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Executive Summary

Fluid-Structure Interaction (FSI) is a phenomenon that appears in a wide range
of scientific and engineering disciplines at different scales. Due to the non-linear,
time-dependent and multi-physical nature of various FSI problems, numerical sim-
ulation has a distinct advantage over other investigation methods. There are many
in-house/commercial FSI solvers, but few of them can achieve both numerical ro-
bustness and high scalability. To develop an effective and robust method for FSI,
we choose the partitioned approach to make good use of the existing open-source
codes to allow good flexibility and to reduce the effort of maintenance of this
framework. For a partitioned approach, a stable and accurate coupling algorithm
with good scalability is required. Therefore, the Multi-scale Universal Interface
(MUI) coupling library is employed as the interface coupling tool between fluid
and structure domains. The MUI library shows good scalability and allows an ar-
bitrary number of codes to communicate with one another over MPI via a cloud
of point data. In the present study, the two solvers OpenFOAM and FEniCS are
adopted as the computational fluid dynamics (CFD) and computational structure
mechanics (CSM) solvers, respectively. Two explicit/implicit coupling utilities for
the FSI coupling have been developed in the MUI library to achieve a tight and
stable coupling. In order to show the performance of this approach, the simulation
of a blunt trailing edge hydrofoil with vortex-shedding induced vibration will be
presented. The NACA0009 deformable hydrofoil, operated at zero angle of attack,
is modelled at different thick-based Reynolds numbers in the range of 3.8× 104

- 7.1× 104 to present the lock-in and the lock-off regimes of the vortex-induced
vibration. A comparison between the numerical simulation and the experimen-
tal data is carried out. Detailed characteristics of the body oscillation and vortex
shedding are also provided.
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Chapter 1

Introduction

Fluid-Structure Interaction (FSI) is broadly defined as the study of the interactions
between fluid flows and solid structures. It has been applied in a wide range of
scientific and engineering disciplines in different scales, such as the hydroelasticity
of a hydrofoil, aeroelasticity of industrial steam turbine blades and biomedical FSI
of blood flow in a blood vessel. Because of its importance, there is a need to develop
an efficient full-order modelling technique to simulate these industrial/scientific
challenges on FSI phenomenon, i.e. to produce a digital twin of the experiments for
industrial designs. Different types of application of FSI require different functions
and treatments. It is better to have a simulation tool that can cope with most cases,
or can switch among them quite easily. The simulation tool needs to have a high
scalability to simulate such complex geometries with high-fidelity. In addition,
robustness and stability are also required for these strong FSI couplings.

The numerical procedures to solve FSI problems can be broadly classified into
two approaches: the monolithic approach and the partitioned approach. The
monolithic approach treats the fluid and structure dynamics in the same mathe-
matical framework to form a single system equation for the entire problem, which
is solved simultaneously by a unified algorithm. The interfacial conditions are im-
plicit in the solution procedure. This approach can potentially achieve stable and
accelerated convergence for strong interactions, but it may require more resources
and expertise to develop and maintain such a specialized code, and it struggles to
cope with different types of FSI applications. The partitioned approach treats the
fluid and the structure as two computational fields which can be solved separately
with their respective mesh discretisation and numerical algorithm. The interfacial
conditions are used explicitly to communicate information between the fluid and
structure solutions. A partitioned approach to multi-physics coupling has advan-
tages over a monolithic coupling, since we can make use of many existing codes to
boost the code development and maintenance. In addition, a partitioned approach
allows coupling of solvers with different discretisations with relative ease, but it is
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quite challenging to develop an efficient interface between domains with a good
robustness and scalability.

To answer the needs of the industrial challenges, this project intends to develop
an effective and robust methodology for FSI simulations with a good scalability. We
use the partitioned approach to allow flexibility and extendibility of the framework;
it’s robustness and scalability are the main focus of this project. An initial test-case
has been done comprises an elastic hydrofoil in both intermediate-speed and high-
speed flow conditions. The function of this simulation tool will be further extended
in the future phases.

The report is organised as follows. The solvers and governing equations are
presented in Chapter 2. In Chapter 3, the details of validations of the present FSI
framework are described, followed by the results of the preliminary scalability test
in Chapter 4. Chapter 5 gives the simulation details and results of the hydrofoil
case. Finally, we draw some conclusions and brief overview of the FSI framework
in Chapter 6 and Appendix A, respectively.

c© STFC & IBM Corporation



Chapter 2

Solvers and Governing Equations

2.1 Fluid solver

OpenFOAM is adopted as the fluid solver based on the Computational Fluid Dy-
namics (CFD) formulations with finite volume discretisation.

In the present framework, the fluid solver is incompressible as the test cases are
all based on water with low Mach numbers. The continuity equation reads as [11]:∮

S
n ·U dS = 0 (2.1)

where S is the closed surface of an arbitrary volume V, n is the unit normal point-
ing outward, U is the fluid velocity. The momentum equation of a general fluid
property φ over an arbitrary moving volume, which due to the structure deforma-
tion, is stated as[3, 11]:

d
dt

∫
V

ρ f φ dV +
∮

S
ρ f n · (U −Us)φ dS =

∮
S

ρ f n · (ν fOφ) dS−
∫

V
sφ dV (2.2)

where t is the time, ρ f is the fluid density, Us is the velocity of the surface S (i.e.
the grid velocity), ν f is the kinematic viscosity of the fluid, and sφ is the volume
source or sink of φ. The formulation of Arbitrary Lagrangian Eulerian (ALE) that
described the relation between the rate of change of V and the grid velocity Us is
defined as:

d
dt

∫
V

dV −
∮

S
n ·Us dS = 0 (2.3)

The in-house solver pimpleFSIFoam is developed based on the built-in solver pimpleFoam.
It has the same core algorithms as pimpleFoam for the solving of the fluid domain.
Additional functions of the pimpleFSIFoam compared with the pimpleFoam are:

• to calculate the fluid forces in each cell that is located in the interface between
the fluid and structure domains and send the forces to the structure solver
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• to receive the displacement of each cell that is located in the interface between
the fluid and structure domains and move the grid accordingly.

• to conduct sub-iterations for fluid-structure interaction at each time step.

The details will be shown in Section 2.3.

2.2 Structure solver

The in-house structure solver is developed with the libraries of FEniCS based on
the Computational Structural Mechanics (CSM) with finite element discretisation.
The elastodynamics formulation with the balance of linear momentum is written
as:

ρs
∂2d
∂t2 = O · (JσsF−T) + ρs fs (2.4)

where ρs is the density of the structure, d is the structural displacement and fs ex-
presses the exterior body forces acting on the structure. The deformation gradient
F is calculated with the Identity matrix I as:

F = I +Od (2.5)

and J is the determinant of F. In the present solver, the stress tensor σs is expressed
into two forms. The first form is expressed by Hooke’s Law (HL) as:

σs =
1
J

F(λsTr(ε)I + 2µsε)FT (2.6)

where Tr(A) represents the trace of matrix A. The Lamés coefficients λs and µs are
determined by the Poisson’s ratio νs and the Young’s modulus E of the structure
as:

λs =
νsE

(1 + νs)(1− 2νs)
(2.7)

µs =
E

2(1 + νs)
(2.8)

The strain tensor ε is expressed as:

ε =
1
2
(Od + (Od)T) (2.9)

The second form of σs is expressed by hyper-elastic St. Vernant-Kirchhoff model
(STVK) as:

σs =
1
J

F(λsTr(G)I + 2µsG)FT (2.10)

c© STFC & IBM Corporation



where G is the Green Lagrangian strain tensor that is determined by:

G =
1
2
(C− I) (2.11)

The right Cauchy-Green strain tensor C is calculated as:

C = FF−T (2.12)

HL is limited to small deformations of the structure, while the STVK is able to han-
dle large deformations but valid for small strains [1, 7]. The one-step θ scheme is
used for time-stepping of HL and STVK. It can switch among the second-order
Crank-Nicholson scheme, the first-order backward-Euler scheme and the first-
order forward-Euler scheme by setting the variable as 0.5, 1, and 0, respectively.

The elastodynamics formulation can also be expressed in the form of a gener-
alized n-dof harmonic oscillator (GHO) equation as:

M
∂2d
∂t2 + Kd = F(t) (2.13)

where M is the mass matrix, K is the stiffness matrix and F is the external loads.
The dissipation of the structure can be modelled by involving a damping term to
2.13 as:

M
∂2d
∂t2 + C

∂d
∂t

+ Kd = F(t) (2.14)

where C is the damping matrix. In the present in-house structure solver, the damp-
ing matrix is modelled based on the Rayleigh damping as:

C = αM M + αkK (2.15)

where αM and αk are Rayleigh damping parameters. Combining 2.14 and 2.15
gives:

M
∂2d
∂t2 + (αM M + αkK)

∂d
∂t

+ Kd = F(t) (2.16)

The generalized-α method, which is an extension of the Newmark-β method is
used to achieve a second order accuracy for the time stepping [4, 2]. The GHO is
valid for small deformations of the structure. With the same degree of freedoms
(Dof) of the structure domain, the calculation using GHO is about 3-5 times faster
than that of the HL by using the present simulation framework.

2.3 Fluid structure interaction

The fluid domain and the structure domain of a partitioned approach of FSI solver
are coupled by kinematic and dynamic conditions at the interface of the two do-
mains. The displacement of the fluid structure interface has to follow the kinematic
condition as [1]:

ds = d f (2.17)

c© STFC & IBM Corporation



where ds and d f represent the displacement at the fluid structure interface in the
structure and fluid domains, respectively. The kinematic condition indicated that
the displacement of the fluid structure interface has to be consistent between the
two domains. When the displacement of the interface has been determined by
the structural solver, it is applied to the fluid domain as a Dirichlet boundary
condition.

The fluid forces or tractions acting on the fluid structure interface have to follow
the dynamic condition as [11, 1]:

σs · n = t f (2.18)

where t f is the traction at the fluid structure interface, which is calculated as:

t f = σf · n (2.19)

The stress tensor at the interface σf , which is calculated from the fluid domain with
an incompressible Newtonian fluid is expressed as:

σf = −pI + τ (2.20)

where p is the pressure forces and τ is the viscous component of the stress tensor
that is calculated as:

τ = µ f (OU +OUT) (2.21)

The dynamic condition indicated that the forces acting on the fluid structure inter-
face has to be conserved between the two domains. When the forces at the interface
has been determined by the fluid solver, it is applied to the structure domain as a
Neumann boundary condition.

Loose coupling between fluid and structure domains is unstable. There are
several coupling methods to help stabilise the simulation. Figure 2.1 summarises
the coupling methods for partitioned FSI simulations. The Robin Boundary Con-
dition and artificial compressibility require information on the discretisation or
Jacobian of each domain and are not suitable for black-box solvers. The Reduced
Order Modelling method is easy to implement and does not require sub-iterations.
Jacobi-Like Coupling is stable for compressible solvers and unstable for incom-
pressible solvers. For the fixed-point Gauss-Seidel iteration method, the displace-
ment of the structure at the (k + 1)th iteration, dk+1 could be expressed as:

dk+1 = dk + ωkRk (2.22)

where ωk is the under relaxation factor at the kth iteration and the residual of the
FSI coupling at the kth iteration, Rk, is determined as:

Rk = Fs ◦ Ff (dk)− dk (2.23)

c© STFC & IBM Corporation



where the Fs and Ff are the interface operators for structure and fluid, respectively.
For a Fixed Relaxation method, the under relaxation factor can be expressed as:

ωk = constant (2.24)

while for the Aitken’s δ2 method, the under relaxation factor is calculated as:

ωk = −ωk−1
(Rk−1)

T(Rk − Rk−1)

||Rk − Rk−1||2
(2.25)

A constraint can be applied to the Aitken’s method to make it stable as:

ωk = sgn(ωk)min(|ωk|, ωmax) (2.26)

where ωmax is the maximum value of the under relaxation factors between the 1st
and the kth iterations. The Fixed Relaxation method is easy to implement, requires
less computational resources, but has a slow convergence speed. The Aitken’s δ2

method requires more computational resources than the Fixed Relaxation method,
but has a quick convergence speed [11, 5].
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Figure 2.1: Summary on coupling method for FSI simulations.
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The Interface Quasi-Newton Method provides a quick convergence speed and
stability for strong coupling cases, but it is quite challenging to implement and
requires certain amounts of computational resources.

Apart from the loose coupling, the present framework also implemented both
the Fixed Relaxation and the Aitken’s δ2 methods with FSI sub-iterations imple-
mented in both CFD and CSM solvers, as shown in Figure 2.2.

Figure 2.2 shows the flow chart of the present framework. The left-hand side
is the CFD solver for the fluid domain and the right-hand side is the CSM solver
for the structure domain. In the time step of t = t + δt and sub-iteration iter + 1,
the fluid domain solves the flow field giving us fluid forces at each cell of the
fluid structure interface with the structural domain through the MUI library. The
displacements at each cell of the interface are determined by the MUI coupling
utility based on the fetched value from the structural domain. The calculated
displacements of each cell at the interface are then applied to the fluid domain as a
Dirichlet boundary condition. The structural domain fetch fluid forces and apply
them as a Neumann boundary condition on the structure. It further calculated
the deformation of the structure and push to the fluid solver. The stress of the
structure will then be updated. Both fluid and structure domains are moved to the
next sub-iteration after the completion of the above actions. Several sub-iterations
are needed within each time step until a convergence is reached, i.e. the Rk is small
enough to be below the criteria.

The Radial Based Function (RBF) that is implemented in the MUI library is
used to ensure the forces at the interface are conserved between the two domains.

c© STFC & IBM Corporation



Figure 2.2: Flow chart of the developped FSI simulation framework.
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Chapter 3

Validation of Framework

Six validation cases have been simulated and compared with published results for
the developed MUI coupling utility, in-house solvers and the whole FSI framework.

3.1 1D Heat Transfer

The 1D heat transfer case has been calculated to validate the developed MUI cou-
pling utility. Results and convergence speed of three coupling algorithms, i.e.
Loose, Fixed Relaxation and Aitken, are compared. The simulation area is dis-
cretised into 10 nodes and split into 2 domains, as shown in 3.1. The left domain
extends from node 0 to node 6, and right domain extends form node 4 to node 10.
The overlapping zone is between node 4 and node 6 for the data sharing between
the two domains. A heat source with 1◦C is applied to the node 0 and a heat sink
with 0◦C is applied to the node 10. The 1D heat equation is applied to each node,
which reads:

∂T
∂i

= κ
∂2T
∂x2 (3.1)

where T is the temperature, i is the number of iterations, κ is the thermal con-
ductivity that equals 0.515 for the present calculation and x is the coordinate of the
node. The temperature is expected to reach the final state with a linear distribution
along the 11 nodes. At each iteration, the temperature at node 6 is calculated by
the right-hand side domain and sent to the left-hand side domain as the bound-
ary condition, while the temperature at node 4 is determined by the left-hand side
domain and sent to the right-hand side domain.

Figure 3.2 shows the calculation results at different iterations. Figure 3.2 (a)
shows the initial state at the 1st iteration. As shown in Figure 3.2 (b), results from
Aitken’s method are closer to the final state than those from the Fixed Relaxation
method, while the results from the Loose coupling started unphysical oscillation
at the 51st iteration. At the 1000th iteration, as in Figure 3.2 (c), results from both
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Figure 3.1: Schematic plot for the 1D heat transfer case.

Aitken’s and Fixed Relaxation methods are reached to the final state, but the results
from loose coupling are diverged.

Table 3.1 shows the number of iterations to the final state for different methods.
It shows that the Aitken’s method has the quickest convergence speed, while the
coupled simulation is diverged by using Loose coupling.

Table 3.1: Iterations to Final State for different coupling method for the 1D heat transfer case.

Fixed Relaxation Aitken Loose
592 233 ∞

3.2 Beam with Tip Load

In order to validate the in-house structure solver, an elastic beam with a tip load
is simulated. A cantilever beam that with a clamped end and a free end has a
density of 2600kg/m3, Young’s Modulus of 1.7× 107 and Poission’s Ratio of 0.3.
The dimension of the cantilever beam is shown in Figure 3.3. An external force is
applied to the free end towards the negative y-axis direction. The value of the force
linearly increases to 500N from 0s to 7s. After 7s, the value of the force is equal to
zero.

Figure 3.4 shows the contour plot of the shear stress. It is clear that the contour
of the shear stress of the present simulation is qualitatively comparable with that
of Slone et al. [9].

Figure 3.5 shows the instantaneous tip displacement of the beam. The differ-
ence between the present simulation and that of Slone et al. [9] is less than 1%.

3.3 2D Flow Pass Rigid Plate Behind a Rigid Cylinder

The benchmark case of a circular cylinder with a rigid plate in a 2D flow is sim-
ulated to validate the in-house pimpleFSIFoam. As shown in Figure 3.6, the 2D
domain has a length of 2.5m and width of 0.41m with the original point located
in the bottom left corner. The centre of the circular cylinder is located at (0.2, 0.2),

c© STFC & IBM Corporation



(a) The 1st iteration. (b) The 51st iteration.

(c) The 1000th iteration.

Figure 3.2: Results of 1D Heat Transfer at different iteration. The area confined by the vertical dashed
lines represents the overlapped zone

Figure 3.3: Schematic plot of the beam with tip load case.
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(a) Slone et al. [9].

(b) Present simulation.

Figure 3.4: Stress contour of the beam with tip load case.

with a radius of 0.05m. The rigid plate with a length of 0.35m and width of 0.02m
is attached downstream of the cylinder. A parabolic x-axis velocity is applied to
the left domain boundary with a peak velocity of 2m/s. The density of the fluid is
1× 103kg/m3. The kinematic viscosity is 1× 10−3m2/s. The Reynold’s number is
calculated based on the maximum velocity that gives the value of 200.

Figure 3.7 shows the velocity contour. It is qualitatively comparable between
the present simulation and the results from Slyngstad [1].

The lift and drag forces of the cylinder and the plate are compared with that
from Turek and Hron [8] and presented in the Figure 3.8 and the Table 3.2. It
proves the accuracy of the in-house pimpleFSIFoam solver.

Table 3.2: Forces of the Cylinder and Plate of the 2D Flow Pass Rigid Plate Behind a Rigid Cylinder
Case.

Drag [N] Lift [N]
Present Simulation 442.40±5.88 -13.30±446.87
Turek and Hron [8] 439.95±5.62 -11.89±437.81
Error % 0.56%±4.69% 11.87%±2.07%

c© STFC & IBM Corporation



Figure 3.5: Displacement over time of the beam with tip load case.

Figure 3.6: Schematic plot of the 2D flow pass rigid plate behind a rigid cylinder case.
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(a) Slyngstad [1].

(b) Present simulation.

Figure 3.7: Velocity contour of the 2D flow pass rigid plate behind a rigid cylinder case.

Figure 3.8: Forces over time of the 2D flow pass rigid plate behind a rigid cylinder case.

c© STFC & IBM Corporation



(a) Slyngstad [1].

(b) Present simulation.

Figure 3.9: Velocity contour of the 2D flow pass elastic plate behind a rigid cylinder.

3.4 2D Flow Pass Elastic Plate Behind a Rigid Cylinder

After the validations of both the in-house structure solver and the in-house pimpleFSIFoam
fluid solver, the entire FSI framework is validated by three benchmark cases. The
first benchmark case is the circular cylinder with a flexible plate in a 2D flow. It
has the same geometry and fluid condition as the CFD validation case (as dis-
cussed in Section 3.3). In the present case, the plate is flexible and has a density
of 1× 103kg/m3. The Poission’s Ratio of the plate is 0.4 and Young’s modulus is
5.6× 106Pa.

The velocity contour and the displacement of the plate are qualitatively com-
parable with Slyngstad [1], as shown in Figure 3.9. Moreover, the stress contour of
the plate from the structure domain has also been presented.

The displacements of the tip of the flexible plate are quantitatively compared
with Tukovic et al. [11] as shown in Figure 3.10. The difference between the tip
displacement along the y-axis direction from the present simulation and that from
Tukovic et al. [11] is less than 5%.

3.5 3D Parabolic Flow Over a Firmer Elastic Beam

The present FSI framework is also validated with a 3D benchmark case, which is
a parabolic velocity past a flexible beam. The dimension of the simulation domain
is shown in Figure 3.11. The density of the fluid is the same as the density of

c© STFC & IBM Corporation



Figure 3.10: Displacement over time of the 2D flow pass elastic plate behind a rigid cylinder.
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Figure 3.11: Schematic plot of the 3D parabolic flow over a firmer elastic beam.

the flexible beam, which is 1000kg/m3. The kinematic viscosity of the fluid is
0.001m2/s. The peak velocity is 0.2m/s. The flexible beam has a Young’s mudulus
of 1.4× 106Pa and a Poission’s ratio of 0.4.

Table 3.3: Displacement of the Firmer Elastic Beam.

Displacement X [m] Displacement Y [m]
Present Simulation 5.95× 10−5 2.36× 10−5
Tukovic et al. [11] 5.93× 10−5 2.40× 10−5
Richter [10] 5.95× 10−5 -
Error % +0.34% -1.67%

The instantaneous x-axis displacement at the point (0.45, 0.15, 0.15) is shown in
Figure 3.12. The x-axis and y-axis displacements at the point (0.45, 0.15, 0.15) in
the steady state are listed in Table 3.3 and compared with Richter [10] and Tukovic
et al. [11]. The present simulation has the same x-axis displacement with that of
Richter [10]. The difference between the displacements from the present simulation
and from Tukovic et al. [11] is less than 2%.

3.6 3D Parabolic Flow Over a Softer Elastic Beam

In order to demonstrate the ability of the present FSI framework to handle chal-
lenging FSI cases, the 3D benchmark case as discussed in Section 3.5 has been sim-
ulated again with a softer beam. The Young’s Modulus of the beam is 1× 104Pa
and the peak velocity is 0.3m/s. Other fluid/structure parameters remained the
same as the 3D benchmark case in Section 3.5.

c© STFC & IBM Corporation



Figure 3.12: Displacement over time of the 3D parabolic flow over a firmer elastic beam.
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Figure 3.13: Displacement over time of the 3D parabolic flow over a softer elastic beam.

The instantaneous displacement along x-axis direction of the flexible beam at
the point (0.45, 0.15, 0.15) is presented in Figure 3.13. The velocity contour of the
fluid domain and the displacement contour of the structure domain are qualita-
tively comparable with that of Tukovic et al. [11], as shown in Figure 3.14. The
x-axis and y-axis displacements at the point (0.45, 0.15, 0.15) in the steady state are
listed in the Table 3.4 and compared with Tukovic et al. [11]. The difference be-
tween the present simulation and that of Tukovic et al. [11] is up to 4.6%, which
shows a good accuracy of the present developed framework on simulating chal-
lenging FSi problems.

Table 3.4: Displacement of the Softer Elastic Beam.

Displacement X [m] Displacement Y [m]
Present Simulation 1.52× 10−2 4.77× 10−3
Tukovic et al. [11] 1.46× 10−2 5.00× 10−3
Error % +4.11% -4.60%

c© STFC & IBM Corporation



(a) Tukovic et al. [11].

(b) Present simulation.

Figure 3.14: Velocity contour of the 3D parabolic flow over a softer elastic beam.
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Chapter 4

Scalability Test of Framework

Scalability tests have been realised for the present FSI simulation framework. The
fully coupled 3D FSI benchmark case that is discussed in 3.5 is chosen. The scal-
ability tests are carried out by varying the number of CPU cores of the fluid and
structure solvers, respectively: A fixed CPU core of 100 for the structure domain
(in-house structure solver) and varying the CPU cores up to 1000 of the fluid do-
main (in-house pimpleFSIFoam) to test the scaling performance of the pimpleFSI-
Foam; and a fixed CPU core of 500 for the fluid domain and varying the CPU cores
up to 1000 of the structure domain to test the scaling performance of the in-house
structure solver. The total number of the hexahedral cells in the fluid domain is
83M and the number of degrees of freedom (DoF) in the structure domain is 2.5M.

As shown in Figure 4.1, the in-house pimpleFSIFoam has a good performance
on scalability with a parallel efficiency of about 68% for 1000 CPU cores in the fluid
domain, while the parallel efficiency of the in-house structure solver is only 40% for
1000 CPU cores in the structure domain. The reason for the less ideal performance
of the in-house structure solver might be that the algorithms of the calculation of
the stress in each time step do not have good scalability. In addition, the number
of DoFs may not be large enough causing the communications between CPU cores
to occupy a large proportion of the computational resources and simulation time.
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Figure 4.1: Scalability Test Result on the FSI Simulation Framework.
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Chapter 5

Hydrofoil Case

In this chapter, the vortex-induced vibration of the trailing edge of a hydrofoil is
simulated and compared with the experimental results from Ausoni [6].

5.1 Physical properties

The NACA 0009 hydrofoil is immersed into a uniform incoming flow as shown in
Figure 5.1 with the Angle of Attack (AoA) equals zero. The x-axis velocity of the
incoming flow is Cre f , while the y and z-axis velocity remain zero. The density
of the fluid is 998kg/m3 and kinetic viscosity is 1× 10−6m2/s. The hydrofoil has
a chord length, L, of 1000mm and span length, B, of 150mm. The hydrofoil has
a tripped trailing edge with a height, h, of 3.22mm. The hydrofoil has a perfect
embedding at z = 0 plane and has a pivot embedding at the centre of the z = 0.15
plane. The density of the hydrofoil is 7800kg/m3. The Young’s modulus and
Poission’s ratio of the hydrofoil are 2.1× 1011Pa and 0.3.

The Reynolds’s number, Reh is defined as:

Reh =
ρhCre f

µ
(5.1)

According to the experiment, the lock-in regime for the tripped hydrofoil is in
the region of 4.80× 104 ≤ Reh ≤ 5.35× 104.

5.2 Simulation setup

The fluid domain extends 0.5L away from the leading edge of the hydrofoil towards
the upstream, 7L away from the leading edge towards the downstream and 0.7L
away towards both the maximum and minimum y-axis domain boundaries.

Both 2D (i.e. employed one cell along the span wise direction in the fluid
domain) and 3D (i.e. employed 100 cells along the span wise direction in the
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Figure 5.1: Schematic plot of the Hydrofoil case from Ausoni [6].

fluid domain) fluid meshes are used for the fully coupled FSI simulations. The
total number of the fluid cells employed in the present simulation are 0.145M and
14.5M for 2D and 3D meshes, respectively. A 3D tetrahedral mesh is employed for
the structure domain.

A grid sensitivity test for the structure domain is carried out, which shows the
difference between the results calculated by the fine grid (22767DoFs) and that by
the medium grid (6699DoFs) is much less than the coarse grid (3257DoFs). There-
fore, the medium grid with 6699DoFs is employed for the hydrofoil simulation.

The topology of the fluid and structure grids employed in the present simula-
tion is presented in Figure 5.2.

Four cases have been simulated by using the 2D fluid mesh, which are 3.86×
104 (before the lock-in regime), 4.83× 104 (the beginning of the lock-in regime),
5.31 × 104 (the end of the lock-in regime) and 7.08 × 104 (the lock-off regime).
Three cases have been simulated by using the 3D fluid mesh, which are 3.86× 104

(before the lock-in regime), 4.83× 104 (the beginning of the lock-in regime) and
6.44× 104 (the lock-off regime).
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(a) Zoomed out view of the domain.

(b) Zoomed in view at the trailing edge of the hydrofoil.

Figure 5.2: Mesh for both the fluid and structure domains of the hydrofoil case

5.3 Results on frequency and amplitude of hydrofoil vibra-
tion

The frequency ratio is defined as the frequency of the displacement velocity at
(0.08, 0.003788, 0.1125), ( fs), to the natural frequency of the hydrofoil, ( fn). The
results on the frequency ratio in different Reh for both 2D and 3D simulations are
presented and compared with Ausoni [6] in Figure 5.3.

Generally, both 2D and 3D results are comparable with the experimental results
with a maximum difference of about 8%.

The results on standard deviation of the displacement velocity at (0.08, 0.003788, 0.1125)
for different Reh are shown and compared with the experiential results in Figure
5.4. The results from the 2D simulation are over predicted compared to the 3D
simulations. This is because the 2D simulation doesn’t have sufficient resolution
along the span wise direction, so that the turbulence-induced fluid forces reduction
is under predicted.

5.4 Instantaneous results on vibration velocity and spectra

The displacement velocity of the hydrofoil at (0.08, 0.003788, 0.1125) for three Reynold’s
numbers are shown in Figure 5.5. The instantaneous velocity at the lock-in regime
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Figure 5.3: Frequency ratio over Reynold’s number of the hydrofoil case compared with Ausoni [6].
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Figure 5.4: Standard deviation of vibration amplitude over Reynold’s number of the hydrofoil case
compared with Ausoni [6].
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(a) Reh = 3.86× 104. (b) Reh = 5.31× 104.

(c) Reh = 7.08× 104.

Figure 5.5: Instantaneous vibration velocity of the hydrofoil case

(Figure 5.5 (b)) has significant features that can easily be distinguished from that
of other regimes: large amplitude and regular spikes. These features are also
shown in the velocity spectra plot in Figure 5.6. The lock-in regime velocity has
one dominant frequency with a large power spectral density, while the velocity in
other regimes has two or more dominant frequencies with relatively small power
spectral densities.

5.5 Contours on fluid and structure domains

The pressure and velocity contours of the fluid domain at the time instants that the
hydrofoil reaches its maximum displacement are shown in Figure 5.7 and Figure
5.8, respectively. The vortices in the wake of the hydrofoil are clearly seen for
different Reh.
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(a) Reh = 3.86× 104. (b) Reh = 5.31× 104.

(c) Reh = 7.08× 104.

Figure 5.6: Vibration spectra of the hydrofoil case
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(a) Reh = 3.86× 104 at t = 0.0197s. (b) Reh = 5.31× 104 at t = 0.0203s.

(c) Reh = 7.08× 104 at t = 0.0204s.

Figure 5.7: Pressure contour of the hydrofoil case
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(a) Reh = 3.86× 104 at t = 0.0197s. (b) Reh = 5.31× 104 at t = 0.0203s.

(c) Reh = 7.08× 104 at t = 0.0204s.

Figure 5.8: Velocity contour of the hydrofoil case
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The stress distribution of the hydrofoil at the time instants that the hydrofoil
reaches its maximum displacement for different Reh are shown in Figure 5.9. The
hydrofoil subjected a large stress at midspan when it reached the largest displace-
ment. Figure 5.10 shows the displacement of the hydrofoil with magnification of
1,000. It can be seen that the displacement is much larger in the lock-in regime
than in the others.
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(a) Reh = 3.86× 104 at t = 0.0197s. (b) Reh = 5.31× 104 at t = 0.0203s.

(c) Reh = 7.08× 104 at t = 0.0204s.

Figure 5.9: Stress contour of the hydrofoil case
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(a) Reh = 3.86× 104 at t = 0.0197s. (b) Reh = 5.31× 104 at t = 0.0203s.

(c) Reh = 7.08× 104 at t = 0.0204s.

Figure 5.10: Displacement contour of the hydrofoil case with magnification 1,000
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Chapter 6

Conclusions and recommendations

We have developed an effective and robust method for fluid-structure interaction
simulations by using a partitioned approach. The MUI coupling library is em-
ployed as the interface between fluid and structure domains. OpenFOAM and FEn-
iCS are adopted as the CFD and CSM solvers, respectively. Two explicit/implicit
coupling utilities, i.e. the Fixed Relaxation approach and the Aitken’s δ2 approach,
for the FSI coupling have been implemented in the MUI library to achieve a tight
and stable coupling. According to the verification test on the MUI coupling utili-
ties, both Fixed Relaxation and the Aitken’s δ2 approaches are able to achieve stable
coupling for challenging cases. However, the Aitken’s δ2 approach can save half of
the computational resources to reach convergence compared with the Fixed Relax-
ation approach. Five validation cases have been conducted by using the newly de-
veloped Partitioned Multi-physical Simulation Framework (see Appendix A) and
compared with published results, which show good accuracy of the present frame-
work. A preliminary scalability test has been done for the developed framework.
The results of vortex-shedding induced vibration of a hydrofoil have been con-
ducted and presented. A comparison between the numerical simulation and the
experimental data shows the capability of the present simulation framework to un-
dertake challenging FSI simulations. The FSI framework is able to model FSI cases
with both small and large structure deformations, but valid for small strains. A
large structural deformation usually means the order of magnitude of the defor-
mation is closed to that of the cord/span length of the structure. Since the mesh
motion of the CFD solver is achieved by the Arbitrary Lagrangian-Eulerian (ALE)
method, the mesh quality may reduce, which leads to unreliable results when the
order of magnitude of the deformation is larger than that of the cord/span length
of the structure. Further development of the FSI framework is ongoing. The scala-
bility of the framework needs to be further enhanced to enable large simulations.
More solvers will be involved in the framework to make it flexible and meet the
needs of different simulation cases.
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Appendix A

Partitioned Fluid-Structure Interac-
tion Simulation Framework

Partitioned Fluid-Structure Interaction Framework is developed based on the MUI
library and offers a platform where users can carry out multi-physical (mainly
fluid-structure interaction) studies with High Performance Computers.

The framework uses partitioned approach to couple two or more physical do-
mains together for a multi-physical simulation. It takes several advantages of the
MUI library:

• Flexible of select solvers for each physical domain;

• Flexible of extend the number of physical domains;

• Good scalability on communications among physical domains for large sim-
ulations.

• Keep development of the coupled solvers decoupled. It allows for easier
independent testing of each solver and avoid potential incompatibilities be-
tween two solvers (i.e if they both use a certain library X each one depends
on a different version of it which are not compatible)

• Couple two solvers which have two different programming language inter-
faces(e.g C++ and Python).

• "Plug and play" strategy. One solver can be replaced by another incrementally
and without the need of recompiling if the MUI interface is used as a common
adaptor.

• Use two solvers which have two incompatible licenses exploiting the dual
licensing of the MUI library (both solvers are never mixed source-wise or
binary-wise).
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This framework is under active development to involve more solvers as well as
more physical domains. Such infrastructure will make it possible to simulate large
multi-physical problems and simulate complicated multi-physical cases.

c© STFC & IBM Corporation


	Front page
	our title page
	Contents
	1 Introduction
	2 Solvers and Governing Equations
	2.1 Fluid solver
	2.2 Structure solver
	2.3 Fluid structure interaction

	3 Validation of Framework
	3.1 1D Heat Transfer
	3.2 Beam with Tip Load
	3.3 2D Flow Pass Rigid Plate Behind a Rigid Cylinder
	3.4 2D Flow Pass Elastic Plate Behind a Rigid Cylinder
	3.5 3D Parabolic Flow Over a Firmer Elastic Beam
	3.6 3D Parabolic Flow Over a Softer Elastic Beam

	4 Scalability Test of Framework
	5 Hydrofoil Case
	5.1 Physical properties
	5.2 Simulation setup
	5.3 Results on frequency and amplitude of hydrofoil vibration
	5.4 Instantaneous results on vibration velocity and spectra
	5.5 Contours on fluid and structure domains

	6 Conclusions and recommendations
	Bibliography
	A Partitioned Fluid-Structure Interaction Simulation Framework 

