ

dΩ dE′

)
λ→λ′

= k′

k

1
2πh̄

∑
jj′

bj′bj

∞∫
−∞

e−iωt dt
∑
λ

pλ

× 〈λ|e−iq·Rj′ eiHt/h̄eiq·Rje−iHt/h̄|λ〉

(2.33)

using the Heisenberg operator Rj(t)

d2σ

dΩ dE′ = k′

k

1
2πh̄

∑
jj′

bj′bj

∞∫
−∞

〈e−iq·Rj′ (0)eiq·Rj(t)〉 exp−iωt dt (2.34)

were we used 〈A〉 =
∑
λ pλ〈λ|A|λ〉]
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2.2.1 Coherent and incoherent scattering

We can divide the contributions to the double-differential cross section in coherent scatter-

ing, containing interference terms from the correlations in the positions of the atoms, or

incoherent scattering, where we can consider the single atoms as isolated entities. Consider

a scattering system with a single element where the scattering length b varies from a nucleus

to another owing to nuclear spin or the presence of isotopes or both. Let the value bi occur

with relative frequency fi, i.e. ∑
i

fi = 1

Then the average value of b for the system is

〈b〉 =
∑
i

fibi

and the average value of b2 is

〈b2〉 =
∑
i

fib
2
i

now consider that the system contains a large number of nuclei. Since bj varies for each

nucleus and we cannot correlate it with position Rj, we need to take the average value of

bj′bj

d2σ

dΩ dE′ = k′

k

1
2πh̄

∑
jj′

〈bj′bj〉
∫
〈j′, j〉e−iωt dt (2.35)

where 〈j′, j〉 = 〈e−iq·Rj′ (0)eiq·Rj(t)〉. On the assumption of no correlation between the b

values of different nuclei

〈bj′bj〉 =

 〈b〉2, for j′ 6= j

〈b2〉, for j′ = j
(2.36)

We can split the summation separating the values arising from the correlation of a nucleus

with itself and the one with other distinct nuclei

d2σ

dΩ dE′ = k′

k

1
2πh̄ 〈b〉

2
∑
j′ 6=j

∫
〈j′, j〉e−iωt dt+ k′

k

1
2πh̄ 〈b

2〉
∑
j

∫
〈j, j〉e−iωt dt (2.37)

which can be written as

d2σ

dΩ dE′ = k′

k

1
2πh̄ 〈b〉

2
∑
j′j

∫
〈j′, j〉e−iωt dt

+ k′

k

1
2πh̄

(
〈b2〉 − 〈b〉2

)∑
j

∫
〈j, j〉e−iωt dt

(2.38)
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so finally we can group the two contributions in coherent cross-section and incoherent cross-

section. (
d2σ

dΩ dE′

)
coh

= σcoh
4π

k′

k

1
2πh̄

∑
j′j

∞∫
−∞

〈e−iq·Rj′ (0)eiq·Rj(t)〉e−iωt dt

(
d2σ

dΩ dE′

)
inc

= σinc
4π

k′

k

1
2πh̄

∑
j

∞∫
−∞

〈e−iq·Rj(0)eiq·Rj(t)〉e−iωt dt

(2.39)

where σcoh = 4π〈b〉2 and σinc = 4π
(
〈b2〉 − 〈b〉2

)
2.2.2 Correlation functions in nuclear scattering

We have found a relation between the double difference cross sections for incoherent and

coherent scattering and the thermal average of position operator Rj(t). We can rewrite the

equations 2.39 introducing the correlation functions. These function are not only useful for

calculating various properties of the scattering system, but they also provide insight into

the physical significance of the terms that occur in the scattering cross-section. Consider

the coherent double differential cross section as defined above:(
d2σ

dΩ dE′

)
coh

= σcoh
4π

k′

k

1
2πh̄

∞∫
−∞

∑
j′j

〈e−iq·Rj′ (0)eiq·Rj(t)〉e−iωt dt

= σcoh
4π

k′

k

1
2πh̄

∞∫
−∞

NI(q, t)e−iωt dt

(2.40)

were we have defined the intermediate scattering function

I(q, t) = 1
N

∑
j′j

〈e−iq·Rj′ (0)eiq·Rj(t)〉 (2.41)

where N is the number of nuclei in the scattering system. We next define the functions

G(q, t) and S(q, ω) by

G(r, t) = 1
(2π)3

∫
I(q, t)e−iq·r dq

S(q, ω) = 1
2πh̄

∫
I(q, t)e−iωt dt

(2.42)

Using the inverse relations for Fourier transform

I(q, t) =
∫
G(r, t)eiq·r dr

I(q, t) = h̄

∫
S(q, ω)eiωt dω

(2.43)

and so

G(r, t) = h̄

(2π)3

∫
S(q, ω)e−i(q·r−ωt) dq dω

S(q, ω) = 1
2πh̄

∫
G(r, t)ei(q·r−ωt) dr dt

(2.44)
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G(r, t) is the time-dependent pair-correlation function of the scattering system. S(q, ω) is

know as the scattering function of the system.

Now we can separate the sum over the same nuclei position from the total sum. In this

way we are defining a self correlation functions, the self intermediate function:

Is(q, t) = 1
N

∑
j

〈e−iq·Rj(0)eiq·Rj(t)〉 (2.45)

from which we can obtain the self time-dependent pair-correlation function and the incoher-

ent scattering function

Gs(r, t) = 1
(2π)3

∫
Is(q, t)e−iq·r dq

Si(q, ω) = 1
2πh̄

∫
Is(q, t)e−iωt dt

(2.46)

Now we can relate directly the pair-correlation functions to the double differential cross

section. (
d2σ

dΩ dE′

)
coh

= σcoh
4π

k′

k
NS(q, ω)(

d2σ

dΩ dE′

)
inc

= σinc
4π

k′

k
NSi(q, ω)

(2.47)

2.3 Neutron Compton Scattering

Despite the importance of the coherent neutron scattering in this thesis we are going to focus

only on the incoherent contribution. The main reason of this choice is that the VESUVIO

spectrometer scientific programme mainly concerns Deep Inelastic Neutron Scattering, even

if the collected data can cover more aspects and interaction (like diffraction patterns). The

basic difference between elastic and inelastic scattering is that in elastic scattering the energy

of neutron is conserved before and after interaction:

E = E′ ⇒ k = k′ (2.48)

In inelastic scattering we need to consider that a neutron can increase (k′ > k) or lower

(k′ < k) its energy:

k =
2π
λ
6=

2π
λ′

= k′ (2.49)

the vector q = k− k′ assume the general formulation:

q2 = k2 + k′2 − 2kk′ cos(2θ) (2.50)

At high energies, above typical excitation energies in a condensed matter system, the dou-

ble differential neutron-scattering cross section for a single atomic species is relate to the
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dynamic structure factor S(q, ω) (we are not separating for now the coherent or incoherent

contribution) via 2.47 as
d2σ

dΩdE′ =
√
E′

E

σ

4πS(q, ω) (2.51)

where we have used

E = h̄2k2

2m ⇒ k =
√

2mE
h̄

In eq. 2.51: E and E′ energies of the incident and scattered neutron respectively, h̄q and

h̄ω the momentum and energy transfers and σ the total scattering cross section:

σ = 4π
[
|b2|+ (|b2| − |b|2)

]
= 4π|b2| (2.52)

where b is the neutron-scattering length for the target nuclide. Note again that in this

work and theory we are not considering magnetic contributions. The previous equation

separate two contributions to the scattering process. As before explained (section 2.2.1)

the first term describe a coherent process, where neutron were used in much the same way

as X-ray crystallography, the latter the incoherent, were neutron lose information about

structure and from we can extrapolate information about diffusion process or vibrational

dynamics of atoms in condensed matter. In our case, with high energy transfer above few

eV, all scattering can be ascribed to the dynamics associated with individual nuclei. This

situation corresponds to the so-called neutron Compton scattering or NCS regime. The

total S(q, ω) can be expressed in term of intermediate scattering function and the the two-

particles correlation function Yjj(q, t)

S(q, ω) = 1
2πh̄

∫
Is(q, t)e−iωt dt

= 1
2πh̄N

∞∫
−∞

exp(iωt)
∑
jj′

Yjj′(q, t)dt
(2.53)

where N is the number of particles in the target system. The correlation function Yjj′(q, t)

is given by:

Yjj′(q, t) = 〈e−iq·Rjeiq·Rj′ (t)〉 (2.54)

where Rj(t) is the Heisenberg operator for the position of particle j at time t, and Rj =

Rj(0). We can simplify this description considering the DINS process. This condition

amount to considering large h̄q and h̄ω relative to other momentum and energy scale in

the system under investigation. In this case, the neutron-scattering process is adequately

described within the framework of the impulse approximation (IA). In the approximation

if there are negligible external forces acting on the neutron-nucleus system, the use of mo-

mentum and energy conservation laws provides a direct relationship between h̄q and h̄ω of
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Figure 2.4: Kinematic

variables used in the main

text to describe the scat-

tering of eV neutrons in a

condesend matter system.

The curved grid repre-

sents the confining poten-

tial around a given atom in

a lattice. Image courtesy of

Ref [12]

the form:

h̄ω = (pn − p′n)2

2M + (pn − p′n) · p
M

= h̄2q2

2M + q · p̂
M

(2.55)

where h̄q = pn − p′n, with pn and p′n are the momenta of the incident and scattered

neutron. M and p are the mass and the momentum of the struck particle before the

collision. The scattering of neutrons by single atom, using the high q values accessible inside

DINS experiments, give access to the momentum distribution. The energy distribution of

the scattered neutrons, indeed, is directly related to the distribution of particle momenta

projected onto the scattering vector q. For small t, Rj(t) can be replaced by

Rj(t) ' rj + t

M
pj (2.56)

where pj is the momentum operator of particle j of mass Mj . From this approximation

one obtains the correlation function simplify because different nuclei contribution cancel out

and the incoherent approximation holds such that only j = j′ terms associated with the

properties of the same particle will be retained. One then obtain:

Yjj(q, t) = exp
[
ih̄tq2

2Mj

]〈
exp

[
it

Mj
q · pj

]〉
(2.57)

The IA approximation to the incoherent dynamic structure factor for an isotropic system is

obtained by using equation (2.57) in (2.53):

SIA(q, ω) = 1
2πh̄N

∑
j

∞∫
−∞

exp
[
−iωt+ ih̄tq2

2Mj

]〈
exp

[
it

Mj
q · pj

]〉
(2.58)

Integrating over t:

SIA(q, ω) =
∫
n(p)δ

(
h̄ω − h̄ωr −

p · h̄q
M

)
dp (2.59)
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Figure 2.5: Atomic recoil trajectories as a function of momentum and energy transfer (abscissa

and ordinate, respectively). The black solid lines denote parabolic recoil lines for several atomic

species given by h̄ω = h̄2q2/2M . The dashed lines represent the curves h̄ω = h̄2q2/2M ± h̄2σq/M ,

where σ is 5, 7, and 12 Å−1 for H, D, and O respectively. These dashed lines and the shading

underneath are used to depict the width and associated extent of the scattering response around

the atomic recoil lines. These broadenings are directly related to the overall width of the underlying

NMDs, as described in the main text. Image courtesy of [12]
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The dynamic structure factor in IA contains the recoil energy (h̄ωr = h̄2q2/2M) that

is the energy that a stationary particle would have gained from a collision with a neutron

owing to momentum and energy conservation. In figure 2.5 we can see the parabolic center

(ωr ∝ q2/M) of dynamic structure factor for different masses.

2.4 Y Scaling and Neutron Compton Profile

In this section we turn to the problem of extracting information about the momentum dis-

tribution from measured data. If the conditions for the impulse approximation assumption

are fulfilled (high energy and q vectors transfers) the S(q, ω) is given by

SIA(q, ω) =
∫
n(p)δ

(
h̄ω − h̄ωr −

p · h̄q
M

)
dp (2.60)

One can define now J(y) = h̄2q/MS(q, ω) and rewrite the delta function to give:

J(y) =
∫
n(p)δ(p · q̂ − y)dp (2.61)

using the y-scaling by West:

y =
(
M

h̄q

)
· (ω − ωr) (2.62)

The form of S(q, ω) has an important consequence. Consider an isotropic system, where

the scattering is independent of the direction of q. Then J depends only on the variable y,

rather than on q and ω independently. We are collapsing into a function J(y) of a single

variable. This phenomenon is know as y-scaling[13], and J(y) is the Compton profile. From

the relation 2.61 we can see that the y is the projection of the atom’s momentum onto the

scattering vector.

The function J(y) is a convenient and standard form for experimental results to be

presented. The recoil peak is shifted to be centred at y = 0, and if the profile is normalized

to unity the mean kinetic energy per atom is directly related to the second moment of the

Compton profile by:

EK = 3h̄
2M

∞∫
−∞

y2J(y) dy (2.63)
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Chapter 3

The VESUVIO spectrometer

In this chapter we are going to describe the VESUVIO spectrometer, for the modeling and

the simulation of the neutronic response of its components is the ultimate goal of this Thesis.

DINS experiments on the VESUVIO spectrometer focus on energy ranges around 1-

2 orders of magnitude greater than other thermal neutron instruments (1-150 eV), thus

measuring the atomic momentum distribution in condensed matter systems [16], (see Intro-

duction). The reader should recall that at sufficiently high momentum and energy transfers

we can use the impulse approximation, implying that the neutron scatters from a single

atom, with conservation of the total kinetic energy and momentum of system including the

neutron and atom. A photograph of the VESUVIO instrument is shown in figure 3.2 and

its schematic representation is presented in figure 3.3. At forward scattering there are 64

(S135–S198 in figure 3.3) cerium doped yttrium aluminum perovskite (YAP) γ-ray detectors.

These are at a distance between 50 and 75 cm from the sample position and are arranged in

eight columns each containing 8 detectors. Each detector element is 8 cm in height, 2.5 in

width and of thickness ∼ 0.6 cm. The forward scattering detectors cover a range of angles

Figure 3.1: The VESUVIO Spectrometer at the

ISIS Pulsed Neutron and Muon Source
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Figure 3.2: The VESUVIO spectrometer at the ISIS Pulsed Neutron and Muon Source (Didcot):

The large vertical cylindrical ’sample tank’ allows cryostats, furnaces, etc, containing the sample to

be inserted in the neutron beam. Neutrons not scattered by the sample pass down the horizontal

’get lost tube’ exiting at the bottom of the photograph. The black tubes are photomultiplier tubes

which are attached to the YAP γ-ray detectors at forward scattering angles. The FC device used

in the FC method [14] at forward scattering angles can be seen attached on each side of the sample

tank. The energy selection at back-scattering is performed by the DD technique [15] using the

circular disc behind the sample tank. This rotates to three positions, corresponding to no foil, thin

foil and thick foil between sample and back-scattering detectors.
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Figure 3.3: Schematic diagram of the VESUVIO instrument. The spectrum numbers corre-

sponding to the different detectors are shown. The positions of the foils used in the differencing

measurements are also indicated in yellow. With the foil positions shown the foil is ‘in’ for detectors

S135–S142, S151–S158, S167–S174, S183–S190 and ‘out’ for other detectors. By moving the foils

sideways the ‘foil in’ detectors become ‘foil out’ and vice versa. In backscattering the detector are

numbered S3-S134.
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33°− 67°.

At back-scattering there are 132 6Li doped neutron detectors (S3-S134 in figure 3.3)

arranged in a semi-circle below the scattering plane. These are between 45 and 70 cm from

the sample position and have dimensions 4 × 2 × 0.6 cm3. The back-scattering detectors

cover a range of angles 130°− 163°.

Gold foils are used to define the energy E1 of detected neutrons. Gold exhibits an

intense neutron-nucleus resonance B.1 peak which strongly absorbs neutron with energies

in the range E1 ∼ 4.9± 0.15 eV.

At forward scattering angles gamma ray detectors are used in the foil cylcing (FC)

technique [14], to define E1. At back-scattering neutron detectors with the double difference

(DD) technique are used. In the latter case a circular disc is rotated every 5 min to one of

three positions with no foil, thin foil and thick foil between sample and neutron detector.

3.1 Foil Cycling Technique

The foil cycling technique makes use of the resonant filter 197Au , while 238U was used in

the past. The energy-dependent transmission function of a resonant absorbing filter is given

by:

T (E) = exp[−ρσeffxf̄(E)] (3.1)

where f̄ = f(E)/f(E0) is the normalized nuclear absorption profile, σeff the effective ab-

sorption cross-section at the peak of the resonance, x the thickness and ρ the nuclear density

of the filter, respectively. For the 197Au and 238U filters the Breit-Wigner formula can be

approximated by a Lorentzian line shape:

L(E) = 1
π

Γ0

Γ2 + (E − E0)2 (3.2)

where E0 is the resonance energy and Γ0 is the half-width at half-maximum (HWHM). We

remind that this assumption is based on the value Γ0/E0 being small, in our case for 197Au

and 238U the ratio is lower than 0.02 [15]. As far as the Gaussian line shape (accounting

for the Doppler broadening) is concerned [15], it can be shown that its standard deviation,

σT , is proportional to the square root of the analyzer effective temperature, T ∗, times the

neutron energy E, i.e.,

σT =
(

2 m

Mf
ET ∗

)
(3.3)

where Mf is the nuclear mass of the material composing the filter and m the neutron mass.

The quantity T ∗ is approximately related to the Debye temperature of the filter, ΘD, and
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to its temperature, T , through the formula [15]

T ∗ ' 3
8ΘD coth

(
3
8

ΘD

T

)
(3.4)

In a typical VESUVIO scattering experiment, the energy interval of interest is much less

than 1 eV around the resonance energy E0 (with E0 4.906 eV for 197Au ). Within this energy

interval, the σT dependence on the energy can be neglected. Therefore, as a convolution of

the two above line shapes one obtains a Voigt profile:

f(E) = 1√
2πσT

<

erfc
Γ0 − iE + iE0

√
2σT

 exp

 (Γ0 − iE + iE0)2

2σ2
T

 (3.5)

f(E0) = 1√
2πσT

erfc

(
Γ0√
2σT

)
exp

(
Γ2

0
2σ2

T

)
≡ ψ0

πΓ0
(3.6)

In Eq. 3.6 the coefficient ψ0 defines the ratio of Voigt profile to the corresponding Lorentzian

profile peak at E = E0. When σT → 0 (i.e., in the limit T ∗ → 0 ), then ψ0 = 1, the line

shape reduces to a simple Lorentzian:

f(E) = L(E) (3.7)

f(E0) = 1
πΓ0

(3.8)

and σeff = σ0ψ0 becomes σ0, that is the peak absorption cross-section of a bound nucleus.

One should notice that σT never reaches a vanishing value, not event at T → 0, because of

the quantum nature of the target nuclei and their zero-point kinetic energies. Defining the

dimensionless parameter τ = ρσeffx, Eq. 3.1 can be rewritten as

T (E) = exp[−τ f̄(E)] (3.9)

and then the single difference transfer function (SD) of the spectrometer can be expressed

as

XSD(E) = 1− T (E) (3.10)

3.2 Double Difference Method

In the double difference (DD) method one makes use of two filters of thickness x1 and x2,

with x2 = x1β
−1 (0 ≤ β ≤ 1) and the instrument tranfer funcition is the result of the

following linear combination:

XDD(E) = Xthin
SD (E)− βXthick

SD (R)

= 1− exp[−τ f̄(E)]− β
{

1− exp[−τ f̄(E)/β]
} (3.11)
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Figure 3.4: Ratio between the

HWHM of the DD transfer func-

tion in the zero temperature limit,

Γ0
DD (β, τ) and the Breit-Wigner

HWHM, Γ0, for both β = 0 (full line)

and β = 1 (dashed line).

For β = 0 one obtains XDD(E) = XSD(E),while in the opposite limit: β = 1 (i.e., two

filters of identical thickness), XDD(E) vanishes identically. The HWHM for the transfer

function XDD(E), namely ΓDD(β, τ), can be calculated analytically only for β = 0 (SD

case) and in the zero effective temperature limit (T ∗ = 0), yelding:

lim
T∗→0

ΓDD(0, τ) = Γ0
SD(τ)

= Γ0


τ

ln

 2
1 + exp[−τ ]


− 1



1/2

(3.12)

where the superscript 0 marks the absence of any Doppler broadening. The growth of

Γ0
SD(τ) with increasing τ is shown by the full line in figure 3.4. At the actual configuration

the most efficient configuration (see figure 3.5) is obtained using β = 0.28. In the double

difference the foil thick thickness is 50 µm and the foil thin thickness is 14 µm.

3.3 Data Analysis

A single VESUVIO measurement consists of six different configurations of the machine

referred to as periods and corresponding to the 3x2 different combinations of FC and DD

configurations. When the shutter opens and allows the neutron beam to flow to the sample,

the charge of the protons that hit the neutron source is measured by ISIS. The data is

collected by detectors for the time necessary to reach 15 µAh and than a new period begins.

Every period the back scattering foil changer moves so for every detector we take two

measure without foil, two with the thin foil and two with the thick foil. Every periods
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Figure 3.5: Relationships between the time re-

quired in DD and SD experiments for the same

statistical accuracy for three couples of τ and β

values

the front scattering foil changer moves. This foil changer has foils into the scattered beam

for half of the detectors every period, and the alternating movement simply changes the

detectors filtered by the foil. At the end of the six periods every front scattering detector

has measured 3 periods with the ’foil in’ configuration and 3 periods with the ’foil out’

configuration. At the end of the run the total proton charge flown in the ISIS synchrotron

is 90 µAh and the measure ends. With a proton current of 160 µA, the typical flux of the

Target Station 1 where VESUVIO is installed, every period takes around 5-6 minutes to

complete and a complete run takes around 35 minutes. For the data reduction process the

procedure is slightly different for back and front scattering detectors. Nevertheless only the

first steps are different and for every detector we reach the Iout using the relations XSD for

front scattering and XDD for back scattering. From this point the data reduction is the

same. Every time the neutron are emitted from the target station a time t0 is provided by

ISIS, a proton beam hits the tungsten target with a frequency of 50 Hz.

In figure 3.6 we show 3 periods for the back scattering detectors. Summing the same

configuration periods (1 + 2, 3 + 4, 5 + 6) we obtain the single run intensity for the thick foil,

thin foil and no foil configuration respectively. Applying the relation for XDD we obtain the

double difference result showed in figure 3.7. For front scattering detectors the same signal

is obtained by single difference since the YAP detects the γ directly emitted by the gold

resonance. The single difference method is used to subtract the γ background and enhance

the resolution. Following this preliminary reduction, spectra relating the physico-chemical
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Figure 3.6: Raw data from detector S44 on the VESUVIO spectrometer. The periods define the

foils used in the measure: Period 2 Thin foil, Period 3 thick foil and period 5 no foil.
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Figure 3.7: Double difference result from raw data in figure 3.6. These are result obtained using

the same raw source but we used the routine included into the software that normalize the intensity.
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properties of the sample to the energy and momentum transfer are inferred from the angular

position of the detector and by the time of flight measure. The time of flight t is determined

by:

t− t0 = L0

v0
+ L1

v1
(3.13)

where L0 is the source-sample distance, L1 is the sample-detector distance, v0 =
√

2E0/m is

the incident neutron velocity and E0 the energy, v1 =
√

2E1/m the velocity of the detected

neutrons with energy E1 and m is the neutron mass. From t we can calculate E0, (E1 is

fixed by foils) using:

E0 = 1
2mv

2
0 = 1

2m

 L0v1

v1t− L1

2

(3.14)

so we obtain the energy transfer ω = E0 − E1 and the momentum transfer

q =
√

2m
(
E0 + E1 − 2

√
E0E1 cos 2θ

)
(3.15)

From knowing the masses M of the struck atoms in the sample and q we can calculate the

recoil energy by

h̄ωr = h̄2q2

2M (3.16)

and obtain the y-scaling by

y =
(
M

h̄q

)
· (h̄ω − h̄ωr) (3.17)

summing the contribute from all the backscattering and frontscattering detectors we obtain

the result in figure 3.8.

The standard expression for the count rate as a function of t on an inverse geometry

neutron spectrometer is [17]

C(t) = 2
(

2
m

)1/2
E

3/2
0
L0

I (E0)D (E1)N d2σ

dΩdE1
dΩ (3.18)

A basic assumption of the IA is that for incident neutron wavelengths much less than the

inter-atomic spacing, as is the case on VESUVIO, atoms scatter incoherently. In other words

the scattered intensity is the sum of intensities from the individual atoms in the sample. It

follows that equation 3.18 can be expressed in the form

C(t) = 2
(

2
m

)1/2
E

3/2
0
L0

I (E0)D (E1)
∑
M

NM
d2σM
dΩdE1

dΩ (3.19)

where NM is the number of atoms of mass M in the neutron beam and d2σM/dΩdE1 is

the partial differential cross-section for mass M , I(E0) is the incident flux and D(E1) the

detector efficiency.
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Figure 3.8: Y-scaling from Lead data measured on the VESUVIO spectrometers. The black

dots are the sum of backscattering detectors signal and the red dots are the sum of frontscattering

detectors

Following the IA formalism with the y-scaling showed in previous chapter we obtain

C(t) = E0I(E0)
q

∑
M

AMMJM (yM ) (3.20)

where

AM =
(

2
L0
D(ER)

√
2ER
m

∆Ω
)
NMb

2
M (3.21)

At this point is necessary to define a good function for fitting the data. This task is not trivial

because the neutron Compton profile J(y) is not, in general, a simple Gaussian function. It

is indeed a convolution of a Lorentzian and Gaussian shape with additional terms taking

into account local anisotropy and anharmonicity of the local potential affecting the struck

nucleus.

In the framework of the IA, J(y, q̂) is the Radon transform of the Compton profile n(p)

and must be inverted to obtain n(p). The method used to invert J(y, q̂) relies upon the

following mathematical result [18]. If the J(y, q̂) is expressed in the form

J(y, q̂) = 1√
2πσ2

exp
(
− y2

2σ2

) ∑
n,l,m

an,l,m
22n+ln!H2n+l

(
y

σ
√

2

)
Yl,m(q̂) (3.22)

then

n(p) = 1
(2πσ2)3/2 exp

(
− p2

2σ2

) ∑
n,l,m

(−1)nan,l,mLl+1/2
n

(
p2

2σ2

)
Yl,m(p̂) (3.23)

where H2n+l is a Hermite polynomial, Yl,m(q̂) is a Legendre polynomial and L
l+1/2
n (p2)

is a Laguerre polynomial. For samples having no preferred orientation, such as liquids or
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amorphous solids, there is no dependence on the direction q̂ and only the terms l,m = 0

contribute. Equations 3.22 and 3.23 reduce to

J(y, q̂) = 1√
2πσ2

exp
(
− y2

2σ2

)∑
n

an
22nn!H2n

(
y

σ
√

2

)
(3.24)

n(p) = 1
(2πσ2)3/2 exp

(
− p2

2σ2

)∑
n

(−1)nanL1/2
n

(
p2

2σ2

)
(3.25)

Once the peak from a single mass has been isolated in the time of flight spectrum the fit is

performed using the 3.20 with σ and an as parameters.

3.3.1 Correction to the Impulse Approximation

The Impulse Approximation is exact only in the limit of q →∞, in our case, even with a q

value of the order of hundreds of Å−1, it is naturally a finite quantity. We need to take into

account the deviation from the ideal IA and correct the data by the final state effect (FSE).

From the Sears work [19] at finite q, J(y) has the form

J(y) = JIA(y)− M〈∇2V 〉
36h̄2q

d3JIA(y)
dy3 (3.26)

where JIA(y) is the impulse approximation result. 〈∇2V 〉 is the mean value of the Laplacian

squared of the potential energy of the struck atom. The expansion has higher order terms

which are proportional to 1/q2,1/q3 and so on. However at the q values on VESUVIO, these

are negligible at the current level of statistical accuracy.
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Chapter 4

Brief introduction to McStas

The design of new neutron instruments and the upgrade of existing facilities strongly depend

upon simulation codes for neutron transport [7, 20]. In recent years the McStas code [1]

became one the most used pieces of software in neutron-scattering simulation. The package is

based upon a special meta-language designed for Monte-Carlo ray-tracing calculations, and

includes a library of highly-adaptable components, with geometrical and physical properties

that can be adjusted to the instrument design. The development of these tools was supported

with validation with experiments, however, only on a restricted dataset based on the most

common kind of instruments. In many cases, neutron instruments are designed so as to

operate in a narrow range of energies, as for example diffractometers using cold neutrons

and traditional spectrometers using thermal neutrons. As the operational energies of the

instrument are fixed, the modeling of the incident and scattered neutron spectra can be

verified over limited energy ranges, where reliable experimental data from the real instrument

can be provided. 1 From the first chapter we describe the difficulties to calculate the behavior

of a neutron scattering instrument. It can be described in principle by a complex integral

over all relevant parameters, like initial neutron energy and divergence, scattering vector and

position in the sample, etc.. However, in most relevant cases, these integrals are not solvable

analytically and we hence turn to Monte Carlo methods. A totally realistic semi-classical

simulation will require that each neutron is at any time either present or lost. In many

instruments, only a very small fraction of the initial neutrons will ever be detected, and

simulations of this kind will therefore waste much time in dealing with neutrons that never

hit the relevant detector or monitor. An important way of speeding up calculations is to

introduce a neutron weight factor for each simulated neutron ray and to adjust this weight
1This section takes information from the McStas manual
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according to the path of the ray. For example if the reflectivity of a certain optical component

is 10%, and only reflected neutrons-ray are considered later in the simulations, the neutron

weight will be multiplied by 0.10 when passing this component, but every neutron is allowed

to reject in the component. In contrast, the totally realistic simulation of the component

would require in average ten incoming neutrons for each rejected one. Let the initial neutron

weight be p0 and let us denote the weight multiplication factor in the j’th component by

πj . The resulting weight factor for the neutron ray after passage of the n components in the

instrument becomes the product of all contributions

p = pn = p0

n∏
J=1

πj (4.1)

Each adjustment factor should be 0 < πj < 1, except in special circumstances, so that total

flux can only decrease through the simulation. Performing a simulation using McStas can

be divided into the following steps/elements (refer to figure 4.1 to see an overview of the

logic inside the McStas environment):

• To use McStas, an instrument definition file describing the instrument to be simulated

must be written.

• Next, the McStas compiler mcstas is invoked to translate the instrument and com-

ponent files into a C program. The program mcstas itself is written in C, using the

parser flex and the compiler bison.

• The resulting C program can then be compiled with a C compiler and run in com-

bination with various front-end program for example to present the intensity at the

detector as a motor position is varied.

• The output data may be analyzed and visualized in the same way as regular ex-

periments by using the data handling and visualization tools in McStas based on

Perl/Python in combination with chaco, matplotlib, Matlab, GNUPlot or PG-

PLOT. Further data output formats including NeXus are available
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Figure 4.1: An illustration of the structure of McStas.

4.1 The instrument file

The instrument file is the core of the McStas simulation. It describes entirely the source,

the elements of the instrument and the detector output using a modular formalism. As a

summary, the usual grammar for instrument descriptions is

1 DEFINE INSTRUMENT name ( parameters )

2 DECLARE

3 C code

4 INITIALIZE

5 C code

6 TRACE

7 components
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8 {FINALLY C code}

9 END

From the instrument definition head we can pass parameters to the simulation, allowing

to adapt the same instrument to the user necessities.

The DECLARE section is used for variable declaration. This variables have as scope

the entire simulation, so we can see them as global variables. The neutron parameters

(x,y,z,vx,vy,vz,sx,sy,sz,t)are defined inside the McStas compiler so we do not need to

declare them. They are therefore global variables as well, so we must avoid conflicts in

declarations.

The INITIALIZE section executes the inner C code when the simulation starts, variables

are not updated for each iteration.

The TRACE section is where the COMPONENTS are inserted. The usual grammar for com-

ponent instances within this section is

1 COMPONENT name = comp(parameters)

2 AT (...) [RELATIVE [reference | PREVIOUS] | ABSOLUTE]

3 ROTATED [RELATIVE [reference | PREVIOUS] | ABSOLUTE]

The comp value is the link to the component used (a source, a sample or an optics element).

The position flags like AT and ROTATED need to be associated to a coordinate reference

system. The ABSOLUTE is the default reference system, the PREVIOUS set the origins at the

position of the previous component or we can refer to a specific component inserting the

name.

We conclude here this introduction: there are other flags and sections in McStas but we

are going to explain only the functions implemented in this work.
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Part II

The VESUVIO spectrometer in

McStas
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Chapter 5

Collimation

In this scenario, the VESUVIO spectrometer [21, 22] at the ISIS pulsed neutron and muon

source [23], represents a challenging instrument to be modelled. Owing to the absence of

permanent energy filters on both the primary and the secondary paths, VESUVIO allows

for concurrent measurements over a broad energy range from the fraction of meV to tens of

keV. In recent years, VESUVIO has been referred to as an epithermal and thermal neutron

analysis station [12, 24], as the same sample can be investigated using deep inelastic neutron

scattering [25, 26], neutron diffraction [27, 28], neutron transmission [29, 30], and gamma

dopplerimetry [24, 31].

This section introduces the original work carried out in this thesis. The tasks under

my responsibility consisted in producing a realistic McStas model of VESUVIO, suitable

for implementing detailed optimizations and validation of instrumental performance and

comparison with experiments. In particular we split the modelling process into three part:

• Collimation: Moderator and primary flight path components analysis;

• Sample Interaction: Testing existing sample components and write a new dedicated

one;

• Gold Resonance: Write down an analyser foil transfer function component.

In this firs part, we present some preliminary comparisons of the simulated incident

neutron spectrum and beam profile against recent experimental characterizations[22] as

well as simulations of multiple scattering contribution and gamma background evaluations.

Differently from DINSMS code where the input flux is generated by an approximate function

[5], McStas uses a custom source that can replicate the measured flux on the instrument.
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5.1 McStas Model

Monitor_ND

Filter_Gen

PSD

PSD

PSD

Slit

Beamport Source

Start Collimation

End Collimation

Slit

Sample Position Energy Monitor Sample

G.C.

PowderN

Incoherent_Sqw

Figure 5.1: Simulation setup for collimation analysis (left) and backscattering analysis (right)

after the inclusion of the “generating correction” (GC) component, “Filter Gen”.

Monte-Carlo calculations have been performed using McStas 2.4.1 [32]. Simulations

were run on a local computer with Windows 10 operating system, as well as on the SCARF

cluster [33]. The VESUVIO spectrometer, for which a detailed description can be found in

Reference [22], was simplified in McStas with a moderator acting as the neutron source, a

series of collimation slits along the incident neutron path, a sample at about 11 m from the

moderator, and a monitor representing a 6Li-doped scintillating detector in backscattering,

as schematically showed in Figure 5.1. In particular,

• The moderator component used was Commodus I [34] (the most recent version of view-

ModISIS [35]), in order to take into consideration the recent upgrade of the water

moderator serving the VESUVIO instrument at the ISIS Target Station 1 [22]. This

component can simulate the emission of neutrons from the moderator face with a

proton current of 1µA.

• The set of B4C collimation slits in the range of distances 1.71 m to 9.66 m from the

moderator were modelled by ideal Slit elements placed at the positions 1.71, 8.46

and 9.66 m. In particular, as the collimation stages are octagonal in transverse cross

section, two square slits titled by 45 degrees with respect to each other were used.
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• Images of the beam shape and intensity were obtained using virtual Position Sensitive

Detector (PSD) components and virtual monitors PSD monitor before and after the

first slit, and at the sample position.

• A Filter gen component at the sample position was used to take into account discrep-

ancies between the simulated and experimental beam profiles prior to the scattering

from the sample. The Filter gen component reads a table generated from the left

setup in figure 5.1, and corrects it to match the experimental one. The corrected

flux is then back-traced to the last slit position and used to illuminate the sample.

The table is an ASCII file where in the first column are listed the energy values and

in the second column are reported correcting factors corresponding to the ratio of

experimental-to-simulated intensities, so as to correct for the discrepancies in the two

intensities.

• The components used to reproduce the backscattering data from a Pb sample were

PowderN [36] and Isotropic Sqw [37].

• The simulated spectra corresponding to a backscattering detector were recorded using

a Monitor nD component, and the count rate was corrected by the known efficiency of
6Li-detector efficiency η(E) according to

η(E) = 1− e−nσ(E)d. (5.1)

where n is the atom density, σ(E) cross section and d detector thickness.

5.2 Collimation results

Inspection of Figure 5.2 shows how the collimation stages modify the shape of the beam from

a large square of about 8 cm side to a circle of diameter about 4 cm. The sole reduction of

the size of the beam corresponds to a decrease of about one order of magnitude in the beam

intensity at the sample position compared to that before the collimation. Indeed, the ratio

of simulated beam fluxes at the two positions is found constant, with no visible dependence

upon the incident neutron energy. Moreover, the original beam, homogeneous in the (x, y)

plane transverse to the sample-moderator direction, is modified into a Gaussian-like profile.

The file representing the brightness of the upstream water moderator was provided by the

ISIS Neutronics Group and was created using current MCNP-X model of ISIS Target Station

1 [20].
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Figure 5.2: Transverse shape of the neutron beam before (left) and after (center) the beam port

slit. (right) Shape for the neutron beam at sample position. The PSDs consist on a 120x120 pixel

square matrix with 10 cm side length.

The simulated results for the energy spectrum and the beam profile of incident neutrons

at the sample position were compared with recent experimental measurements [22]. As the

result from the simulation are expressed for unit proton current, the simulated spectra were

multiplied by the actual proton current ca. 155 µA to TS1 during the measurement. The

experiment was performed with the detector and about 1.5 m of the beamline in air, causing

an attenuation of the neutron beam of about 0.895 with respect to standard measurement

in vacuum. Moreover, the neutron beam needs to cross about 1.5 cm of Al windows between

the moderator and the detector, therefore requiring an additional attenuation factor of about

0.855. Figure 5.3 shows how the present model gives an absolute intensity of the neutron

beam between 1.5 and 3 times larger than the experimental data [22]. The agreement be-

tween experiment and simulation improves as the incident neutron energy approaches the

epithermal region. Similar discrepancies have been previously discussed in Ref[38] about

the modelling of the TOSCA spectrometer, where a ratio of simulated-to-experimental in-

tensities ca. 1.77 was reported between 0.28 Å and 4.65 Å , that favorably compares to

the factor 2.39 in our case and in the same energy window. In particular, the flux in the

epithermal region is expected to behave as ∝ Eα−1 for real moderators with α leakage ex-

ponent. By fitting this model to the experimental and simulated data, we obtained α = 0.04

and α = 0.08 for simulation and experiment, respectively. Such a small discrepancy could

be related to the uncertainties present in the MCNP model which the table of emission

TS1 S02 Vesuvio.mcstas that describes the moderator in McStas is based on. It is inter-

esting to notice how, despite the discrepancy in the absolute value of the flux intensity,

the simulated shape of the beam compares very favourably to the experimental results.

The slightly wider experimental profile, shown in Figure 5.4, can be partially explained by

the broadening due to the spatial resolution component from the nGEM detector used in

Ref. [22].
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plane, as well as their difference in the bottom panel. The experimental beam profiles from Ref. [22]
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area.
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Chapter 6

Sample

Historically, the component development in McStas and its applications did not take advan-

tage of epithermal neutrons available in spallation neutrons sources. However the moderator

component provided by the ISIS neutronics group [34] include neutron energies from few

meV up to hundreds of keV, and the code itself compiles without problems at any energy

range. The main reason is that this first part of the instrument file utilizes only components

that modify the weight of the neutrons. If there is no calculation involving energy or velocity

rounding errors emerge rarely. There are in any case some limitations carried out by ASCII

tables and sample components. The large energy range covered by VESUVIO challenges

the functioning of some routines like the read table library. Optimizing the code on a few

meV range can give an easy choice to perform linear binning so the library actually rebin

linearly every data file. In our case when the energy range start from 0.5 meV to 100 eV

the logarithm scale is preferable. The reading of tables and .dat files is the most reliable

source of segmentation fault errors and the rebinning can easily be the reason: for example,

in our code two files of 340 lines x 2 columns become enough to fill 10GB ram free-space.

We needed to avoid this situation by generating a linear file .dat, losing definition.

The other difficulty, but connected to the latter, is the implementation of the specific

neutronic response in the eV range in neutrons simulations, as we can see in section 6.2. We

have used a Isotropic SQW component where we have uploaded an Impulse Approximation

S(q, ω) (fig 6.4) generated by a python code, with linear binning.

Before attempting to write our component a few simulations with the sample components

provided by McStas were performed.
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6.1 PowderN

The PowderN component can handle mainly the Bragg scattering. It takes as input a data

file where information is stored including d-spacing, peaks intensities, directions and so on.

The VESUVIO spectrometer can obtain quite good Bragg reflection peaks at backscattering

(Figure 6.2), indeed this are used for calibration [39], and interestingly this component can

be used as a benchmark of the model geometry and for possible corrections. The assumption

for the PowderN component is that the orientation of the crystallites is evenly distributed,

and there is thus always a large number of crystallites oriented to fulfill the Bragg condition

nλ = 2d sin θ (6.1)

where n is the order of the scattering (an integer), λ is the neutron wavelength, d is the

lattice spacing of the sample, and 2θ is the scattering angle. As all crystal orientations are

realised in a powder sample, neutrons are scattered within a Debye-Scherrer cone of opening

angle 4θ [40]. We can rewrite equation 6.1 into the form

|q| = 2|k| sin θ (6.2)

where q is a vector of the reciprocal lattice, and k is the wave vector of the neutron- It

is seen that only reciprocal vectors fulfilling |q| < 2|k| contribute to the scattering. For a

complete treatment of the powder sample one needs to take into account all these q-values,

since each of them contribute to the attenuation. The strength of the Bragg reflections is

given by their structure factors ∣∣∣∣∣∣
∑
j

bj exp (Rj · q)

∣∣∣∣∣∣
2

(6.3)

where the sum runs over all atoms in one unit cell. This structure factor is non-zero only

when Q equals a reciprocal lattice vector. The component calculates the scattering cross

section summing over essentially different reflections multiplied by their multiplicity, j 1.

Then, a finite packing factor, f , is defined for the powder, and finally, the Debye-Waller

factor is multiplied on the elastic cross section to take lattice vibration into account (without

inelastic background). In the thin sample approximation the result is

σcone,q = f exp(−2W )N
V0

4π3

k2
jq|F (q)|2

q
(6.4)

For sample of finite thickness, the beam is being attenuated by the attenuation coefficient:

µq = σcone,q/V (6.5)
1The textbook expression for the scattering cross section corresponding to one Debye-Scherrer cone is

proportional to
∑

q
|F (q)|2, where F (q) is the structure factor for a particular q.
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Figure 6.1: Simulation of Bragg spectra from S44 detector.

Using the PowderN to simulate a lead sample in McStas on the VESUVIO model, one

obtains the result in Figure 6.1. The component can calculate incoherent background but

there are remarkable differences from the experimental data shown in figure 6.2. The main

reason is that the incoherent background use the cross section at 25 meV without taking

into account the inelastic scattering. At the energies above 25 meV, corresponding of TOF

below 5× 104 µs the inelastic scattering become predominant but such contribution is not

computed.

At least some useful results can be extrapolated by this component. During the modeling

of the instrument we used blueprints and experimental calibration together to set detector

position or collimation structure dimensions. Moreover in the source component we are

using another simulation by MCNPX of the target station that set the t value by a monitor

placed to the beam port of VESUVIO beam line, and than backtraced to the moderator face

in run-time. Despite the several approximations, the simulated results show discrepancies of

less than 0.3% with respect to the experimental data as shown in figure 6.3. By fitting this

discrepancy we were able to reconstruct the path difference from experiment to simulation

and it is about 2.2 cm. This is probably due to the real distance included in the moderator

file. Considering the thickness of the moderator (about 4.5 cm) seems reasonable considering

this shift as a consequence of the calibration, that consider the distance as the effective

neutron emission position.
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Figure 6.2: Experimental RAW data from the detector S44.
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6.2 Isotropic SQW

The sample component Isotropic Sqw has been developed in order to simulate neutron

scattering from any isotropic material such as liquids, glasses (amorphous systems), polymers

and powders (currently, mono-crystals cannot be handled). The component treats coherent

and incoherent neutron scattering and may be used to model most materials, including

sample environments with concentric geometries. The structure and dynamics of isotropic

samples can be characterized by the dynamic structure factor S(q, ω) , which determines

the interaction between neutrons and the sample and therefore can be used as a probability

distribution of ω-energy and q-momentum transfers. It handles coherent and incoherent

processes, both for elastic and inelastic interactions. The main input for the component is

S(q, ω) tables, or powder structure files.

The VESUVIO spectrometer can reach values of the moment transfer 20Å < q < 150Å−1

within a energy range of 5 eV to 150 eV. In this region of S(q, ω) the scattering is well

described, as already mentioned, by the Impulse Approximation and, for this reason, this

component is the main candidate to simulate the scattering properties of samples and equip-

ment on the VESUVIO spectrometer. The input table has been generated from the S(q, ω)

using a simple Python code (Appendix A). For this particular simulation we use only the IA

as a coherent input file (if one does not provide two distinct files for coherent and incoherent

scattering the component uses the coherent as the total dynamic structure factor). Result is

showed in figure 6.6. A particular detail of the computation process inside this component

is quite long so we do not cover it in this thesis2. Some notable defects on the other way

limits a complete use for our scope. The simulation can exploit this component only for

heavy-weight elements, such as Pb, or using a small range of neutron energy emitted by the

source. For the lead we can lower this range to 3000 meV to 6000 meV, if we need a larger

energy range the code crash. The lead however has a really low recoil energy due to his

mass of 207 a.m.u., so the scattering is nearly elastic and the neutron does not lose much

energy. At the moment we can no set a energy range value from 1 eV to 120 eV, which is

needed to cover the impulse approximation for light atoms (such H or D).

2A complete description is available on McStas component guide http://www.mcstas.org/

documentation/manual/
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Chapter 7

The Impulse Approximation

Component

All previous components have been optimized for particular tasks (e.g. reproducing Bragg

reflections), or they are more complex and written so as to be as adaptable as possible to

one’s particular task.

For example the Incoherent SQW takes as input file a user-provided mesh file containing

the S(q, ω) . At present, McStas accepts ASCII files of the from ωi, qi, Sij , where all

values need to be provided, even if 0, and the binning needs to be linear. This file can be

obtained by Molecular Dynamics models or from experimental results. Using a complete

mesh containing data from elastic, Bragg reflections, inelastic and deep inelastic scattering

is quite difficult, for at present a model for a dynamic structure factor over several orders of

energy and momentum transfers is not available. Moreover, while one can in principle use

such file, its size would probably be too large and compromise the simulation efficiency.

The Impulse Approximation is, of course, an approximation. The use of a complex

and adaptable component as the Incoherent SQW can be machine-time inefficient when the

S(q, ω) is a mesh obtained by a simple analytic model as in our case ( 2.3). Even if one wants

to use Incoherent SQW, one needs to add an additional step to model the S(q, ω) before

running the McStas simulation. Every time we compute the S(q, ω) for the Incoherent SQW

one needs to define a priori a range for energies and q-vectors, create a mesh and compute

the result for each couple of values (q, ω). We present here a new component that can

compute the S(q, ω) directly inside McStas, taking as an input a configuration file, i.e.,

a text file containing easily retrievable information provided by the user about the atom

properties. This new component is inspired by the DINSMS code by Mayers, Fielding and
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Figure 7.1: Schematic drawing of the geometry of interaction. The neutron-ray comes from the

left. The first time the component is called the neutron propagates to the sample face (A). Distance

AB is calculated and a point C of scattering is chosen. At this point the neutron could propagate

to the detector or take a random direction: if this is the case the distance CD is calculated and

a point of scattering E is selected. From this moment the choice is iterated with a Monte Carlo

choice between escapingto the detector or interact again.

Senesi [41], separating the sample interaction from all the geometry and environment lines.

The correction for multiple scattering is an important step in the analysis of DINS exper-

iments, and the use of the DINSMS code has proven necessary in a number of investigations

over the past decades [42]. The main limitation of this latter code is that it can only model

a homogeneous sample mixture, or approximate heterogeneous or structured specimen to a

homogeneous mixture of atom species. If we want to include the multiple-scattering from

an external container the procedure is to include the scattering centres from the cell inside

the sample volume [43].

In this case, the McStas components are more useful with the integration of the concentric

mode. Using this feature we can insert two distinct components inside our simulation: a cell

with hollow geometry and the sample geometry. The main limitation is that all the sample

vertexes must be inside the cell inner geometry.

We can summarize the interaction code in the following steps, refer to figure 7.1:

1. The neutron coming from the collimation region is moved to the sample face (point

A);

2. The code computes the distance AB to the exit point in line with the neutron direction;
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3. We choose a random point of scattering C depending on a probability function de-

pending on the sample density and cross sections, this choice includes the secondary

extinction;

4. The weight of the neutron-ray is multiplied by a factor mirroring the probability of

scattering;

5. The code makes a decision according to a Monte Carlo procedure: scattering to the

detector or multiple-scattering within the sample. The weight is corrected by the

choice;

6. The weight is corrected so as to include the scattering probability according to the

partial differential cross-section obtained within the impulse approximation;

7. If the neutron is scattered in the direction of the detector, then the weight is corrected

by solid angle and transmission;

8. If the neutron is chosen to undergo multiple-scattering, than a new direction is com-

puted and the steps 2-6 are repeated;

The McStas library includes intersection functions that return 1 or 0 if a neutron is

between the boundaries of the defined geometry. This function return also two time coor-

dinates (t0,t3) where the neutron intersects the geometry, considering the neutron in the

origin of the axis (refer to figures 7.1 and 7.2).

The concentric mode is obtained using two calls to these functions. The second call uses

as geometry the inner face of the hollow geometry. Suppose we are simulating a box-shaped

sample. The first call of the intersection function takes as input the width, height and depth

of the box. The function returns a True value if the neutron is inside this geometry. The

second call of the intersection function takes as input the same dimensions but scaled down

(the width for example is obtained by subtracting two times the thickness). This return

values from this function are used to identify if the neutron is inside the hollow part.

In this component we have implemented all the common geometries, including cylinder;

box; and sphere. One should note that the off intersect() function can handle complex

shapes but is not tested yet.

Listing 7.1: Using the mcstas library to calculate concentric mode

1 if (ia.shape == 0)

2 intersect = cylinder intersect(&t0, &t3, x, y, z, vx, vy, vz, radius, yheight);

3 else if (ia.shape == 1)

4 intersect = box intersect(&t0, &t3, x, y, z, vx, vy, vz, xwidth, yheight, zdepth);
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5 else if (ia.shape == 2)

6 intersect = sphere intersect(&t0, &t3, x, y, z, vx, vy, vz, radius);

7 else if (ia.shape == 3)

8 intersect = off intersect(&t0, &t3, NULL, NULL, x, y, z, vx, vy, vz, offdata );

9 if (intersect) {

10 int flag ishollow = 0;

11 if (thickness>0) {

12 if (ia.shape==0 && cylinder intersect(&t1,&t2, x,y,z,vx,vy,vz, radius−thickness,yheight−2∗

↪→ thickness))

13 flag ishollow=1;

14 else if (ia.shape==2 && sphere intersect (&t1,&t2, x,y,z,vx,vy,vz, radius−thickness))

15 flag ishollow=1;

16 else if (ia.shape==1 && box intersect(&t1,&t2, x,y,z,vx,vy,vz, xwidth−2∗thickness, yheight−2∗

↪→ thickness, zdepth−2∗thickness))

17 flag ishollow = 1;

18 }

Hollow Geometry

z

y

𝑣
𝑣 ⋅ (+𝑡2) 𝑣 ⋅ (+𝑡3)𝑣 ⋅ (−𝑡1)𝑣 ⋅ (−𝑡0)

𝑛

𝑛

𝑣 ⋅ (+𝑡0) 𝑣 ⋅ (+𝑡1) 𝑣 ⋅ (+𝑡2) 𝑣 ⋅ (+𝑡3)

𝑛

𝑣 ⋅ (−𝑡0) 𝑣 ⋅ (+𝑡3)

Figure 7.2: The interaction functions calculate the time coordinate considering the neutron in the

origin of the axis. (top) The neutron is before the sample and all the times are positive,(center) in

this case the neutron is inside the hollow part the time are showed with the explicit sign returned

by the function, (bottom) the neutron is inside the sample and t1 and t2 are zero.

After running this code part we have four time coordinates (t0,t1, t2 and t3), using simple

relations we can identify the neutron-ray position in the simulated sample. Referring to the

right side of figure 7.1:

• If all times are positive we are before the sample, is the first interaction so we need to
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propagate the neutron to the container face;

• If only t0 is negative the neutron is inside the first part of the container. The neutron

direction is in going to hollow part;

• If t0 and t1 are negative the neutron is in the hollow part so the code propagates it to

the inner face of the container;

• If only t3 is positive the neutron is inside the container and the direction is outgoing;

• If all times are negative the neutron passes completely the container;

The concentric mode basically duplicates the hollow component, replicating the related code

before and after the inner component. Without this mode the same result can be obtained

placing a cell component before and after the sample through the direction of the neutron.

The cell component before the sample is easy to implement because of collimation, but the

exit path of the neutron depends on scattering. Even applying the focus to the sample

interaction, as we have done in our component, the solution is available only if the cell

has very low scattering and interaction probabilities. If the cell contributes heavily to the

neutron reaching the detectors we need to explicitly include all the components faces where

the neutron goes through. If this is not possible the concentric mode is more accurate than

using only two foils made from the same materials of the cell.

When the intersection variable is set to 1, we modify the velocity and the direction

of each neutron ray according to the dynamic structure factor expressed in the impulse

approximation. First of all we need to load into our components the physics variables

describing the material. In most cases we are not interested on single species property, we

want to study molecules or mixtures of different atoms so an input file format is required.

The adopted format this file is the following:

Listing 7.2: Format for input data, eg D2O

# AtomicMasses

2

# Total density (g/cm3)

1

# Mass (au), Xsect (b), absXsect (b), s.d. J(y), atoms in molecule

2.0135 7.64 0.000519 38 2

15.999 4.232 0.00019 38 1

We load the information in an array structures called atom. Passing it trough all

the functions defined to simulate interaction. In appendix E are summarized the variable
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name and abbreviation used in this work. Firs of all we need to initialize the variables. The

bound-cross section from input file needs to be converted to free-scattering cross section via:

µ(v) = ntot
∑
NM

na(M)4πb2M
(1 +m/M)2 +

naσ
A
M

v

 = ntot
∑
NM

na4πb2M
(1 +m/M)2 + ntot

∑
NM

naσ
A
M

v
(7.1)

where M is the atom mass and bM =
√
σs/4π, ntot is the total density of molecules and na

is the number of same atoms in the molecule, NM is the number of different atom masses

and v is the velocity of the incident neutron. In code form:

µ(v) = ia.my s +
ia.my a v

v
(7.2)

the structure ia contains the aggregate parameters, my s is initialized by the following:

1 ia.my s = ia.num dens∗xstot(ia.NM, atom)∗1E−22;

2 ia.my a v = ia.num dens∗xstot a(ia.NM, atom)∗1E−22;

where ia.num dens is the number density of the molecule obtained by:

ntot = ρ

M
NA (7.3)

where ρ is the total density in g cm−3, M is the molar mass of the molecule and NA the

Avogadro number. The factor 10−22 is needed to express the unit of measure in meters.

Listing 7.3: Function to calculate total cross section

1 double xstot(int NM, struct atomProp atom[])

2 {

3 double xstot = 0;

4 double G;

5 for (int i = 0; i < NM; i++)

6 {

7 G = 1.00867 / atom[i].mass;

8 xstot = xstot + 4.0 ∗ PI ∗ atom[i].na ∗ pow(atom[i].b, 2) / (1 + G∗G);

9 }

10 return xstot;

11 }

A similar function initializes my a v. The total scattering cross section maintains the v

dependency and can be updated in every iteration.

Following the definition and initialization of the variables, the main code is contained

in a do{...}while(intersect) loop. The intersect variable is set to 1 by the interaction

function (listing 7.1) or by escape logic inside the run. After the check of neutron position
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we initialize the weight multiplier (p mult) to 1. While the simulation is running we update

that value, applying to the real p value of the neutron-ray only when scatter happens.

First we calculate the velocity of the neutron, the global variables of the neutron-ray are:

x,y,z,t,vx,vy,vz,sx,sy,sz,p so we need to recover previous status reading this, and

update them when writing a new status.

Listing 7.4: Setting the velocity, ia is a structure for not atom variables

1 p mult = 1;

2 if (!v) v = sqrt(vx∗vx + vy∗vy + vz∗vz);

3 if (v) my a = ia.my a v∗(2200/v);

4 my t = my a + ia.my s; /∗ Macroscopic Xsect (tmp var) ∗/

The v is initialized as 0 so we need to calculate it from the neutron parameters v x,v y

and v z. This calculation is performed only when the neutron reaches the sample faces from

the collimation section. After every interaction in the loop of multiple-scattering the v is

obtained by the final energy used as input for the double differential cross section. The if

(!v) logic allows to enhance performance considering that a logic is generally quicker than

a sqrt function.

In the total absorption cross section (my a) we include the 2200/v dependency, consid-

ering the tabulated cross sections for thermal neutrons and velocities are expressed in m/s.

A this point ws is ratio of neutron scattered from the neutron that has been scattered or

absorbed and d path is the distance from neutron position to the exit point from the sample

(the segments AB or CD in figure 7.1).

1 /∗ Proba of scattering vs absorption (integrating along the whole trajectory) ∗/

2 ws = ia.my s/my t; /∗ (inc+coh)/(inc+coh+abs) ∗/

3 d path = v ∗ (dt0 + dt2); /∗ Length of full path through sample ∗/

The time variables dt0 and dt2 are mutually exclusive. If the neutron is coming from

an external component (concentric mode) dt2 is set to 0. If the neutron is coming from

the inner geometry dt0 is set to 0. Considering d path we store transmission and total

scattering probabilities along this trajectory (p trans, p scatt). The flag is used along

side mult end as escape command through the iteration, as discussed later

1 /∗ Proba of transmission/interaction along length d path ∗/

2 p trans = exp(−my t∗d path);

3 p scatt = 1 − p trans; /∗ portion of beam which scatters ∗/

4 flag = 0; /∗ flag used for propagation to exit point before ending ∗/

5 /∗ are we next to the exit ? probably no scattering (avoid rounding errors) ∗/

6 if (ia.my s∗d path <= 4e−7) {

7 flag = 1; /∗ No interaction before the exit ∗/
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8 }

If we maintain the physical value for scattering and transmission probabilities the code

become very inefficient to compute results for materials with low scattering cross section.

If the probability that a neutron is scattered is 1% , every 100 neutron simulated only 1

is going to contribute to the measure. We can force this probabilities using an opportune

correction on the neutron weight. Suppose that we have 100 neutron-rays and each neutron

ray is a collection of 100 neutrons, i.e. it has a weight of 100 neutrons. If the probability of

scattering is 1% than only one neutron-ray reaches the detector that records 100 neutrons

reached. The latter is the physics information, we can force more neutron-rays to interact

but the neutrons that the detector counts need to remain 100. Consider w the neutron-ray

weight and P the probability associated to a phenomenon during a Monte Carlo simulation.

If we use PMC as the Monte Carlo probability for the neutron-ray interaction than the

following rules is applied

PMCw = P (7.4)

if we want to force the 2% of the neutron-rays to interact

(0.02)w = (0.01)→ w = 0.5 (7.5)

So two neutron-rays reach the detector carrying 50 neutrons each. Following this law we

can set a value from 0 to 1 from McStas component in the variable p interact forcing the

scattering probabilities.

1 /∗ force a given fraction of the beam to scatter ∗/

2 if (p interact>0 && p interact<=1) {

3 /∗ we force a portion of the beam to interact ∗/

4 /∗ This is used to improve statistics on single scattering (and multiple) ∗/

5 if (!SCATTERED) mc trans = 1−p interact;

6 else mc trans = 1−p interact/(4∗SCATTERED+1); /∗ reduce effect on multi scatt ∗/

7 } else {

8 mc trans = p trans; /∗ 1 − p scatt ∗/

9 }

10 mc scatt = 1 − mc trans; /∗ portion of beam to scatter (or force to) ∗/

11 if (mc scatt <= 0 || mc scatt>1) flag=1;

In the following code mc scatt and mc trans are the new values for scattering and trans-

mission probabilities. If we are at the end of the multiple-scattering iterations the mult end

is 1 so the flag is set to 1. If this is true the neutron escapes to the detector and the

weight is corrected by the transmission probabilities and Monte Carlo choice. If we are in

concentric mode the target index is undefined so the neutron propagates along the z axis.
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The propagation is assigned to the macro PROP DT(x) that modifies the neutron parameters

according to its velocity and position, using the time x. If the flag is 0, the interaction

choice is made. If the interaction happen we update the weight trough the p mult vari-

able, retain the scattered fraction from ws and correct by the Monte Carlo choice through

p scatt/mc scatt.

1 /∗ MC choice: Interaction or transmission ? ∗/

2 if (mult end) flag = 1;

3 if (!flag && mc scatt > 0 && (mc scatt >= 1 || rand01() < mc scatt)) { /∗ Interaction neutron/

↪→ sample ∗/

4 p mult ∗= ws; /∗ Update weight ; account for absorption and retain scattered fraction ∗/

5 /∗ we have chosen portion mc scatt of beam instead of p scatt, so we compensate ∗/

6 if (!mc scatt) ABSORB;

7 p mult ∗= fabs(p scatt/mc scatt); /∗ lower than 1 ∗/

8 } else {

9 flag = 1; /∗ Transmission : no interaction neutron/sample ∗/

10 if (!mc trans) ABSORB;

11 /∗ attenuate beam by portion which is scattered (and left along) ∗/

12 /∗ If is the end of multiple−scattering than do not correct MC ∗/

13 if(mult end){

14 p mult ∗= fabs(p trans);

15 }else{

16 p mult ∗= fabs(p trans/mc trans);

17 }

18 }

19 if (flag | mult end) { /∗ propagate to exit of sample and finish ∗/

20 intersect = 0;

21 // if (p mult<0) ABSORB;

22 p ∗= p mult; /∗ apply absorption correction ∗/

23 PROP DT(dt0+dt2);

24 break; /∗ exit main multi scatt while loop ∗/

25 }

Using the total scattering cross sections (absorption and scattering) obtained from the listing

7.3 we calculate the interaction point inside the sample.

The probability that the neutron will scatter between x and x + dx is µ exp(−µx)dx.

Calling d the total possible path length of the neutron in the sample, the probability that

the neutron will scatter within the distance d is:

Wd =
∫ d

0
µ exp(−µx)dx = 1− exp(−µd) (7.6)

The probability that it will scatter somewhere between 0 and x, given that it scatters
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somethere in the distance d is:

C(x) =
1− exp(−µx)
1− exp(−µd) (7.7)

So considering C(x) a randomly generated value z from 0 to 1 we can invert and obtain:

x = − 1
µ

log
(
1− z(1− e−µ∗d)

)
(7.8)

In the code we generate directly a value between 0 and B using rand0max(B). Writing:

dt = −
1

my t
log
[
1− rand0max(1− e−my t·d path)

]
(7.9)

Listing 7.5: Calculate the interaction path

1 /∗ Select a point at which to scatter the neutron, taking

2 secondary extinction into account. ∗/

3 if (my t∗d path < 1e−6)

4 /∗ For very weak scattering, use simple uniform sampling of scattering

5 point to avoid rounding errors. ∗/

6 dt = rand0max(d path); /∗ length ∗/

7 else

8 dt = −log(1 − rand0max((1 − exp(−my t∗d path)))) / my t; /∗ length ∗/

9 l i = dt;/∗ Penetration in sample: scattering+abs ∗/

10 dt /= v; /∗ Time from present position to scattering point ∗/

11 /∗ If t0 is in hole, propagate to next part of the hollow cylinder ∗/

12 if (dt1 > 0 && dt0 > 0 && dt > dt0) dt += dt1;

13 PROP DT(dt); /∗ Point of scattering∗/

14 /∗ Escape variabel for multiple−scattering ∗/

15 mult end=0;

We are basically choosing the point C in fig 7.1. Using the previous formula we can update

the weight using the integrated scattering probability p scatt along d path. At this point

we propagate the neutron to the point of scattering and initialize the mult end variable. At

this moment the real interaction takes place and the multiple-scattering feature is defined.

Through Monte Carlo we select two types of interactions, if the neutron is going to the

detector the output energy and velocity versor are set considering the detector direction and

efficient energy range (the neutron pass a resonant foil of Gold so we do not need neutrons

with energy far away from resonance energy). If we are going to iterate the interaction final

values are randomly generated assuming isotropic scattering.

Listing 7.6: Scattering to detector

1 /∗ Choice: detector or multiple−scattering?∗/
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2 if(rand01() < 0.5){

3 mult end=1;

4 if ((ia.tx || ia.ty || ia.tz)) {

5 aim x = ia.tx−x;

6 aim y = ia.ty−y;

7 aim z = ia.tz−z;

8 }

9 if(ia.aw && ia.ah) {

10 randvec target rect angular(&vx f, &vy f, &vz f, &solid angle,

11 aim x, aim y, aim z, ia.aw, ia.ah, ROT A CURRENT COMP);

12 } else if(ia.xw && ia.yh) {

13 randvec target rect(&vx f, &vy f, &vz f, &solid angle,

14 aim x, aim y, aim z, ia.xw, ia.yh, ROT A CURRENT COMP);

15 } else {

16 randvec target circle(&vx f, &vy f, &vz f, &solid angle, aim x, aim y, aim z, focus r);

17 }

18 NORM(vx f,vy f,vz f);

19 th0 = acos((vx f∗vx+vy f∗vy+vz f∗vz)/v);

20 if (E1Active==0){

21 e1range(th0,E i,ia.NM,atom,&E1MIN,&E1MAX);

22 E f=E1MIN+rand01()∗(E1MAX−E1MIN);

23 }else{

24 E f=finalEnergyAuDD(rand01());

25 }

26 if(E f<0){

27 printf(”E f is less than zero. Absorb.\n”);

28 ABSORB;

29 }

30 pdcs weight = pdcs(E i,E f,th0,ia.NM,atom,ia.FSE);

31

32 if(E1Active==0){

33 p mult ∗= pdcs weight∗solid angle∗(E1MAX−E1MIN)/ia.xst;

34 }else{

35 p mult ∗= pdcs weight/ia.xst;

36 }

37 v=SE2V∗sqrt(E f);

38 vx = v ∗ vx f;

39 vy = v ∗ vy f;

40 vz = v ∗ vz f;

41 /∗ Correction by mc choice ∗/

42 p ∗= p mult/0.5;

43 }else{

44 ...

45 }
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The first 18 lines are defining the velocity versor pointing to the detector. From McStas we

can retrieve the position of the detectors (tx,ty,tz) stored in the ia structure.

The function called randvec target rect angular etc. generates final velocity vector

components vx f,vy f,vz f pointing to a random position inside a rectangular (aw,ah) or

circular imposed area. This function returns also the solid angle covered by this gen-

eration. We don’t need the exact final velocity provided by this functions, we need only

the aiming capabilities, so we normalize trough the macro NORM. At this point we calculate

the angle of scattering (th0) and call the function e1final explained later in this chap-

ter. This function generates the final energy range through (E1MIN,E1MAX) from which we

choose randomly a value E f. This is a uniformly distributed choice inside the range. If we

are simulating only back scattering detectors than we can generate Ef taking into account

the gold foil resonance. A detailed description of the difference between the energy selec-

tion mechanisms is reported in Appendix B. We are generating x with uniform probability

between a and b, so we need to weight the event by the probability that the event would

occour. Using the following to generate x:

x = a+ (b− a)z (7.10)

where 0 < z < 1 is a random number. The weight is set as

w(x) = (b− a)P (x) (7.11)

The factor (b − a) ensures that the average weight given to the event is 1. We can see it

from the integral mean value theorem:∫ b

a

P (x)dx =
∫ b

a

P̄ dx = (b− a)P̄ = 1 (7.12)

Following these, the neutron-ray weight must be set:

w = (E1max − E1min)
d2σ(E0, E1, θ)

dΩdE1

/
dσ(E0, θ)

dΩ (7.13)

where
dσ(E0, θ)

dΩ =
∫ d2σ(E0, E1, θ)

dΩdE1
dE1 (7.14)dσ(E0, θ)

dΩ

w = (E1max − E1min)
d2σ(E0, E1, θ)

dΩdE1
(7.15)

integrating on solid angle, considering an isotropic scattering with uniform probabilities and

using again the integral mean value theorem on θ:

σ(E0)w = 4π(E1max − E1min)
d2σ(E0, E1, θ)

dΩdE1
(7.16)
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So the weight must be corrected by:

w = 1
σ(E0)4π(E1max − E1min)

d2σ(E0, E1, θ)
dΩdE1

(7.17)

If concentric is active tz is set to 1. Using the final energy we call the function pdcs that

calls the impulse approximation and returns the double differential cross section and stores

it in pdcs weight. The weight of the event is updated using 7.13 and the new velocity is

stored and applied to the neutron variables. Correcting again for the probability of emission

inside the solid angle of the detector and the montecarlo choice we apply to the neutron

weight p the correction calculated in p mult. When this choice is made the simulation is

going to end, mult end is set to 1 so the flag triggers. The second iteration calculates the

new p trans values from the scattering position and the neutron propagates outside the

sample. If the choice is multiple-scattering than the code is similar but without focal vector.

We chose a random direction of scattering with the polar angle θ and the azimuthal angle

φ and generate a new unitary vector.

Listing 7.7: Scattering for multiple-scattering

1 ...

2 }else{

3 th= acos(2.0∗rand01()−1.0);

4 ph= 2.0∗PI∗rand01();

5

6 vx f = cos(th)∗cos(ph);

7 vy f = cos(th)∗sin(ph);

8 vz f = sin(th);

9

10 th0 = acos((vx f∗vx+vy f∗vy+vz f∗vz)/v);

11

12 E i = VS2E∗v∗v;

13 e1range(th0,E i,ia.NM,atom,&E1MIN,&E1MAX);

14 E f=E1MIN+rand01()∗(E1MAX−E1MIN);

15

16 if(E f<0){

17 printf(”Multi Final Energy Negative! ABSORB\n”);

18 ABSORB;

19 }

20

21 pdcs weight=pdcs(E i,E f,th0,ia.NM,atom,ia.FSE);

22 // E f+=rand boltz;

23

24 p mult ∗= pdcs weight∗4.0∗PI∗(E1MAX−E1MIN)/ia.xst;
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25

26 v=SE2V∗sqrt(E f);

27

28 vx = v ∗ vx f;

29 vy = v ∗ vy f;

30 vz = v ∗ vz f;

31

32 p ∗= p mult/0.5;

33 }

7.1 Special Functions

The pdcs and e1final/e1range functions are where the interaction and efficiency resides.

The energy range is selected dynamically during the run-time of the code considering the

final energy sustainable by impulse approximation. Depending on masses and variance of

J(y) of the atoms inside the sample component we select the final energy to not modify

to zero the weight of the neutrons. The listing is showed in 7.8. From the velocity of

the neutron we calculate E0, the code then converts it to wave vector k0. We initialize a

large energy range and than we update it considering the most valuable range for impulse

approximation. From theory we know that initial and final velocities are correlated by

kinematics if the energy transfer is exactly the recoil energy. If θ is the angle between k0

and k1 we use the relation v1 = αv0 with

α =
cos θ +

√
(M2)− sin2 θ

M + 1 (7.18)

Knowing v0 we can evaluate v1 and so E1 and then the recoil energy:

h̄w = E0 − E1 (7.19)

from k0 and k1 we can calculate |q|:

q =
√
k2

0 + k2
1 − 2k0k1 cos(θ) (7.20)

From J(y) variance we can calculate the final energy variance:

σenergy =
h̄q

2MσJ ; (7.21)

so we select a final energy range for our final energy on 10σE from recoil energy. For e1final

the code is similar, but instead of E0−h̄ω we use the final energy around the gold absorption

resonance, 4907eV with a range of ±5σE .
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Listing 7.8: Function to choose final energies

1 int e1range(double th, double E0, int NM, struct atomProp ∗atom, double ∗E1MIN, double ∗E1MAX)

2 {

3 double k 0, k 1;

4 double E1, E1A, E1B;

5 double qrr, qr, wr, wid;

6 double alpha;

7

8 /∗ From neutron incident energy calculate k 0 wave vector∗/

9 k 0 = sqrt(E0 / 2.0717);

10 /∗ Set large interval for final energy∗/

11 ∗E1MIN = 1E10;

12 ∗E1MAX = −1E10;

13 /∗ From the recoils energy of the sample atoms choose the new range of energy∗/

14 for (int i = 0; i < NM; i++)

15 {

16 /∗ Alpha is used to obtain k 1 knowing theta (th) and atom mass, only in Impulse Approx∗/

17 alpha = (cos(th) + sqrt(pow(atom[i].mass, 2) − sin(th) ∗ sin(th))) / (atom[i].mass + 1);

18 k 1 = alpha ∗ k 0;

19 /∗hbar/2 = 2.0717 using meV∗/

20 E1 = 2.0717 ∗ k 1 ∗ k 1;

21 /∗ Q square ∗/

22 qrr = k 0 ∗ k 0 + k 1 ∗ k 1 − 2.0 ∗ k 0 ∗ k 1 ∗ cos(th);

23 if (qrr < 0.0) qrr = 0;

24 qr = sqrt(qrr);

25 /∗ Recoil, using E1 from alpha. Choosing energies in 10 sigma from recoil, scaled ∗/

26 wr = E0 − E1;

27 wid = 2.0717 ∗ atom[i].st dev ∗ qr / atom[i].mass;

28 E1A = E0 − wr − 10.0 ∗ wid;

29 E1B = E0 − wr + 10.0 ∗ wid;

30 /∗ Setting ∗/

31 if (E1A < ∗E1MIN)∗E1MIN = E1A;

32 if (E1B > ∗E1MAX)∗E1MAX = E1B;

33 }

34 if (∗E1MIN < 0.0) ∗E1MIN = 0.0;

35 return 0;

36 }

For the partial differential cross-section we recover the formalism from 3.15

d2σM
dΩdE1

= |bM |2

√√√√E1

E0
SM (q, ω) (7.22)

63



again we use the West scaling, using the standard deviation of J(y) to write the S(q, ω) as

S(q, ω) =
M

h̄2q
J(y) (7.23)

considering h̄ω = E1 − E0 we write

y = Mh̄ω

h̄2q
− q

2

= Mh̄ω

h̄2q
− M

h̄2q

h̄2q2

2M

= M

h̄2q

(
h̄ω − h̄2q2

2M

) (7.24)

to include the final state effects a variable (FSE) is passed by the instrument code. At the

moment the correction includes an asymmetric contribute only from the third order Hermite

Polynomials:

H3

(
y

σy
√

2

)
= 8

(
y

σy
√

2

)3
− 12

(
y

σy
√

2

)
(7.25)

from which we obtain

J(y)fse = J(y)−A3(y)J(y) (7.26)

where

A3(y) = σy

3q
√

23H3 (7.27)

Listing 7.9: Function to write PDCS

1 double pdcs(double E 0, double E 1, double th, int NM, struct atomProp atom[], int FSE)

2 {

3 double RT2PI; // sduareroot of PI

4 double k 0, k 1, q; // wave vectors

5 double w ; // E i − E f energy

6 double pdcs, sqw; // Partial differential cross section, S(q,w)

7 double Y west, J, h3, A3; // J(y) and Hermite correction

8

9 RT2PI = sqrt(2.0 ∗ acos(−1.0));

10 /∗ From Energies in input calculate Q and W∗/

11 k 0 = sqrt(E 0 / 2.0717);

12 k 1 = sqrt(E 1 / 2.0717);

13 q = sqrt(k 0 ∗ k 0 + k 1 ∗ k 1 − 2.0 ∗ k 0 ∗ k 1 ∗ cos(th));

14 w = E 0 − E 1;

15 pdcs = 0.0; //initialize pdcs

16 /∗ For each atom in input calculate contributes to PDCS ∗/

17 for (int i = 0; i < NM; i++)

18 {
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19 /∗ Avoiding q=0 errors ∗/

20 if (q != 0)

21 {

22 /∗ From mass and W generate the Y variables from West−Scaling ∗/

23 Y west = atom[i].mass ∗ w / (4.18036 ∗ q) − q / 2.0;

24 /∗ Leading term (gaussian) for J(Y) ∗/

25 J = exp(−(Y west ∗ Y west) / (2.0 ∗ atom[i].st dev ∗ atom[i].st dev)) / (atom[i].st dev ∗ RT2PI);

26 /∗ If final state effects are active, correct the J(Y) with Hermite Polynomials ∗/

27 if (FSE==1){

28 h3=8∗pow(Y west/(atom[i].st dev∗sqrt(2)),3)−12∗Y west/(atom[i].st dev∗sqrt(2));

29 A3=atom[i].st dev/(3∗q∗pow(sqrt(2),3))∗h3;

30 J∗=(1−A3);

31 }

32 /∗ Calculate Partial Differencial Cross Section ∗/

33 sqw = atom[i].mass ∗ J / (4.18036 ∗ q);

34 pdcs = pdcs + pow(atom[i].b, 2) ∗ (k 1 / k 0) ∗ sqw;

35 }

36 else

37 {

38 pdcs = pdcs + pow(atom[i].b, 2);

39 }

40 }

41 return pdcs;

42 }

65



7.2 BackScattering Results for D2O

In order to highlight the results from our simulation, we tried to replicate a complex measure

performed on the VESUVIO spectrometer [43]. The work needed a really precise measure

of the momentum distribution of deuterium. In presence of such light atoms, the multiple-

scattering contribution is widely distributed across the time of flight spectrum, and the

oxygen and copper contributions are added to this background. The simulation of the

correction for such structured multiple-scattering, even with the DINSMS code, is quite

tricky. There is the need to create a fictitious homogeneous sample inside the software

that contains the same amount of atoms as the ones involved during the experiment. Even

counting how many atoms of copper we need to include in our sample, in order to reproduce

the cell-container contribution to the signal, is not straightforward. Simply adding the atoms

does not work, there is the need to fine tune the parameters in order to estimate the correct

intensity of the signal. Not all the atoms in the cell-container contribute at the same way.

Some atoms of the copper are directly illuminated by the neutron flux, while some others will

interact only with multiple-scattered neutrons. The McStas simulation can be useful in this

case for it provides insightful graphical information, even if these preliminary results show

large discrepancies. In our simulation we used two impulse-approximation components, one

for the sample and one for the sample container. The sample was 7×7×0.5 cm3, the copper

container was set to match this dimension considering a thickness of 0.5 mm.

The input parameters are showed in table 7.1. In figure 7.3 a neutron interaction is

showed. We can see that there are more neutrons coming at the same time at sample position.

This is done by using the SPLIT command where a neutron-ray that has reached a component

is replicated as many times as defined in the split command (10 by default). Since our

component calls some random variables in the Monte Carlo process (like direction, scattering

probabilities and so on) every copy of the neutron-ray interacts differently enhancing the

resolution of the signal. A comparison of the simulation and experimental results is showed

in figure 7.4.

In figure 7.4 we can see the comparison between the simulation and the experimental

result for the detector S44. The multiple-scattering contribution is heavily underestimated

and the peaks positions are shifted to lower time-of-flight values. The copper contribution

seems to be over-estimated, but this can be justified by the sequential nature of McStas

simulations. A good number of neutron-rays reach the second face after the transmission

within the sample. This neutron-rays interact with the copper face and are scattered in the

direction of the detector. Since this component is positioned after the sample component
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Figure 7.3: Graphical visualization of the sample component in the McStas simulation. (left) Side

view,(right) Top view. Neutron are propagated along z. The green figure is the sample container,

and the orange one is the sample itself. This simulation make use of the SPLIT command where the

neutron interacting within the geometry is replicated. Every path is showed as the black lines.
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∗∗∗∗∗∗∗∗∗∗∗∗∗Impulse Approximation: CuIn ∗∗∗∗∗∗∗∗∗∗∗∗∗

∗ Atomic Species Number: 1

∗ Total density: 8.960 [g/cm3]

∗

∗ # Mass (au), Xsect (b), absXsect (b), s.d. J(y), atoms in

↪→ molecule

∗ 63.55 8.030 0.550 20.000 1.000000

∗

∗ Total Molar Mass: 63.546

∗ Total Num Molecular density: 8.49103e+022 [1/cm3]

∗ Concentric: Total Number of Molecule in V: 5.91468e+023

∗

∗ Mass: 63.546 −> Atom number density: 8.49103e+022 [1/

↪→ cm3]

∗ Concentric: Total Number of Atoms in volume: 5.91468e

↪→ +023

∗ Atom Conc: 1.00

∗

∗ Total Penetration Depth Length: 1.41 [cm]

∗ Total free scattering xsect= 7.781 [b]

∗

∗ Final state effects: ACTIVE

∗

∗ Multiple Scattering Max Order: 2

∗ multiple−scattering from order: 0

∗

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗∗∗∗∗∗∗∗∗∗∗∗∗Impulse Approximation: D2O ∗∗∗∗∗∗∗∗∗∗∗∗∗

∗ Atomic Species Number: 2

∗ Total density: 1.110 [g/cm3]

∗

∗ # Mass (au), Xsect (b), absXsect (b), s.d. J(y), atoms in

↪→ molecule

∗ 2.01 7.640 0.001 7.000 2.000000

∗ 16.00 4.232 0.000 12.000 1.000000

∗ Total Molar Mass: 20.026

∗ Total Num Molecular density: 3.33787e+022 [1/cm3]

∗ Total Number of Molecule in V: 8.17778e+023

∗

∗ Mass: 2.014 −> Atom number density: 6.67574e+022 [1/

↪→ cm3]

∗ Total Number of Atoms in volume: 1.63556e+024

∗ Atom Conc: 0.67

∗

∗ Mass: 15.999 −> Atom number density: 3.33787e+022 [1/

↪→ cm3]

∗ Total Number of Atoms in volume: 8.17778e+023

∗ Atom Conc: 0.33

∗

∗ Total Penetration Depth Length: 2.85 [cm]

∗ Total free scattering xsect= 10.527 [b]

∗ Final state effects: ACTIVE

∗ Multiple Scattering Max Order: 2

∗ multiple−scattering from order: 0

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Table 7.1: Input parameters for the D2O simulation. The copper parameters on the left side are

replicated for the outgoing neutrons for the concentric mode.

inside the code (the second face correspond to the outgoing neutron in concentric mode)

there are no additional interaction with the sample on the path through the detector.

Comparing only the multiple-scattering contribution (figure 7.5) from McStas with the

DINSMS simulations we can see that the deuterium and oxygen peaks (first and second ones

from left) show comparable intensities. This is clearly wrong due to experimental measure

and the DINSMS simulation. Probably one needs to refine the partial differential cross

section to better consider molecular density.

In figure 7.6 we tried to show the differences between a homogeneous sample simula-

tion and one with distinct geometry for sample and container. The homogeneous sample

configuration was obtained by maintaining the same number of atoms, calculated from the

distinct geometries configuration (see input files 7.1) . Even if the multiple-scattering is not

well handled we can see that between the copper and oxygen peaks the mixed configuration

seems to raise the counts. This can be explained by the fact that there is more inter-atomic

scattering between copper and sample components. In the distinct geometry this is a more

rare event since only the sample atoms near the borders tend to multiscatter with the copper.
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Figure 7.4: Simulation and experimental results for the detector S44. The data is normalized by

area. The multiple-scattering contribution between 150 and 300 us is not well reproduced. Some

useful implementations are showed: McStas can split the signal contribution from cell and sample,

we are even capable of showing the single faces of cell contribution (red and green). The brown

area correspond to the neutrons that have scattered in the cell and in the sample.

100 150 200 250 300 350 400
Time of flight [ s]

0.000

0.005

0.010

0.015

0.020

0.025

In
te

ns
ity

 [a
rb

itr
ar

y 
un

it]

DINSMS second order simulation
McStas second order simulation

Figure 7.5: The only multiple-scattering contribution is showed. The intensities needs to be

corrected. The results are normalized by total area. The McStas simulation show a more multiple-

scattering contribute from the oxygen (third peak from left) than the DINSMS code.
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Figure 7.6: Total scattering signal from McStas code. The orange is the simulation as showed

before. The blue line is the same simulation but with an homogeneous sample configuration.
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Chapter 8

Conclusion

We have successfully implemented the VESUVIO spectrometer into McStas software pack-

age. It is necessary to work on some fine tuning that will be carried out opening a collabo-

ration with the McStas developers and instrument scientists.

The collimation section is well reproduced. The distribution of the neutron energy spec-

trum coming from the moderator agreed very well with the experimental measure [22]. The

intensity discrepancies are comparable with the same values obtained by other instruments

on Target Station 1 (Ref [38]). Since the main upgrade to this section relies on a better sim-

ulation model for the Target Station these results will be sent to the ISIS Neutronic Group,

the developers of the source component Commodus I, to enhance the MCNPX simulation of

the target station. The already existing components of McStas were tested with a larger

energy ranges, this exposed some limitations for more complex components (like the sample

ones). In order to avoid this limitation a new component was developed. Single scattering

results are in agreement with the existing simulation tool (DINSMS), but multiple-scattering

contributions seem to be underestimated.

Heteronuclear samples are well described and the component can handle concentric ge-

ometries. There is an overestimation of cell contribution, this is due to the sequentially

nature of the McStas software. A neutron that reaches the backside of the cell is scattered

along the detector direction without interacting again within the sample. This problem can

be avoided in future rewriting this new component as an UNION component. The UNION

components are a special set of components written by Bertelsen [44]. In this case the

multiple-scattering contribution, transmission, and absorption processes are carried out by

the code. The developer writes down only the physics of a single scattering process, with-

out iterating or optimizing the neutron-rays flux, and assigns this physics to a geometry
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component. The code itself then computes all the neutron multiple scattering between the

geometries and optimizes the sequential calculation. For this reason we think that a com-

plete description inside McStas can bring a solid help to the instrument scientists for the

VESUVIO multiple-scattering analysis. Another limitation of DINSMS can be bypassed

easily: The capability of the McStas model to use filter gen components for resonant

foils permits to refine the front scattering resolution. We can selectively analyze each foil

contribution to the signal and easily change its geometry or thickness to minimize resolution

routines. Once the new component is refined every upgrade of the VESUVIO spectrometer

can be simulated and highly optimized without rewriting the entire simulation. After the

future validations, the component will be sent to McStas developers in order to be included

in future releases.

72



Appendix A

SQW Algoritm

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import os

#%%from user

M=207.2 #Lead Atomic mass (amu)

NM=1.67*10**(-27) #Neutron Mass

SIG=38 #standard deviation of J(y)

os.chdir("path/to/directory")

RT2PI=np.sqrt(2.0*np.arccos(-1.0))

Q=np.arange(1,600,1)

W=np.arange(1,1000,1)

WW,QQ=np.meshgrid(W,Q)

Y=M*WW/(4.18036*QQ)-QQ/2.0

J=np.exp(-Y**2/(2*np.power(SIG,2)))/(SIG*RT2PI)

SQW=M*J/(4.018036*QQ)

# %% Writing to MCSTAS format

file=open(’Pb2.sqw’,’wb’)

intro=([’# Format: Sqw data file for Isotropic_Sqw <http://www.mcstas.org>’,

’# Simulated using impulse approximation’,

’# Using SQW_generator from A. Di Giulio’,

’# title: Pb: S(q,w) impulse approximation’,

’# Date: 22/10/2017’,

’# filename: Pb.sqw’,

’# format: Sqw data file for Isotropic_Sqw (McStas)’,

’# signal: Min=-7.84046e-08; Max=1.73437; Mean=0.00197862; sum=3489.95;’,
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’# type: array_2d’+str(SQW.shape),

’# xylimits: ’+str(Q.min())+’ ’+str(Q.max())+’ ’+str(W.min())+’ ’+str(W.max()),

’# xlabel: Wavevector [Angs-1]’,

’# ylabel: Energy [meV]’,

’#’,

’# Physical parameters:’,

’# Comment Rewrited in Python from FORTRAN code using standard deviation of J(y)=’+str

↪→ (SIG),

’# Instrument VESUVIO at ISIS’,

’# Final energy 4.9 [eV] Neutron final energy used for the measurement’,

’# Material Pb’ ,

’# Phase none’,

’# Scattering total process’,

’# T_b 2022 [K] Boiling T’,

’# T_m 600.61 [K] Melting T’,

’# Temperature 300 [K]’,

’# classical 1 [0=from measurement, with Bose factor included, 1=from MD, symmetric]’,

’# dT 20 [K] T accuracy’,

’# density 11.3 [g/cm3] Material density’,

’# sigma_abs 0.171 [barn] Absorption neutron cross section’,

’# sigma_coh 11.115 [barn] Coherent scattering neutron cross section’,

’# sigma_inc 0.003 [barn] Incoherent scattering neutron cross section’,

’# weight 207.2 [g/mol] Material weight’,

’#’])

np.savetxt(file, intro,fmt=’%s’)

np.savetxt(file, Q[np.newaxis],fmt=’%.7g’, delimiter=’ ’,header=’Q values in AA-1’)

np.savetxt(file, W[np.newaxis],fmt=’%.7g’, delimiter=’ ’,header=’E values in meV’,newline="\n

↪→ ")

np.savetxt(file,SQW,fmt=’%.5g’, delimiter=’ ’,header=’SQW matrix’,newline="\n")

file.close()

74



Appendix B

Gold Foil

While most thermal neutron spectrometer can be easily converted into McStas without

intensive effort, the VESUVIO spectrometer needs a more detailed description and a bit

more complicated coding machinery. In an inverse geometry instrument the final energy is

fixed. In the VESUVIO spectrometer is based around resonant filters, in the back-scattering

case they are used as absorbing foils and in forward-scattering as γ-emitting foils. The

absorption is already implemented into McStas via the filter gen component that loads a

two dimensional ASCII table with the weight correction factor. For the forward-scattering

foils we need a more deep implementation because McStas can not handle at this moment

the photons radiation.

As already seen the peculiarity of VESUVIO is the changing of the foil configuration

to filter more or less neutrons or emit more or less γ radiation. There are a total of 6

configuration setup, and all of that contribute to obtain the final Compton Profile from the

sample.

B.1 Absorption foils

The foils in back-scattering are mounted on a disk divided in three dials, one without foils,

one with a thin foil and one with a thick foil. In one run of VESUVIO every two periods of

measure the disk rotates so every detector writes down three different measure corresponding

to the foil faced. The implementation of this movement inside the code depends strongly on

the simulation focus. Using the filter-gen component we enhance the modular nature of

McStas and simplify the analysis of resolution by changing the resonant material, or the β

parameter optimization. This method can be performed by two setups:
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• Insert three filter gen components with no foil, thick foil and thin foil tables;

• Insert only one filter gen component using a table with the double difference corre-

sponding table.

If we do not need to change frequently the foils material the most efficient way is to write

down directly inside our sample component the code assigned to choice the final energy,

considering the probability of emission taking and into account the double difference result.

We are going to show results for all three cases. Showing how resolution and performance

change for each configuration.

B.1.1 Three filter gen

In these simulations we are going to insert between sample and detector two Filter gen

component that load two custom made .dat files, created using a python script, Figure

B.1. The third filter gen for the no foil configuration is simply an Arm component that

does not interact with the neutron. We could insert no components for the latter but using

a mute component can be useful to track neutrons during the simulation. We generated

more files using different thickness: 50µm for the thick foil, 25µm, 14µm and 12.5µm for

the thin foil. In this simulation we need three different measures, like the experiment, to
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Figure B.1: The transfer functions as input of the filter gen component. From JANIS database

we take the cross section values

obtain enough data to compute the Compton profile. We can simulate all three runs in

one execution of the code, loading 2 different thickness at the same time and splitting the
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transport of the neutron-rays into three different path, not talking each other. This is

achieved using the WHEN command and a bit of C code. After the moderator component, so

after the initialization of a neutron-ray, the code choose randomly a number from {0,1,2}

and write it in the variable foil:

1 COMPONENT source = Commodus I( Face=”TS1 S02 Vesuvio.mcstas”, [...])

2 AT (0,0,0) RELATIVE arm1

3 EXTEND%{

4 foil=rand()%3;

5 p∗=3;

6 %}

This foil variable triggers the path choice from the WHEN command, the latter act like a if

condition, placing or not placing the relative component inside the beam path.

1 COMPONENT filter thin = Filter gen(

2 filename=thin, ...)

3 WHEN (foil==1) AT (−0.158,−0.048,0.46) RELATIVE Armsample

4 GROUP Foils

5

6 COMPONENT filter thick = Filter gen(

7 filename=thick, ... )

8 WHEN (foil==2) AT (−0.158,−0.048,0.46) RELATIVE Armsample

9 GROUP Foils

10

11 COMPONENT No filter = Arm()

12 WHEN (foil==0) AT (−0.158,−0.048,0.46) RELATIVE Armsample

13 GROUP Foils

14 EXTEND %{

15 SCATTER;

16 %}

17

After obtaining the three files (Figure B.2), the first step to extract the Compton profile is

to apply the double difference method. First of all we need to set the β values:

β =
thin thickness
thick thickness (B.1)

the thick foil is ever 50µm thick, the thin ones are 12.5, 14.0 and 25.0 µm for β =

{0.25, 0.28, 0.50} respectively. I obtain the double difference measure applying:

CDD = Cout ∗ (1− β)− Cthin + β ∗ Cthick (B.2)

and we can see the results in Figure B.3.
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B.1.2 Single Filter Gen

In case of a single Filter Gen component we need to precompute the total transmission

function as showed in 3.11. The main improvement from the previous solution is that the

number of neutron-ray reaching the detector is 3 times higher. As showed in previous

chapters the Monte Carlo choice in the three foil solution split the flux in 3 parts. The p

values is than corrected but the statistical error is proportional to 1/
√
N so

Err3f ∝
1√
N
3

=
√

3 · Err1f (B.3)

The other improvement is that the compiling time reduces, we need to load only one ASCII

table instead of two. This method is preferable to the previous one because of the VESUVIO

spectrometer background contributions are not present in simulation.

B.1.3 Generating the final energy inside the sample component

The most efficient way to simulate the resonant foil at back scattering is to include directly

inside the component the resonant foil feature. On the other hand changing the foils prop-

erties become difficult and it is necessary to rewrite the component itself. This can be done

using the Cumulative Distribution Function (CDF) obtained from the results of the double

difference procedure. Assume that the function P (x) is non-zero only within the region

between x = a and x = b: Define the function

C(x) =
x∫
a

P (z)dz (B.4)

which is the probability that an event will occur with x value somewhere between a and x:

By definition P (b) = 1 and the function will have a form something like that sketched in Fig.

B.4. A random number z is generated uniformly in the interval 0 < z < 1 and the value of

x is determined as x = C−1(z) as sketched in Fig. B.4. This method generates values of x

with the frequency that they would actually occur if the probability of an event is P (x)dx.

This technique is already in use by the DINSMS code included into Mantid. It is actually

used to correct the signal during the data reduction on the VESUVIO spectrometer. For

this reason we used exactly the same CDF function, showed in figure B.4.

B.1.4 Performance Comparison

In figure B.5 we can see the double difference result obtained by the three technique explained

above. All the simulation are performed with the same number of neutron-ray histories
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Figure B.4: Cumulative Distribution Function obtained by double difference resonant foil.

(1× 108). The three foil technique is clearly the most inefficient cause by losing a consistent

number of neutron that does not contribute to the profile intensity. The one foil technique

has more resolution but in any case we are simulating a consistent number of neutron that

has weight with a value near zero. The DINSMS technique is the most efficient. We are using

more neutron-rays where is needed and the zero value neutron-ray are seldom generated.

The difference in intensity can be explained considering the difficulty to reconstruct the foil

thickness by the information taken. There are not precise measure and from bibliography

research the only parameter found was β.
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Figure B.5: Comparison between the three technique explained in this chapter. The three foil

configuration (blue) has a really low resolution, the one filter configuration is quite better but using

the final energy from DINSMS we notice the better resolution performance. All the simulation were

taken with 1 × 108 neutron-rays.
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Appendix C

Frontscattering and γ emulation

In this section we are going to investigate a simple technique that can be used to obtain a

sort of gamma representation in McStas. There are not such thing as γ interaction physics

inside Mcstas but, at least in concern to the VESUVIO spectrometer, we can use the same

neutron-rays of the code as pseudo-γ rays. The main reason to include this part to the

simulation is that front-scattering detectors are γ sensitive. The single difference technique,

as explained in the introduction (see ch. 3.1), is based on a double measure obtained by

inserting a second foil into the neutron path from sample to detector. The YAP detectors

have been set to count the gamma emitted by the gold foil attached to them, filtering the

counts by gamma energies below 600 keV, to enhance only the Gold contribution. The

second foil decreases the number of neutron with energy of ∼4.9 eV reaching the YAP.

The main problem with this method is that there are 4 cycling foil that in every period

are positioned in front of 4 of the 8 banks of detectors. When the period change they move

to cover the other 4 banks (refer to figure C.1). Every foil emits the gamma radiation from

the neutrons incoming, so each detector counts not only the emission from his foil and the

cycling one in front of it, but the cumulative contribution from all the cycling foils.

Even if the propagation time of photons (for a distance of 40-70 cm), is basically zero

the detectors, mainly at large angle of scattering, are sensitive to the different positions of

the foils.

In order to reproduce the experiment we use the neutron-rays from McStas adapting the

configuration to simulate a gamma interaction:

• Instant propagation: we insert a detector just after every foil in the simulation

• Isotropic emission: all the detectors data collection is summed. The final result contain

every gamma emitted.
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Figure C.1: The front scattering schema of the VESUVIO spectromenter. The front scattering

detectors (S135-S198) are packed in group of 8, 4 above and 4 below the sample center plane.

• Photons multiplicity: We use a filter gen component with a weight modifier that

increase the p value to match the average number of photons emitted.

This gamma emission is originated in our simplified model at foils position or at detector

position (the YAP have a foil that converts neutrons to photons). The most important

approximation in this simulations is the sample emission. As we can see in fig C.2 the

n-γ cross section describe numerous resonance for incident neutron energies above 1 keV.

The sample component in our case does not emit photons, we are neglecting even the de-

excitation of the sample or of the gold foils.

In our case however we are going to filter neutrons at low energies where the gold show

a relative isolated resonance (∼ 4.9 eV).

C.1 McStas Forward Model

The sequential nature of McStas induces us to consider carefully all the components that

we want to insert or investigate. We are going to split neutron-rays into many paths inside

the simulation because a neutron-ray can interact with only one of the cycling foils. After

the sample component we make a random choice of which one foil is active. We run two
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Figure C.2: From Janis Database we can see the n-γ cross section for Lead. There are many

resonance over 1 keV and this can be difficult to include the code.

Figure C.3: The 3D visualization of the front scattering setup. The Foils are duplicated because

both the foil-out and foil-in configuration are present.
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Figure C.4: The complete code, the various path choice are rearranged visually in branch. The

virtual YAP are simply the union of the detector component and the filter to gamma component.

simulation for the foil in and the foil out configuration (see figure C.4). After the sample

we chose randomly from 5 paths, one for every foil and one for the detector position. If we

are in the configuration “foil-in” the detector path contains another filter gen component

to retrieve the neutrons that does not interact with the gold foil. To emulate the gold foils

we use again the filter gen component. In our energies range (below 1 keV) we must take

into account the photons multiplicity. The conversion 1 neutron to 1 photon underrates the

detector count, we can adjust this by generating a .dat filter file that include this. We can

include the multiplicity in the cross section and calculate a new filter file. From the JANIS

database we know that the photons multiplicity is constant (∼ 2.8) for a neutron energy

below 1 keV.

C.2 Preliminary Results

The principal assumption of the single difference technique is the good subtraction of the

backgrounds gamma radiation. In our model there is not a complete background (again,

there are not de-excitation or complete multiple-scattering description) but we can investi-

gate the contribute in YAP counts by the gold cycling foils. In figure C.5 we can see the

counts for each foil and detector.

We can see the the off path foils signals (from 1 to 4 in figure) are too high. The reason is

that the monitor components in McStas are just plane and our setup does not reproduce the

probability that a gamma is detected from the monitor. We are ignoring in this simulations
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Figure C.5: In figure we can see the contribution to the signal by each foil. The foil n. 0 is the

YAP foil. (left) Foil in configuration (right) Foil out configuration.

the efficiency of the YAP detector η in the VESUVIO spectrometer that can be written as

η = 1
2αµd (C.1)

where µ is the average attenuation length of emitted γ-rays in the scintillator glass and d

is the glass thickness. The factor on half arises because half the gamma rays are emitted

in the opposite direction to the detector. α is a constant ∼ 1, which ca be determined by

fitting to calibration data [39].

The d value at the moment can not be taken into account. A correct measure of the γ

background can be obtained by McStas (as we can see in figure C.6 the oscillations on signal

are presents) but we need to write down two new components:

• A detector with thickness that include the probability of interaction;

• A γ-emitting component where we can include the probability of emission.

After the development of this two component we are quite confident to reproduce and analyze

each foil contribution to the signal.
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Appendix D

Other results

During the development of the impulse approximation component we use some standard

measures performed on the VESUVIO spectrometer. In these cases the sample environment

is simpler because there is not a cell container, or other systems to manage temperature and

pressure (CCR).

D.1 Lead

The lead sample is used by VESUVIO as calibration sample, the transfer energy is small

(of the order of 200 meV so the peak position is not heavily modified by multiple-scattering

contribution. The lead absorption cross section is 0.171 b while the total scattering cross

section is 11.118 b. For this reason the major part (∼98 % at 25 meV) of the neutron-rays

that interact with the sample component are scattered. The lead sample is a 7 cm× 7 cm

square with a thickness of 0.2 cm, so the flux after the collimation is entirely included. The

results are showed in figure D.1. There is a good agreement between the simulations and

the multiple-scattering contribution is well estimated.

There is a small shift of the peak position to higher time of flight. The main reason of

this can be a different approach to the final state effects inclusion.

The Hermite correction (eq. 7.26) can produce a negative weight, that need to be ignored

in this simulation. A negative weight has non physical meaning and in the detector they

can cancel out positive contributions. In our case the negative values are set to 0 and the

corresponding neutron-ray is absorbed by the ABSORB routine.
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Figure D.1: The lead simulation from DINSMS code (black lines) and McStas simulation.

D.2 Vanadium

The vanadium test was performed with a disk sample with 2.5 cm radius and a thickness of

0.5 cm. In this case the absorption cross section is larger (5.08 b) and its value is near the

scattering cross section (5.1 b). The results are showed in figure D.2. The discrepancies are

much higher than the ones in the lead simulation. The simulation seems a bit more unstable,

the high peak at ∼340 µs correspond to a code error that occur randomly. There are more

of these peaks even at higher time of flight and it seems to be a geometry and routines lack

of protection. The higher absorption cross section is mitigated by the high neutron energy:

the values are referred to a 25 meV neutrons (2200 m s−1) but the value that is processed by

the code depends on the neutron velocity (there is a 1/v dependency). The higher inten-

sity of multiple-scattering contribution can be related to a no good implementation of the

absorption cross section. These results, among the D2O ones, are still under investigation.
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Figure D.2: The vanadium simulation from DINSMS code (black lines) and McStas simulation.
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Appendix E

Variables and abbreviations

ia.my s macroscopic scattering cross section

ia.my a v macroscopic absorption cross section (no v dependecty)

my a macroscopic absorption cross section (with v dependency)

my t macroscopic total cross section

ws σs/σt

p mult weight value multiplier

ia.NM number of different atom masses in sample

th0 angle of scattering

ia.xst total free scattering cross section

pdcs partial differential cross section

Y west y-scaling variable

ia structure for general data

atom structure for single atom data

IA impulse approximation

NCP neutron Compton profile
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[29] L. A. Rodŕıguez Palomino, J. Dawidowski, J. I. Márquez Damián, G. J. Cuello, G. Ro-

manelli, and M. Krzystyniak, “Neutron total cross-section of hydrogenous and deuter-

ated 1- and 2-propanol and n-butanol measured using the vesuvio spectrometer,” Nu-

clear Instruments and Methods in Physics Research Section A, vol. 870, pp. 84 – 89,

2017.

[30] G. Romanelli, S. Rudic, M. Zanetti, C. Andreani, F. Fernandex-Alonso, G. Gorini,

M. Krzystyniak, and G. Skoro, “Measurement of the para-hydrogen concentration in

the isis moderators using neutron transmission and thermal conductivity,” Nuclear In-

struments and Methods in Physics Research Section A, vol. in press, 2018.

94



[31] G Romanelli et al, “A McStas simulation of the incident neutron beam on the VESUVIO

spectrometer,” Journal of Physics Conference Series, in press.

[32] “Mcstas homepage,” Last accessed on February 2018.

[33] “Scarf homepage,” Last accessed on February 2018.

[34] Last accessed on April 2018.

[35] S. G. Ansell S., “The viewmodisis component, mcstas simulation package (accessed on

the 11 january 2018).,” 2015.

[36] P. Willendrup, U. Filges, L. Keller, E. Farhi, and K. Lefmann, “Validation of a realistic

powder sample using data from dmc at psi,” Physica B: Condensed Matter, vol. 385,

pp. 1032–1034, 2006.

[37] E. Farhi, V. Hugouvieux, M. Johnson, and W. Kob, “Virtual experiments: Combining

realistic neutron scattering instrument and sample simulations,” Journal of Computa-

tional Physics, vol. 228, pp. 5251–5261, aug 2009.

[38] R. S. Pinna, S. Rudić, M. J. Capstick, D. J. McPhail, D. E. Pooley, G. D. Howells,

G. Gorini, and F. Fernandez-Alonso, “Detailed characterisation of the incident neu-

tron beam on the TOSCA spectrometer,” Nuclear Instruments and Methods in Physics

Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,

vol. 870, pp. 79–83, oct 2017.

[39] J. Mayers and M. A. Adams, “Calibration of an electron volt neutron spectrometer,”

Nuclear Instruments and Methods in Physics Research Section A, vol. 625, pp. 47–56,

Jan. 2011.

[40] G. Bacon, Neutron diffraction 3 edition. Clarendon Press.

[41] J. Mayers, A. Fielding, and R. Senesi, “Multiple scattering in deep inelastic neutron

scattering: Monte carlo simulations and experiments at the ISIS eVS inverse geometry

spectrometer,” Nuclear Instruments and Methods in Physics Research Section A: Ac-

celerators, Spectrometers, Detectors and Associated Equipment, vol. 481, pp. 454–463,

apr 2002.

[42] G. Romanelli and M. Krzystyniak, “On the line-shape analysis of compton profiles and

its application to neutron scattering,” Nuclear Instruments and Methods in Physics

Research Section A, vol. 819, pp. 84 – 88, 2016.

95



[43] G. Romanelli, M. Ceriotti, D. E. Manolopoulos, C. Pantalei, R. Senesi, and C. Andreani,

“Direct measurement of competing quantum effects on the kinetic energy of heavy water

upon melting,” The Journal of Physical Chemistry Letters, vol. 4, no. 19, pp. 3251–3256,

2013.

[44] M. Bertelsen, “Software for simulation and design of neutron scattering instrumenta-

tion.”

96


	I Introduction
	Neutron Transport Codes: application
	Neutron and Matter
	Introduction
	A simple interaction

	Neutron Scattering
	Coherent and incoherent scattering
	Correlation functions in nuclear scattering

	Neutron Compton Scattering
	Y Scaling and Neutron Compton Profile

	The VESUVIO spectrometer
	Foil Cycling Technique
	Double Difference Method
	Data Analysis
	Correction to the Impulse Approximation


	Brief introduction to McStas
	The instrument file


	II The VESUVIO spectrometer in McStas
	Collimation
	McStas Model
	Collimation results

	Sample
	PowderN
	Isotropic_SQW

	The Impulse Approximation Component
	Special Functions
	BackScattering Results for D2O

	Conclusion
	SQW Algoritm
	Gold Foil
	Absorption foils
	Three filter_gen
	Single Filter_Gen
	Generating the final energy inside the sample component
	Performance Comparison


	Frontscattering and  emulation
	McStas Forward Model
	Preliminary Results

	Other results
	Lead
	Vanadium

	Variables and abbreviations
	Reference


