
Technical Report
DL-TR-2020-004

Software Outlook
Documentation Tools:
overview and best practices
B Mummery

December 2020

©2020 UK Research and Innovation

This work is licensed under a Creative Commons Attribution 4.0 International
License.

Enquiries concerning this report should be addressed to:

Chadwick Library
STFC Daresbury Laboratory
Sci-Tech Daresbury
Keckwick Lane
Warrington
WA4 4AD

Tel: +44(0)1925 603397
Fax: +44(0)1925 603779
email: librarydl@stfc.ac.uk

Science and Technology Facilities Council reports are available online at:
https://epubs.stfc.ac.uk

DOI: 10.5286/dltr.2020004

ISSN 1362-0207

Neither the Council nor the Laboratory accept any responsibility for loss or
damage arising from the use of information contained in any of their reports or
in any communication about their tests or investigations.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:librarydl@stfc.ac.uk
https://epubs.stfc.ac.uk/
https://creativecommons.org/licenses/by/4.0/�
https://doi.org/10.5286/dltr.2020004

Software Outlook

DOCUMENTATION
TOOLS
Overview and Best Practices

Dr Benjamin Mummery

STFC Hartree Centre

September 2020

1

Contents
1 Why Document? ... 2

2 Developer Documentation .. 2

2.1 Code Comments .. 2

2.1.1 Why Comment Code ... 2

2.1.2 When to Comment Code .. 3

2.1.3 How to comment code.. 3

2.1.4 Example ... 5

2.2 Supporting Documentation .. 6

3 End-User Documentation ... 6

3.1 Tutorials .. 7

3.2 How-to Guides .. 7

3.3 Reference Guides .. 7

3.4 Explanations .. 7

4 Manual Documentation Generation Tools ... 8

4.1 Markdown ... 8

4.1.1 Overview ... 8

4.1.2 Editors ... 9

4.2 LaTeX ... 9

4.2.1 Overview ... 9

4.2.2 Editors ... 10

5 Automatic Documentation Generation Tools ... 10

5.1 Why and How to Use Them .. 10

5.2 Overview of Common Tools .. 13

5.3 Recommendation .. 14

6 Summary ... 14

Acknowledgements ... 15

Appendix I. Overview of Markdown Editors .. 16

I.i Desktop Editors ... 16

I.ii Browser-Based Editors .. 18

2

1 Why Document?
One of the core tenets of the group in which I personally work is “undocumented code is unusable”.

This is not to say that undocumented code is never functional, indeed we are certain that many

undocumented codebases are of excellent quality and are perfectly fit for purpose. However, it is

almost guaranteed that anyone attempting to use, develop, or maintain a piece of code will have

limitations on their time – deadlines, scheduling, or simply the opportunity cost of choosing one task

over the other. Undocumented software represents a large overhead in terms of time and effort. If

your maintainer faces an uphill battle each time they make a change, updates will be more demanding,

less efficient, and therefore less frequent. Less frequent updates make your software less competitive.

And as soon as it looks like it might be quicker or simpler to use a different codebase for the task, be

it due to the learning curve, a lack of features, or any other reason, that is precisely what the end-user

will do. Undocumented code is unusable because nobody will ever use it.

Documentation therefore needs to address two sometimes wildly disparate audiences: end users, and

current and future developers. Thankfully, it is seldom necessary for a single piece of documentation

to serve both masters, however this does mean that requirement for documentation can feel like a

significant burden for the developer. Fortunately, there are a number of tools and techniques that

exist to aide us in efficiently creating good documentation.

In this guide, we will discuss the attributes that form good user and developer documentation, and

examine some of the tools available for streamlining this process.

2 Developer Documentation
Sooner or later, all code will require modification, be it patches for newly discovered bugs, updates to

make use of new versions of dependencies, or the addition of entire new features. In order to

accurately gauge the effect of any change to a codebase, we as developers need a reasonable

understanding of how the code operates, both on the micro level of “how does this specific function

work”, and in the macro level of “what scenario does this method address, how is it approached, and

why is that approach the one chosen.” The former is most efficiently covered by code comments,

while the latter can require further supporting documentation, although these trends are by no means

absolute.

2.1 Code Comments
Code comments are exactly what they sound like – pieces of text written into the source code which

serve no functional purpose for the computer, but instead provide helpful information for a person

reading the code. This information can be anything from notes to yourself or other developers or

maintainers that something needs to be changed, to overviews of what each module or method is

intended to do, to explanations of why something needs to be done a specific way. All of these enrich

the code, providing essential context and clarity where it might otherwise be lacking.

2.1.1 Why Comment Code
A strong argument can be made for sufficiently well-written code not requiring documentation. If your

variables and functions have sensible (i.e. human-readable) names, and your code is structured

cleanly, then anybody reading it should be able to follow it with no problem. However, while this

argument is compelling, it fails to address 4 factors:

3

“Sensible” is context dependent.
While it might make perfect sense to you what amp_perp means, somebody without your complete

knowledge of what the code does, how it does it, and why it needs to do it, may find it rather more

difficult to understand.

“Sensible” has a limited half-life.
It has, at time of writing, been a little over a week since I selected amp_perp as an example variable

name for point 1, and I honestly cannot recall what it was short for. I am reasonably certain that “perp”

was a contraction of perpendicular, but was “amp” short for amplitude, or amplified? Now sure, in

the context of an actual piece of code there is a lot of other context I could look at to figure out what

amp_perp actually means, but the need to do so presents a real barrier to easily reading code. And

again, I’m the one who came up with amp_perp!

The readability of code depends on the reader’s ability to read code.
Ideally your code should be understandable by the widest audience possible. If you depend on well

written code to explain itself, this limits the reader base to those who are already fluent in the

language in which you wrote it. Reasonably well commented code can accommodate a reader whose

understanding of the language is still developing. Very well commented code can actually be read and

understood by someone with no understanding of the programming language used – not on a line-by-

line detail level, but the broad functionality, purpose, and order of operations should be

understandable.

Code lacks nuance.
It can, at best, describe what it does, but lacks any insight into the thought process or constraints that

dictated why. This may not be an issue for someone simply looking to understand what function your

code performs, but anyone tasked with maintaining, updating, or making any change to it runs the

risk of not being aware that the “better” way they just thought up to approach the problem is

something that you’d already tried and proved impossible. At best this leads to needlessly duplicating

work, at worst it can break entire codebases.

Commenting is, in other words, a small action that can make using and maintaining your code

exponentially easier, regardless of whether it is you or somebody else doing the maintenance.

2.1.2 When to Comment Code
By dint of being embedded within the code itself, code comments naturally skew towards the micro

view, and it can be easy to neglect the higher-level overview. To combat this, it is necessary to have

an overall hierarchical scheme for where comments should be added, ensuring that the higher-level

is not neglected. This can also aide in minimising and focussing comments, reducing the additional

work required to maintain their accuracy as the code develops around them.

The specifics of this can vary from case to case, but as a rule of thumb, comments are required at the

module level to present a high-level overview of the module’s functionality. Procedures/methods

should also be commented, describing their specific functionality, data types, and brief instructions as

to how to use them. Comments describing a particular line or block are required only where the

complexity of the code means that it would be arduous for the reader to interpret, or where they

contain pertinent information that is absent from the code.

2.1.3 How to comment code
Exactly what information should and should not be included in a comment, and often whether a

comment should be included at all, is often down to the judgement of the developer, and it can be

4

easy to find yourself on the prongs of a dilemma over whether something should be included. Below

we have set out a series of guidelines and factors that it can be useful to keep in mind when doubt

arises. Most of these can be summed up by one simple, overarching message: write for the reader.

Taking a step back to look at your code with fresh eyes (or as close as you can get while still being the

person who created it in the first place) is a useful technique in general, but is essential for effective

commenting.

Priorities Intent Over Function
Comments that describe what the code they are commenting does are useful. They address points 1,

2, and 3 above, and make it much easier to scan through code quickly. However, given enough time a

reader will be able to compensate for their absence. Comments that describe the intent of the code,

the purpose it fulfils rather than the mechanism by which it operates, provide information that cannot

be inferred by other means. They are also significantly more robust, requiring far less work to keep up

to date as code is modified – the specific methodology of a function changes frequently during

development, but its overall intent seldom changes.

Comment at Higher Abstraction
There is a word for a description of a piece of code that explains its purpose and function in perfect

detail. That word is “code”. The purpose of comments is to provide an understandable description and

explanation of the code, not to restate it in exhaustive detail.

Consider Reading Order
Much of the time, the order in which content is laid out in code is less than intuitive for a human

reader. This can often be addressed with comments, providing a high-level overview at the top of the

document to provide a context with which to understand the details below. Keeping to a consistent

scheme (see section 2.1.2) can often be enough to address this need.

Keep Consistent Spatial relationships
Watch out for ambiguity about what in the code each comment relates to. Having a consistent

approach to the spatial relationship between comments and the relevant code chunk helps to prevent

this, as does considering the clarity of this relationship. Comments should, for example, be indented

to the same level as the code they describe, on the immediately preceding line, and follow at least

one blank line. In this way, the relationship between comment and code is made immediately visible.

Clean up Comments
Comments that are incorrect, or refer to code that has since been removed, are worse than having no

comments at all. Comments need to be viewed as a part of the code to which it is attached, and

modifications to one must be reflected in the other. This can seem to present a large additional

workload when it comes to maintenance, which brings us onto our next point:

Comment Minimally
Hopefully by now we have persuaded you that commenting your code is important, and that you

should be doing it. However, a balance must be drawn between complete coverage in comments, and

the additional work needed to create and maintain this alongside the code itself.

Include Authorship and Licencing Info by Default
Depending on your organisation, this can be anything from a nice-to-have to a legal requirement. The

quickest and easiest approach is to simply have a pre-formatted comment block that can be inserted

at the top of any piece of code you write and modified appropriately. As with many things, it is better

to have the information included and not need it, rather than the other way around. This benefits the

5

end-user, removing any ambiguity about what they are permitted to do with the code; it benefits the

maintainer, providing a point of contact if they need to contact you for further information; it also

benefits you by providing basic legal protections from plagiarism and theft of intellectual property.

Choose a Style Guide
As we will be discussing later (see Section 5), consistent commenting is essential if you’re using an

automatic documentation tool such as Doxygen or GhostDoc. They are also a massive boon for

ensuring that code written by more than one person is consistently and easily readable. Finally, even

when you are the only person working on a project, choosing or writing a style guide can help to

coalesce and codify your approach to commenting, ensuring that you yourself are consistent and

complete in your documentation.

2.1.4 Example
Consider the following function:

What this does and how is probably evident even to readers who are not familiar with Python, and

therefore it could be assumed that adding comments would be unnecessary. However, compare it to

the following commented version:

This version includes the header for the file itself, containing useful information regarding the author,

copyright, licence etc. in a fashion that can be easily read by interpreters. Python docstrings are used

def hello_world():

 print("Hello, world")

 return 0

__author__ = "Benjamin Mummery"

__copyright__ = "Copyright 2020, STFC"

__credits__ = ["Benjamin Mummery"]

__license__ = "MIT"

__version__ = "1.0.1"

__maintainer__ = "Benjamin Mummery"

__email__ = "benjamin.mummery@stfc.ac.uk"

__status__ = "Demo"

"""

examply.py: demonstrations for commenting styles.

"""

def hello_world() -> int:

 """

 A simple function to confirm that python is working. Prints "Hello, world.”

 to stdout.

 Arguments:

 None

 """

 print("Hello, world.") # Comma included because I'm a stickler for grammar.

 return 0

6

to detail the intent behind both the module and the function it contains, explaining not just what the

code does, but what purpose it serves within the software. We have also added type hints to explicitly

dictate the expected types, so other pieces of the code that might use this function do so with no

ambiguity as to what behaviour to expect of them. Finally, an in-line comment is used to explain the

reasoning behind a specific decision, in this case the inclusion of an often-neglected comma for

grammatical reasons.

As a practical example of the utility of these comments, certain editors (in this case Visual Studio Code)

can use docstrings to provide tooltips while editing:

This removes the need to move through the code to consult the docstring or examine the function

directly, allowing the developer or maintainer to arite much more efficiently.

This is obviously an extreme example; it is very rare for the comments to make up the majority of your

code. However, we hope that this demonstrates the utility of properly commented code. Note also

that each of these comments is motivated, i.e. that it either adds context information to the code, or

collates existing information in a human- (or machine-) readable fashion.

2.2 Supporting Documentation
Code comments form the bulk of developer documentation, however it is frequently useful, or even

necessary, to include materials such as graphical or pictorial information, or simply more general,

higher level discussion, that fall outside the scope of these comments. In these cases, additional

documents are included to meet these needs.

What form these documents take will depend on the context and specifics of the project. They can be

technical reports, the results of profiling, explanations of the reasoning behind certain algorithmic

decisions, project requirement overviews, or photographs of hand-drawn diagrams of the software’s

structure – any file that might assist a developer or maintainer may be included.

Given the much more piecemeal nature of this documentation, specific guidelines are not helpful

here. The best rule of thumb is that any project-specific document to which you refer while developing

the code should probably be included to help future developers.

3 End-User Documentation
Developer documentation such as code commenting is an invaluable tool in ensuring that your code

is understandable and maintainable. However, most users will never actually see the source code or

supporting docs for your software.

The end-user is unlikely to be concerned with how the code works, but they are going to be looking

for the quickest route to achieving their goal. As such, writing suitable documentation requires that

we reframe our approach to the software.

7

In general, end-user documentation can be divided into four categories: Tutorials, How-to Guides,

Reference Guides, and Explanations. These form a hierarchical sequence, with tutorials as an entry

point for new users, and reference guides as a useful tool for those already familiar with the software.

3.1 Tutorials
Tutorials are the most hand holding and least technical framing of documentation. A tutorial is a

lesson, taking the reader through a series of steps to quickly and simply illustrate how to achieve one

or more of the software’s functions. This serves a second, subtler purpose of demonstrating what the

user can achieve with your tool. A tutorial can be expected to be at least skim-read by the vast majority

of users, since it’s the easiest way to quickly get a handle on your software.

3.2 How-to Guides
How-to Guides build on the foundation laid by tutorials. They are aimed at users who possess a basic

knowledge of the features, tools, and functionality of the software, but who need guidance on how to

achieve a broader set of goals. How-to Guides can be compared to recipes – a reader is assumed to

be competent in basic tasks such as how to whisk an egg, or sift flour, and to require only the correct

sequence of steps to laid out for them in order to bake a cake, or breaded chicken, or whatever meal

it is they desire.

How-to guides are not intended to be read by all users, but rather to be consulted when a user realises

that they don’t know how to perform a specific task. As such, it is paramount that the end-goal of the

guide be made explicitly clear at its beginning. One should not have to read the entire recipe in order

to determine whether it is for cake or chicken.

3.3 Reference Guides
Reference guides are the most technical and least self-explanatory framing of documentation short of

reading the commented code directly. They are also, in general, the easiest to write since they most

closely mirror how we as developers think about our software.

Reference guides offer a basic description of how to use the software on a technical level. To continue

our cooking analogy from the previous section, these would be the equivalent of the user-manual for

the blender. Most users don’t need to understand its operation beyond the level of “which button

makes it go”, but an advanced user with a specific task in mind needs to know how to change the

attachments and adjust the settings. Reference Guides should cover each public function, method,

API, etc.; everything that the user could access without modifying the code itself should have a

reference illustrating its specific usage. When the user needs to know how to instantiate a specific

class or call a particular method, this information should be encapsulated within a reference guide.

3.4 Explanations
Explanations are in-depth discussions of topics that you consider to be helpful or necessary to

developing a higher-level understanding of the code. Explanations seldom appear as separate sections

in their own right, but tend to be scattered throughout the other sections. Unlike tutorials, how-to

guides, and reference guides, explanations are not defined by a specific goal the user might want to

achieve, but rather they function as paratextual addenda that offer illumination on specific topics.

To once again return to the well of cooking analogies, explanations would be the equivalent of

digressions on the chemistry of bicarbonate of soda or the interplay of spices, things that would

enhance the reader’s understanding of not only what is being achieved, but how.

8

Much of the content of Explanations may well dovetail with that of Supporting Documentation (See

Section 2.2), however Explanations will be presented with a non-technical reader in mind.

4 Manual Documentation Generation Tools
With the exception of code comments which are, unsurprisingly, written in the same editor you are

using to write code, writing documentation requires that you make a choice with regards to the format

and editor you use. This may be dictated by the specifics of the project, but often the decision falls to

the development team.

In principal, documentation can be written in any format that a user can read, however in practice the

requirements of readability and maintainability mean that there are a number of features that are all

but essential. In general, the following features are more-or-less essential in an editor:

• Formatting options – clear and easy to follow formatting makes for documents that are easier

to read, plain-text is often unsuitable.

• Images – visual aids are invaluable, for example in documenting a UI or describing a network

of relationships or dependencies.

• Alt-text – Accessibility readers rely on alt-text to interpret images, so if you’re using an image

this feature is a must.

• Code snippets – whether including an example function call or referring to a particular block

of code, you will want to be able to include code snippets (and for these to be visually distinct

from the bulk of your text). Bonus marks if you can also include syntax highlighting.

• Portability – development is frequently a collaboration, and people often use multiple

machines, so your documentation must be modifiable from any computer that can modify

your code.

Last, but by absolutely no means least, all of the features mentioned above must be easy to use – the

more hassle it is to maintain your documentation the less accurate it will end up being.

These requirements still leave far too many potential formats to cover, however there are [2]

commonly used options that we wish to discuss: Markdown and LaTeX.

4.1 Markdown
4.1.1 Overview
Markdown is a lightweight markup language with plain-text-formatting syntax. In other words, you

write the formatting of your document at the same time as you write the contents, so rather than

highlighting a word you wish to emphasise and pressing Ctrl+I to add italic formatting, in markdown

you would simply write _text to be emphasised_. This makes it easy to write clearly formatted, well-

structured documents very quickly, without the need for a specific editor. This convenience has led to

markdown becoming probably the most widespread tool for writing software documentation.

Markdown’s primary advantage is its simplicity. Speed and convenience are essential for preventing

documenting your code becoming an onerous task, and markdown can be written with almost any

plain-text editor. It is light and portable, human readable even in its uninterpreted form, and provides

built-in functionality for code blocks. Many renderers also support syntax highlighting for code blocks.

9

Where markdown falls down is where this simplicity begins to get in the way. The more complex a

task becomes, the less likely markdown can meet your needs. Most renderers support a degree of

inline HTML to provide additional functionality, but this varies greatly and reduces the attractive

portability of the language. Then again, if your documentation is getting that complex, you may wish

to rethink your approach rather than the tool!

The one major caveat to Markdown is the lack of standardisation. While the core remains the same,

different renderers support different sets of additional features. This has led to the development of

“flavours” of markdown, for example the GitHub flavour includes support for mentions, SHA-1 hashes,

Pull Requests, Task Lists, etc., all of which help integrate it with GitHub’s broader functionality, but

reduce the portability of documents that use them.

4.1.2 Editors
Any plain-text editor will do the job of allowing you to create a markdown document. However, it can

be very helpful to have a preview or renderer built in so that you can check the final appearance. A

full overview of available markdown editors is beyond the scope of this guide, however we include a

brief overview of the most commonly used editors in

 Overview of Markdown Editors.

I personally use VSCode for a lot of development tasks and therefore find it to be the most convenient

tool for writing documentation, especially since I can do so in parallel with developing the software.

The extension-based nature of VSCode also allows for additional functionality to be added when

needed, for example exporting Markdown files as PDFs.

4.2 LaTeX
4.2.1 Overview
LaTeX is an amazing, powerful tool for typesetting documents, managing references and

bibliographies, and displaying mathematical equations and figures. It is the gold standard for scientific

writing, allows a degree of control on the part of the writer that makes most text editors look like

finger painting, and is dense and complex to the point of being completely opaque to the average

person. The result of this complexity is that the overheads involved in editing LaTeX documents are

larger than for most other formats. As one of the major barriers to good documentation is the

inconvenience of keeping it up to date, LaTeX is, in almost all cases, not a good choice.

A possible exception to this, as we will cover in more detail below (see Section 5), is the use of

automatic documentation generation tools. These can often export content directly to LaTeX,

removing some of the hassle entailed. However, as we will discuss in Sections 3 and 5 generators can

only cover the most technical level of end-user documentation, and while the less technical

documentation requires less frequent edits by dint of being more abstracted from the code, having it

be in LaTeX for consistency still entails additional overheads. Additionally, generators can usually also

export to more convenient formats such as HTML.

If you are already familiar and comfortable with LaTeX and would rather use it for documentation

rather than learn how to use literally any other tool, or have a specific need for LaTeX to be the format

you use, then we would strongly recommend finding a nice simple template and using as little of the

LaTeX-specific tools as is possible. As with Markdown, an editor with a live (or close to live) preview

function such as Overleaf is an invaluable tool.

10

4.2.2 Editors
Or rather editor. By and large there have been two options for LaTeX editing that, in our opinion, have

stood head-and-shoulders above the competition: Overleaf and ShareLaTeX. However, as of 2018 any

discrepancy between these options has been resolved as they have merged to create Overleaf v2.

Overleaf is free (unless you need additional storage space), provides automatic syntax highlighting,

simple formatting buttons (that can be ignored if you don’t need them), and a live side-by-side preview

of the rendered document. It therefore provides all the features one would require of an editor, and

while it is browser based and therefore requires an internet connection, it features persistent online

storage rather than depending on browser storage. Overleaf projects can be shared with a simple link,

sharees can be granted access either to view the current preview of the document or to edit the source

files themselves. Changes, and who has made them, are tracked and can be reviewed at your leisure,

and comments can be left to aide communication between collaborators. It also offers free,

community sourced templates for a huge range of common document types. If you’re writing in LaTeX,

you will probably find it easier with Overleaf.

5 Automatic Documentation Generation Tools
Documentation is, as we have discussed above, both essential and also a potentially time-draining

overhead on top of the existing demands of development. Unsurprisingly, tools have arisen with the

intent of addressing this imbalance by automating, if only in part, the process of creating

documentation.

5.1 Why and How to Use Them
As discussed above, bare code can only ever describe its functionality, not its intent, and therefore

any information not encapsulated by the behaviour of the code must be added by the developer.

Equally, the user experience cannot be extrapolated directly from the code source, so tutorials and

how-to guides must be written by humans.

While automatic documentation generation tools cannot, and are not intended to, address these

points, they do provide 2 significant advantages:

1. They are far more effective than humans at accurately, objectively, and consistently analysing

large quantities of code. Tasks which would be arduous and error-prone for a developer such

as mapping out large source distributions, constructing dependency graphs, inheritance

diagrams, and collaboration diagrams, can all be done quickly and easily with near perfect

accuracy. This has obvious advantages both for documentation and for development.

2. Documentation is extracted directly from the sources, meaning that a change in the

documentation will always be reflected in any documentation that is subsequently generated.

This makes it simple to keep the documentation up to date with the source.

Generators tend to be capable of outputting to a variety of formats, including LaTeX and HTML. This

raises possibilities for further time savings, for example if your documentation is hosted online, you

can use commit hooks with your git repo to have the documentation automatically update when you

commit to certain branches.

11

For generators to work correctly, the code they are operating on must be commented in a way that

they can interpret. By a shockingly convenient coincidence, this aligns closely with general good

practice in commenting code.

As an example, consider the following code.1

While the content of these comments is all but useless, being utterly degenerate with even a cursory

reading of the code itself, they serve as useful demonstration of how these comments can be

interpreted.

The HTML formatted output generated by Doxygen for this code snippet is included below. As we’re

sure you can see, it is still not hugely reader friendly, and would turn off the uninitiated just as fast as

would the code snippet it interprets. What it achieves is to take the information contained within the

comments (and some properties of the code itself) and collate them in a way that can be quickly

scanned through and consulted.

For convenience, we have highlighted the content replicating the comments in red.

1 Example taken from https://www.doxygen.nl/manual/docblocks.html

/*! A test class */

class Afterdoc_Test

{

 public:

 /** An enum type.

 * The documentation block cannot be put after the enum!

 */

 enum EnumType

 {

 int EVal1, /**< enum value 1 */

 int EVal2 /**< enum value 2 */

 };

 void member(); //!< a member function.

 protected:

 int value; /*!< an integer value */

};

https://www.doxygen.nl/manual/docblocks.html

12

Afterdoc_Test Class Reference

#include <afterdoc.h>

Public Types

enum EnumType { EVal1, EVal2 }

 An enum type. More...

Public Member Functions

void member ()

 a member function.

Protected Attributes

int value

Detailed Description

A test class

Member Enumeration Documentation

EnumType

enum Afterdoc_Test::EnumType

An enum type.

The documentation block cannot be put after the enum!

Enumerator

Eval1 enum value 1

Eval2 enum value 2

Member Data Documentation

value

int Afterdoc_Test::value

an integer value

The documentation for this class was generated from the following file:

• afterdoc.h

13

5.2 Overview of Common Tools
Somewhat inevitably in a field as fast-paced as software development, there is no clear “best” tool. In

the table below we present an overview of some of the more commonly used pieces of software, and

some of the positives and negatives that accompany them.2

2 This list is by no means exhaustive, so if you just want to find all the generators that might be viable for your
project we recommend wikipedia’s surprisingly comprehensive overview:
https://en.wikipedia.org/wiki/Comparison_of_documentation_generators

EDITOR LANGUAGES PROS CONS

DOXYGEN C, C++, C#,
objective C,
Python, VHDL,
Fortran, IDL, Java,
PHP, D

• Outputs to HTML, RTF (MS-
Word), PostScript,
hyperlinked PDF,
compressed HTML, and
Unix man pages

• Can generate various
diagrams and graphs
illustrating interrelations
within the source

• Can generate browsable
version of code cross-
referenced with
documentation

• Can do the above for
undocumented sources.

• Widely used and well
supported.

• Formatting is very
specific, so converting
into or out of Doxygen-
compatable formatting
can be time consuming.

• Docs tend to be visually
cluttered.

• Little capacity for non-
technical
documentation, i.e.
notes, examples,
rationale, etc.

GHOSTDOC C#, VB, Javascript • Strong emphasis on visual
editing – edit
documentation directly
with changes propagated
back into source code.

• UI tools for XML
formatting.

• Requires Visual Studio.

• Free version is limited
with more expensive
options available for
more features ($60-100
per user)

JAVADOC Java • Already part of the Java 2
SDK.

• Lacks diagrammatic
functionality.

• Need to manually enter
HTML tags.

PDOC Python 2, 3 • Quick and simple setup. • Python-specific.

PYDOCTOR Python 2 • Particularly good
inheritance tracing.

• Clean, readable output.

• Can pass resulting object
model to Sphinx for nicer
output stype.

• Python 2 – specific.

SPHINX C, C++, Ada,
Fortran, PHP,

• Clean, modern formatting
of output documentation.

• Lacks the useful ability
to extract API

https://en.wikipedia.org/wiki/Comparison_of_documentation_generators

14

5.3 Recommendation
For projects using and of the C family of languages, Doxygen is probably your best bet. Its wide usage

and support, and the ability to generate visual depictions of interrelationships within the source makes

it a powerful aide in a broad range of circumstances.

For Python-centric projects, Sphinx is a clear front-runner. Its shares many of Doxygen’s capacities

while providing a cleaner output with a greater capacity for annotative documentation beyond the

strictly technical. The only caveat is that the setup is a little on the complex side, and for simple

projects this may be overkill. In these cases, a less involved tool such as pdoc may be a better fit.

For Java projects, Javadoc may seem attractive due to being bundled with the Java SDK 2, however in

our opinion Doxygen has the edge due to its graphical capabilities, more minimal requirements for

commenting, and the fact that experience using it is applicable to languages other than Java.

6 Summary
• Software without documentation is unlikely to be used.

• Code comments are a must, since without their inclusion crucial context and design logic is lost.

o Comments should be at least one level more abstracted that the code they describe, and

should describe the intent of the code.

o Comment at the module level to present a high-level overview of the module’s

functionality.

o Procedures/methods should also be commented, describing their specific functionality,

data types, and brief instructions as to how to use them

o Comments describing a particular line or block are required only where the complexity of

the code means that it would be arduous for the reader to interpret, or where they

contain pertinent information that is absent from the code.

o Make including authorship and licensing information a habit.

o Pick a style guide early and stick to it.

Python, Ruby,
JavaScript

• Outputs to HTML, LaTeX
(for printable PDF
versions), ePub, Texinfo,
manual pages, plain text

• Supports reStructuredText
in docstrings.

documentation from
C++ headers.

• Setup requires multiple
configuration steps
even with the provided
quickstart script.

SWAGGER >40: android,
aspnet5,
aspnetcore, async-
scala, bash, cwiki,
csharp, cpprest,
dart, …

• Incredibly broad language
support.

• Open-source.

• Ensures OpenAPI
Specification compliance.

• Automatically generate
server and client code and
SDKs.

• Interactive UI allowing
documentation editing and
live API calls allows for
interactive
tutorials/examples.

• Tight focus on API
development.

• No hypermedia
support.

• Limited customization.

15

• End-User documentation should guide a user with no pre-existing technical knowledge to a state

where they can comfortably use your software.

o Tutorials are a jumping on point, guiding the user step by step in very granular detail to

carrying out basic tasks with the software.

o How-to Guides provide recipes for applying the simple techniques taught by tutorials to

accomplish a much wider range of potential goals.

o Reference Guides provide a technical reference for each accessible function, method, API,

etc. and are intended to be consulted only when needed by accomplished users.

o Explanations can be scattered throughout and provide in-depth discussions of supporting

topics.

• Markdown is a convenient tool for quickly and easily writing documentation that will display

correctly and clearly in multiple renderers and contexts.

• Automatic documentation generation can create reference guides from properly documented

code, but are most suitable for technical documentation.

Acknowledgements
This work made use of computational support by CoSeC, the Computational Science Centre for

Research Communities, through its Software Outlook Activity.

16

Appendix I. Overview of Markdown Editors

I.i Desktop Editors
Most of us spend most of our time with a single device, and it is therefore convenient to have locally

installed tools at your disposal. The editors below all provide the capacity to preview markdown

documents with a broad selection of additional bells and whistles for the discerning documentarist.

EDITOR PLATFORMS PROS CONS

VIM Windows,
MacOS, Linux,
MS-DOS,
Amiga, OS/2,
Android, i/OS,
QNX, Agenda,
Cygwin, Open
VMS,
MorphOS,
probably
other

• Utterly ubiquitous

• Lightweight, little to no
dependency to worry
about.

• Bundled with most Linux
distros and MacOS by
default.

• Highly customisable,
enormous range of
shortcuts and mappable
commands.

• Plugins allow for
automation of parts of
your workflow.

• Runs in terminal –
seamless transition from
file management to
editing.

• Free.

• Steep learning curve.

• Documentation has a
tendency to assume a
lot of knowledge on
the part of the user,
jargon and
abbreviations are
common.

• Enormous range of
options can be
overwhelming.

• A different paradigm
- Keybindings and
operations that are
common to most
editors are
completely different.

EMACS [TODO] • •

TEXTS Win, MacOS • Shallow learning curve -
displays rendered
version of the document
with highlight-and-apply
formatting similar to
Word or Pages.

• Tools to convert to
HTML5, PDF, ePub,
Word, or presentation
formats.

• Integration with
reference management
applications, BibTex
bibliography support.

• More difficult to directly
edit markdown code.

• No Linux support

• Expensive – Texts
costs $19 per user.

• Requires Pandoc to
be installed.

• No file management
system.

17

TYPORA

Windows,
MacOS, Linux

• Integrated file
management supporting
cloud services such as
Google Drive and
Dropbox.

• Seamless live preview of
rendered document with
mouse-over initiating a
view (and editing
functionality) of the raw
markdown code.

• CSS customisable
themes

• Currently in Beta –
features may change
towards completion.

• Free only during the
Beta.

HAROOPAD Windows,
MacOS, Linux

• Vim key binding.

• Syntax highlighting for
>100 languages.

• Side-by-side editor and
viewer.

• Flowchart drawing tools.

• Free, but see below.

• Technically in Beta,
however progress
appears to have
stalled for several
years. Unlikely to be
well-supported.

• May become paid if
completed.

MARKDOWNPAD2 Windows • Widely used (on
Windows).

• Side-by-side editor and
viewer.

• Free.

• CSS customisable
themes.

• Windows only

• Not actively
maintained since the
release of markdown
extensions for
VSCode.

VISUAL STUDIO

CODE

Windows,
MacOS, Linux

• While not natively
supported, markdown
extensions can be
installed in a few clicks
directly from the
application.

• Extensions provide a
high degree of
customisability of
experience, everything
from live preview, live
preview in browser,
syntax highlighting,
spellchecking, formatting
suggestions, etc. can be
added or removed as
needed.

• Can also integrate
seamlessly with Git.

• Similar interface to the
widely used Visual
Studio – will feel very

• Steeper learning
curve as the user
needs to be able to
find and install
extensions before
even beginning to
make use of
markdown
functionality.

18

I.ii Browser-Based Editors
For those occasions where one is separated from one’s beloved machine, there are browser-based

tools that can provide the requisite functionality. These have the advantage of being available so long

as you have an internet connection, at the cost of a usually more limited suite of functions and often

a dependence on browser storage.

familiar if your already
used to the latter.

• Decent chance that
you’re already using
VSCode to develop.

SIMPLEMDE • Free.

• Open Source.

• Extensive set of features.

• Embeddable.

• Requires you to
essentially build or
modify your own
editor to make use of
it.

SUBLIME TEXT 3 Windows,
MacOS, Linux

• Windows, Mac OS, and
Linux support.

• Broad range of useful
features for
programmers.

• Markdown support is
not native

• Complex installation
process - requires
Sublime Package
Control and the
Markdown Editing
Package.

• $70 per user.

NOTEPAD++ Windows,
MacOS, Linux

• Free

• Frequent updates

• Highly convenient if
you’re already using
Notepad or Notepad++

• Less developed as a
documentation /
software
development tool
than the other entries
on this list

INKDROP Windows,
MacOS, Linux,
IOS, Android

• Windows, Mac OS, and
Linux support as well as
IOS and Android.

• Side-by-side live
preview.

• Code and syntax
highlighting.

• Key customizations.

• $4.99/month

EDITOR PROS CONS

DILLINGER • Split-screen preview by default
with scroll-sync.

• Exports to HTML, Styled HTML,
Markdown, PDF.

• Direct uploads to GitHub, Google
Drive, WordPress, etc.

• Lacks of spell checking.

EDITOR.MD • Minimalist interface. • Minimalist Interface

19

GITHUB • Real-time saving.

• Integrate with (and commit to)
your repo.

• Broad syntax highlighting options.

• Supports Github-specific
markdown features.

• Specifically GitHub flavour, limited
support for broader flavours.

STACKEDIT • Broad syntax highlighting options

• Easy-to-use interface, handy
formatting buttons

• Customizable themes

• Direct uploads to GitHub, Google
Drive, WordPress, etc.

• Merge tools

• Offline functionality

• Depends on browser’s local storage.

• Using offline functionality requires
the browser and website to have
been opened while online.

• Publishing to GitHub requires write
access to repos, which presents a
potential security risk.

	DL-TR-2020-004 cover
	DLTR_cover&inner
	RALTR

	DL-TR-2020-004 report

