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Nonlinear Screening in Moderate-Z Hot Dense

Matter

A.P.L.Robinson!

LCentral Laser Facility, STFC Rutherford-Appleton Laboratory,Didcot, OX11
0QX, United Kingdom

Abstract. In this paper we show that linear (Debye-Hiickel) electrostatic
screening is not accurate for solid density, moderate-Z (Z >10)materials in the
hot dense matter regime (7' > 100eV). The disparity between linear and nonlinear
descriptions will easily exceed 50%, and in some cases can exceed a factor of two.
The effect is most strongly dependent on Z and T with lower temperatures and
higher Z favouring stronger nonlinear effects. Our conclusions are reached via
fully nonlinear calculations performed using a Poisson-Boltzmann model that has
been modified to account for quantum diffraction.



Nonlinear Screening in HDM 2
1. Introduction

In the past few years there has been a resurgence of interest in the problem of
microphysical properties of hot dense plasmas. This has been driven by the completion
of a number of new facilities, thus expanding the capabilities of experimental
researchers. The inertial fusion studies on the National Ignition Facility have raised
a number of questions about plasma microphysics including both Equation of State
and transport. On the other hand, experiments on both XFELs and optical laser
facilities (e.g. Orion [1]), have reinvigorated interest in ionization potential depression
(IPD; or continuum lowering) [2] The recent results from both XFELs and optical
high-powered lasers (e.g. [3]) indicate that no single framework or model appears to
be capable of describing all of the experimental results, although considerable progress
has since been made on the theoretical front [4]. The long established models that
these new results have been compared to include the model of Ecker and Kroll [5], the
Stewart-Pyatt model [6], as well as the Ion Sphere, and Debye-Hiickel models.

The problem of IPD emerges in plasmas because the plasma collectively responds
to the presence of any charged particle, resulting in screening of the particle’s field.
Thus the microfield around the particle is no longer identical to the bare Coulomb
field. If we generically represent this microfield via the screened form,

o(r) = 2 1)

r

then an examination of the behaviour at radii much smaller than the screening length
reveals that,

A
¢x?—/§A. (2)

Thus from the point of view of solving the quantum mechanical problem of the energy
levels of an ion, all of the energy levels will be shifted by xA. This means that, unlike
an isolated atom or ion, there will only be a finite number of energy levels. Clearly
the IPD needs to be calculated accurately, if the atomic physics is to be modelled
correctly. It is because of this that the IPD problem remains such an important
outstanding problem.

Having said this, it is important to note that electrostatic screening affects many
other aspects of plasma behaviour [7]. It introduces a correction to the internal energy
and equation of state [8]. It is an important factor in determining transport properties
such as electrical resistivity and thermal conductivity (as well as plasma composition)
[9], and it is also important in determining the energy exchange rates [10]. Screening
also affects low-energy nuclear reactions both in nature and the laboratory (see [11]
and references therein), and other processes [12].

In non-degenerate, weakly-coupled plasmas it is generally assumed that Debye-
Hickel (DH) or linear screening iis the most correct description of electrostatic
screening. However the foundational equation for Debye-Hiickel screening — the
Poisson-Boltzmann equation — is a rather nonlinear equation, and the extent to which
DH screening applies is not very thoroughly discussed in the literature.

In this paper we show that the electrostatic screening of moderate Z ions enters
a nonlinear regime in hot dense matter. We are guided to this conclusion by the
analysis of the hydrogenic plasma by Lampert and Crandall. To illustrate this we use

1 In this paper we will use ‘Debye-Hiickel’ interchangeably with ‘linear’. However ‘linear’ screening is
a more general term that does not apply exclusively to situations where DH screening is appropriate.
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the specific case of solid density Al in the temperature range of 200> T, > 500 eV,
and consider the effect on the A1t jon. The nonlinear effects primarily introduce
a uniform shift in the screened potential. Therefore this is particularly important
for the IPD problem, as established models such as the Debye-Hiickel model, the
Stewart-Pyatt model [6] , and Crowley’s model [13], have generally adopted a linear
treatment of screening. Here we show that a linear treatment of screening is likely to
be inadequate for ions with Z* > 10 in hot dense plasmas. In some cases the difference
between linear and nonlinear screening can reach a factor of 5 in the IPD. Even in
the case of Z* = 10, at solid density, linear screening is not particularly accurate even
at 500eV, so very high temperatures need to be reached before the linear screening
model becomes accurate.

The paper is organized as follows : (i) In Section 2, we describe the modified
Poisson-Boltzmann model that we use which accounts for quantum diffraction of the
electrons, (ii) in Section 3 we examine the conditions under which nonlinear screening
effects might be expected, and conclude that this this will only be possible in HDM
conditions for Z >10, (iii) in Section 4 we describe how we carried out the full nonlinear
solution of the Poisson-Boltzmann equation to verify this, (iv) in Section 5 we present
the results of these calculations. In the following two Sections we discuss the results
and state our conclusions.

2. Model

For the purpose of showing the importance of non-linear electron screening, we will
work in a framework where the base model is the Poisson-Boltzmann equation. This
requires that the plasma has reached sufficiently high temperature that the effects
of degeneracy can be neglected. The corresponding linear model is the Debye-Hiickel
model, and we will compare our results to this. We adopt the following normalizations
to cast the core equation in dimensionless form : ¢ = ed/kpT, and 7 = r/A\p (where
Ap is the (electron) Debye length). With these normalizations, the Poisson-Boltzmann
equation becomes :

V2p =e? — e 9, (3)
where we use Z, to denote the charge state of the ions in the plasma. As it is also
of interest to examine the case where the ions are replaced by a uniform neutralizing
positive background, the equation,

V2 =e? —1, (4)
will also be considered.

The Poisson-Boltzmann model does require some modifications to include physics
that Eq.s 3 and 4 do not naturally account for. On length-scales approaching the de
Broglie wavelength of an electron, quantum diffraction can no longer be neglected.
The net effect of this is to put a limit on how close an electron can “approach” an
ion. This ‘softens’ the electron-ion interaction, effectively removing the Coulomb
singularity which might otherwise be problematic. Early work on this effect in plasmas
was done by Kelbg [14]. To incorporate this into the Poisson-Boltzmann model,
we use an approach suggested by Ebeling [§8]. In Ebeling’s “Quantum Debye-Hiickel
Approximation” an inner radius given by,

h

—__"
A1) = s it

()
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which is a hard barrier for the electrons. Since the potential is repulsive for the ions, in
the cases where the ions are mobile we also regard r = a as a hard barrier for the ions
as well, as any error this will introduce will be negligible. Although this can be seen as
important in terms of addressing quantum corrections, it is also important in terms of
ensuring that the Poisson-Boltzmann equation is tractable (even numerically) when
the central charge is effectively point-like. Imposing this barrier imposes an inner
boundary condition by stating that the electric field must be given by,

~ r
ET = ?7 (6)
where,
763 1/2
r=—22" (7)
4meg (kpT)3/2

If we then linearize the model with this inner boundary condition, and seek the
analogue of the Debye-Hiickel solution (for immobile ions; which we will denote as
the QDH potential), then we find,
Te* e "
_ . 8
PopH (14+a) r’ (8)
note that here (and henceforth) we have dropped using the tilde to denote normalized
quantites, and thus all quantities should be regarded as being normalized unless stated
otherwise.

3. Onset of Nonlinear Screening

It is now clear that the screening behaviour is determined by two dimensionless
quantities — I and a. However it is well known that the linearized, or Debye-Hiickel,
solution is a very good approximation to the actual solution of the Poisson-Boltzmann
equation [15] for a wide range of conditions. It is therefore necessary to determine
the conditions under which the linear approximation breaks down, and thus where
screening may be stronger than expected. In general, this is an unsolved problem.
However, Lampert and Crandall [16] established an absolute upper bound on the
solution to Eq. 3 for the specific case of Z =1, which can be written as,

-

drc = Ula,0)"— ©)

and

(10)

1 —Qa
Ula,a) = 2(1 + a)ae' T n {H] ,

1 —eaa

which applies for r > (1 + «)a, with @ > 0. So for a given choice of a we can
compare this absolute upper bound to Eq. 8. Since they are both Debye-Hiickel
functions, this means that only the pre-factors need to be compared. If ¢opy > ¢drc
e,

1 —Qaa
> 2(1+ a)ae™* In [ re ]

1 —e—a

1+4+a (11)
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Figure 1. Results of solution of Poisson-Boltzmann equation for different a with
I' =1 in terms of ¢(a)/Ppgpm(a).

On carrying out a number of numerical tests, it was found that choosing o =
1 was adequate for converting Eq. 11 into a relation for indicating the onset of the
non-linear regime, i.e.

r " 14+e @
f_l—I—a dae ln{l—e“]’ (12)
where f > 0 indicates that the screening has become non-linear, and f <0 indicates
the linear regime. This equation was found to work well for both the immobile and
mobile ion cases, as well as for Z >1.

In the numerical tests, we observed a continuous transition from the linear
screening regime into the non-linear screening regime (also observed in [15]) as a or T
was varied. Thus a substantial departure from the linear regime can occur before the
point indicated by Eq.12. Examples of these numerical tests (for the case of immobile
ions) are shown in figs. 1 and 2 for the cases of I' =1, and I" =0.1 respectively. In fig.s
1 and 2, the ratio ¢(a)/¢gopw(a) is plotted against a, where ¢gpn is given by Eq. 8.
For I' =1, Eq. 12 predicts a transition for a =0.064, and for I =0.1, Eq. 12 predicts a
transition for a =0.004. In both cases these points lie in a steep region on the curve,
and thus Eq. 12 is a good indicator of where the nonlinear regime lies. The numerical
details of how these calculations were performed is covered in Sec. 4.

Eq. 12 can also be used to determine which regions of parameter space are
susceptible to nonlinear screening. In fig. 3, we plot f as a function of temperature for

the cases of Z =10 and Z = 6 respectively, under the assumption of n, =6x10%m=3.
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Figure 2. Results of solution of Poisson-Boltzmann equation for different a with
I’ =0.1 in terms of ¢(a)/pgpH(a).

By examining fig. 3 we find that, in the case of Z =6, the temperature at which
one enters the non-linear regime is so low that correspondingly high ionization will not
be achieved at that temperature. This conclusion gets stronger if Z is reduced even
further. In contrast for Z >10, the transition temperature is in excess of 100eV, which
means that, at solid density, sufficiently high degrees of ionization can be achieved
at temperatures close to this. This means that both ionization to Z > 10 would
be expected and that the electrons would be far from degenerate (© > 5). Note
that, because of the continuous transition between the linear and non-linear screening
regimes, one can expect quite substantial departures from the Debye-Hiickel model
even at temperatures in the range of 200-500 eV.

4. Nonlinear Calculations — Setup

In order to quantitively determine the strength of the non-linear screening, we carried
out a set of calculations in which we numerically solved the Poisson-Boltzmann
equation (both mobile (Eq. 3) and immobile ions (Eq.4)) for the problem of a single
central ion. For this we used a Newton-Kantorovich method. To clarify : by ‘Newton-
Kantorovich’, we mean a method that is also often called ‘Quasilinearization’, and
is often attributed specifically to Bellman and Kalaba [17]. A convergence criterion
of 1076 was set. This was done on a radial grid of 80000 cells, with a cell spacing
of 107*. For the inner boundary condition, we enforced Eq. 6, and for the outer
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Figure 3. Plot of f (Eq. 12) against T for both Z =10 (red) and Z =6 (black) ,
assuming n. =6x1029m=3,

boundary condition we enforced ¢ = 0. For each temperature, we assumed a fixed
electron density of 6x10%> m~3. The central ion was taken to have an effective charge
of Z* =10, and the ions in the surrounding plasma were assumed to have Z, =10.

We have checked this method by comparing its results to those obtained by scipy’s
solve_bvp routine [18], which implements a 4th order collocation algorithm [19], and
the scikits.bvpllg package, which calls Bader and Ascher’s collocation at Gaussian
points solver colnew [20]. Both of these solvers were called with an initial radial grid
of 50 cells, which was refined by the solvers until the tolerance of 1071° was reached.
The results from the Newton-Kantorovich method were in excellent agreement with
those obtained by these established solvers.

5. Nonlinear Calculations — Results

The results of the calculation yield ¢ over the entire grid. For an overview of the results,
we can look at the screening energy at small radii, Us. In a pure Poisson-Boltzmann
model of this type, this screening energy also corresponds to the IPD. From ¢(a),
Us is calculated via Us = T'/a — ¢(a). A subset of these results are tabulated in
Table 1 where we compare the computed result to the Debye-Hiickel screening energy,
Us,DHe = 262/47T€0)\D76.

For the case of mobile ions, the corresponding results are tabulated in Table 2
where they are compared to Us pg = /1 + ZpZ62/47T50)\D’6. Note that the values of
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T (eV) a r Us (eV) | Us pre (€V)
130 0.069 1.012 723.8 131.4
150 0.06 0.816 674.1 122.3
200 0.045 | 0.5296 552 105.9
225 0.04 0.444 488.1 99.9
250 0.036 | 0.379 427.9 94.8
275 0.033 | 0.329 373.3 90.4
300 0.03 0.288 324.1 86.5
350 0.026 | 0.229 243.3 80.1
400 0.023 | 0.187 188 74.9
450 0.02 0.157 150.8 70.6
500 0.018 | 0.134 125.2 67.0

Table 1. Results for Us from solution of Poisson-Boltzmann equation for the
case of immobile ions.

T (eV) | Us (eV) | Us,pu (eV)
200 562.4 351.4
225 504.2 331.3
250 446.2 314.3
275 393.5 299.7
300 351.0 286.9
325 314.2 275.7
350 281.6 265.6
375 252.5 256.6
400 230.4 248.5
500 176.2 222.3

Table 2. Results for Us from solution of Poisson-Boltzmann equation for the
case of mobile ions (Z, =10).

a and T" will be the same as those given in Table 1 for the same temperature.

The results for both the immobile and the mobile ion cases are also plotted in
fig.s 4 and 5 respectively. In terms of the actual screening potentials that have been
calculated, we present in fig.s 6 and 7 the potentials that are calculated for T, =200eV
(a=0.045,I'=0.5296) in the immobile and mobile ion cases respectively. Alongside
the numerical solutions we have also plotted the bare Coulomb potential and the
corresponding Debye-Hiickel solution.

6. Discussion

From Tables 1 and 2 (and fig.s 4 and 5) it can be seen that the conclusions we
reached via Lampert and Crandall’s theory are born out — there is clearly a strong
non-linear screening effect that leads to a significantly higher screening energy than
would be predicted by linear theory. In the case of immobile ions, it can be seen that
the deviation from linear theory can become very strong (over a factor of 5), and a
difference of nearly a factor of 2 persists even at 500eV. In the case of mobile ions, the
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Figure 4. Plot of results for the screening energy at small radii (Us) from solution
of Poisson-Boltzmann equation (black squares) for the immobile ion case (see
Table 1). Values for Debye-Hiickel screening are also plotted (blue circles).

deviation from linear theory is much less strong, but still amounts to a difference of
60% at 200eV.

Interestingly, in the 200-500 eV range, the difference between the screening energy
in the mobile and immobile ions case is not large. This is in stark contrast with the
corresponding linear theories (Debye-Hiickel) for this problem which differ by a factor
of /1+ Z, =3.32. Both this observation, and the deviations from linear theory,
are indicative of the electron screening being dominant in this parameter range. In
Crowley’s model [13], the ionic contribution is usually dominant, which also underlines
why these results may be surprising. This can only occur because, in this parameter
range, we have entered the regime of non-linear electron screening.

Interestingly, we find that in the immobile ion case, the disparity in the screening
energy between the linear and nonlinear calculations is 46% at 500eV. In the mobile
ion case the disparity at 500eV is 21%. We therefore find that, the linear theory is still
fairly inaccurate even at quite high temperatures, and thus very high temperatures
need to be achieved before the linear theory becomes a highly accurate description of
the screening.

In fig.s 6 and 7 we show two examples of the actual potentials as a function of
radius, i.e. the raw output of the numerical calculation. Also shown in these figures
is the bare Coulomb potential and the corresponding linear screening solution. These
plots give a better idea of how non-linear screening manifests itself. In both figures



Nonlinear Screening in HDM 10

600

ssol — — T— — —
s00, W o S S
asol e H— — — —

%400 AAAAAAAAAAAAAAAAAAA AAAAAAAA S AAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAA

300l * oW T A— A—

250k .................. .................. s [ T . AAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAA

ool T— — S— T T

100 250 300 350 400 450 500
T (eV)

Figure 5. Plot of results for the screening energy at small radii (Us) from
solution of Poisson-Boltzmann equation (black squares) formobile ion case (see
Table 2). Values for the corresponding Debye-Hiickel screening are also plotted
(blue circles).

we see that the non-linear solution follows the linear solution, i.e. is essentially the
same function, but appears to be offset from the linear solution in an almost uniform
fashion. Thus the characteristic scale-length, the Debye length, does not appear to be
affected, nor is the DH function. In the immobile ion case this offset simply appears
to a uniform reduction in the potential (relative to the DH potential) at all r.

The mobile ion case (for Z, = 10) is rather more interesting, and shows stronger
deviation from the DH function. At very small r the nonlinear potential is indeed
smaller than the DH potential, however we find that at some point the nonlinear
potential becomes larger than the DH potential, and remains larger than the DH
potential. This does not necessarily conflict with Lampert and Crandall’s results as
these were obtained for the case of Z, = 1 only. In fact if we repeat the calculation
with Z, =1 then this behaviour vanishes and the nonlinear potential is always less
than the DH potential.

Furthermore, when the calculation with mobile ions is repeated for Z, =1, we
find that the screening energies are very close to the immobile ion case. These are
shown in fig. 8, in which we see that the results of the mobile, Z,, =1 calculation
(in terms of screening energy) virtually coincide with the results of the immobile ion
calculation. Thus in a dense hydrogenic plasma doped with Al, it may well be possible
to achieve rather large screening energies. In terms of experimentally investigating
nonlinear screening this may be the most interesting strategy to pursue, as the results
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Figure 6. Plot of the potential numerically calculated from the nonlinear
PB equation for the immobile ion case with T, =200eV, a=0.045,'=0.5296.
Also shown is the corresponding Debye-Hiickel solution, and the bare Coulomb
potential.

of this study indicate that this system would show the greatest deviations from linear
screening theory.

7. Conclusions

In this paper we have proposed a model for examining the effects of nonlinear screening
in hot dense matter. This consists of the Poisson-Boltzmann equation with an inner
boundary condition on the electrons based on Ebeling’s ’Quantum Debye-Hiickel
Approximation’ [8] which accounts for quantum diffraction. We then combined this
model with Lampert and Crandall’s analysis to estimate the conditions under which
nonlinear screening effects should be expected. We concluded that this would occur
in hot dense matter (solid density) for a few hundred €V, but only for Z >10.

Finally we carried out a set of fully nonlinear numerical calculations which
demonstrated this for the case of a hot dense Al plasma. We showed that the screening
energy strongly deviated from the prediction of linear screening theory, and how the
nonlinear effects manifest as a quasi-uniform shifting of the screened potential.

Since the nonlinear effects manifest in this way, the implication is that nonlinear
screening will primarily affect Ionization Potential Depression, and thus could have
very substantial implications for the radiative and atomic physics of these plasmas. It
already appears to be the case that the radiative and atomic physics of these plasmas is
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Figure 7. Plot of the potential numerically calculated from the nonlinear PB
equation for the mobile ion case with Te =200eV, a=0.045,I'=0.5296, and Z,, =10.
Also shown is the corresponding Debye-Hiickel solution, and the bare Coulomb
potential. Inset shows zoomed view at small radius to show curves crossing.

not as well understood as had been previously thought. We therefore suggest, based on
the study presented in this paper, that serious consideration is given to incorporating
nonlinear screening into future studies of IPD, and the radiative and atomic physics of
moderate-Z HDM. It is likely that this could influence a number of different areas of
study in ultra-intense laser-matter interactions including x-ray spectroscopy of HDM
[21], fast electron transport [22, 23, 24, 25], and fast electron heating to produce HDM
[26, 27].
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