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Abstract. AI surrogate models for science, based on Deep Neural Net-
works (DNN), are becoming increasingly popular. This is especially the
case for generative models such as Autoencoders and Generative Ad-
versarial Networks (GANs), which are showing promising results and
exciting opportunities in several fields of science.
We present here an overview of the current state of the art for surro-
gate modelling, starting with a broad view across several fields, ranging
from particle methods for Molecular Dynamics to continuum solvers for
Computational Fluid Dynamics. We then focus our attention to appli-
cations in Nuclear Fusion through plasma-physics simulation, presenting
the latest results and achievements
The paper not only outlines current limitations but also proposes the
next steps in the research, in order to connect the high accuracy predic-
tion power of the DNN together with scientific understanding and will
detail the current state of their scalability on large computing resources.
The main intention is to build a road map that bridges the traditional
science and the novel big data in order to have solid and reliable surrogate
models.

Keywords: Deep Learning, Surrogate Model, Nuclear Fusion and High-
performance Computing

1 Introduction

The recent fusion of big data methods and traditional scientific modelling has
led to a new approach for investigating scientific problems. These methods are
applied to find the solution of physical problems that are usually described by
partial differential equations, based only on the available experimental and nu-
merical data, rather than solving the equations directly. These surrogate models
can find solutions of similar accuracy with no or only partial knowledge of the
physics of the problem and are often several orders of magnitudes faster.

This advent is mainly driven by the rise of Deep Learning. The fundamentals
of these approaches were developed over 50 years ago but has seen a kind of
“big bang” in the 2010s due to the introduction of the Deep Neural Network
(DNN), the growing amount of data generated through social media and the
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introduction of GPUs as programmable hardware for DNN training. Despite
initial applications being developed for the likes of image processing and natural
language processing tasks their application to scientific problems is relatively
straightforward, as the same concepts apply, feed a large amount of data to the
DNN, then train and tune the model until it produces satisfactory estimates.
In principle no knowledge of the physics is required a priori, which makes the
approach attractive for traditional computer scientists, but also the many data
scientists working on all social fields.

However, there is no free lunch: a high accuracy in prediction is often associ-
ated with a poor understanding of the problem, which gives rise to fundamental
questions about the robustness and reliability of the solution. In this paper we
will give a resume of the current state of art surrogate models, how they can
integrate numerical methods and big data sources and the advantages and draw-
backs of the approaches. We will focus particularly on generative DNN models
that have seen success in this field, applied to different scientific problems like
turbulent flows and instabilities occurring in the controlled nuclear fusion re-
actors. The intention is not to give an exhaustive list of surrogate models, but
rather to create a starting point towards a better understanding on their relia-
bility and what problems need to be tackled in the future to create robust and
reliable surrogate models.

The paper is divided as follows: the next section II introduces the funda-
mentals of DNN and details about their architectures. Section III introduces a
classification based on reduced parameters vs full PDEs and physics-constrained
vs unconstrained models. Several examples, ranging from Molecular Dynamic
(MD) to Computational Fluid Dynamics (CFD), are given. We then present
the latest surrogate alternative in confined nuclear fusion in section IV and we
propose a way forward to gradually build higher resolution models. In section
V we mention about the role of High Performance Computing (HPC) and its
challenges and finally we draw conclusions in section VI.

2 Fundamentals and common DNN used for surrogate
models

Despite their simple mathematical structure, NN are still considered a kind of
black box from their behaviour point of view. It is not yet clear what features are
extracted in the different layers and how to build a new network. The probably
most important theorem has been given in 1989 by Hornick et al. [1] proving that
any continuous function can be learned by even a single hidden layer provided it
to have a wide enough (number of neurons) size. In 2017 Rolnick and Tegmark
[2] found that by increasing depth and decreasing width, you can perform the
same functions with exponentially fewer neurons. However, in 2018 Johnson [3]
proved that at a certain point, no amount of depth can compensate for a lack of
width. See Foundations built for a general theory of neural networks for a nice
introduction on the subject.

https://www.quantamagazine.org/foundations-built-for-a-general-theory-of-neural-networks-20190131/
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Modern NN approaches stem from the introduction of the perceptron [4],
a linear classifier model inspired by the biological neuron, which accepts an
input vector of sensory data x, a weight coefficient vector w and an additional
bias term b to offset the linear model. The perceptron produces a prediction
by applying a Heaviside activation function to the linear combination of these
terms y = φ(xTw) the weights are then iteratively adjusted to minimise the loss
function (error) of the model, with adjustments scaled with a step-size parameter
www(n+ 1) = www(n) + η[t(n)− y(n)]xxx(n) until convergence is satisfied.

The perceptron is proven to converge for linearly separable solutions and
spurred the development of the multi-layered perceptron (MLP) design consist-
ing of multiple fully-connected layers of perceptrons with an individual weight
wji for each connection and replaced the activation function with a continuous
sigmoidal function, allowing the network to find solutions to non-linear problems
and allowed the training of the individual weights due to the differentiable acti-
vation function. This allows the network to be trained with the backpropagation
algorithm [5] which applies the concepts of gradient descent, minimising the loss
function by iteratively adjusting the weights in the direction of the steepest de-
scent of the loss function, this is done by computing gradients of the loss function
w.r.t each weight in model η ∂L

∂w11
by backwards propagating the error through

the network, then applying the chain rule to calculate the gradients for all the
weights in the network.

DNNs are a further advancement of the MLP, making use of many non-linear
hidden layers, allowing the network to build more abstract representations of
the input patterns, resulting in the model being able to make good predictions
for highly complex and multi-domain problems. The fundamental theory and
application of backpropagation remains the same but there have been many
new neural network designs that have been introduced and developed with the
popularity of field.

Convolutional neural networks (CNNs) [6] are one such architecture, primar-
ily applied in the image classification domain. CNNs process pixel data, taking
an input matrix with a height, width and depth representation. These networks
have minimal need for feature engineering as they can extract features from the
input data. The CNN does this by applying matrix convolution operations on
the input image through a kernel matrix with its own trainable weights which
can learn to extract the relevant features from the image for inference.

Recurrent Neural Networks (RNN) are another network, where the nodes
form a directed graph in a sequence, allowing the network to interpret tem-
poral behaviour, by feeding the outputs of the individual units back into the
input stage of the next time step, making new predictions based on both current
weights and the temporal sequence of states. This has been used extensively
in both time-series forecasting and simulation environments. LSTM models [7]
advanced on this method further, introducing gating mechanisms for better gra-
dient control to preserve long-range dependencies of the sequence, avoiding the
notorious vanishing gradient [8] issues of the RNN.
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Autoencoders (AE) are unsupervised networks in which the target values are
equivalent to the input ti = xi. The AE attempts to learn an approximation of the
identity function from some constrained, usually low-dimensional form, where
the loss function is the reconstruction loss of the identity function. The network
has two components, the encoder and decoder (see Fig. 2). The encoder part of
the network compresses the input patterns into a latent-space representation in
the hidden units and the decoder will reconstruct the original inputs from this
latent space representation. There has also been considerable research into using
AEs as generative models through variational autoencoders [9] by sampling from
the latent space of the encoder, with the decoder purposed to sample new data
points with the latent distributions as a prior.

Generative Adversarial Networks (GANs) are another branch of generative
DNN with the ability to generate new samples of data that are of the same type of
the training set through adversarial training. In this model two neural networks
are being trained: the generative model G that captures the data distribution
in attempt to create new realistic data similar to the original data distribution
and a discriminative model D which estimates the conditional probability that
a sample is from the original dataset. This algorithm takes a batch of noise
samples z(1), ..., z(m) from a prior distribution pg(z) and a batch of samples of
the original data x(1), ..., x(m) from the distribution pd(x). D model then makes
a prediction for each generated z and real training example x and updates it’s
weights through backpropagation to improve the success at recognising the fake
samples, while the generator is instead trained to penalise the model if its samples
are classified as fake, resulting in a generative model that can generate realistic
samples of data. See Fig. 3 for an integrated RNN-GAN architecture.

An important theoretical aspect to consider in creating surrogate models
from NNs is the well explained difference between accuracy and understanding
by Sanjuán [10]. Real systems are often chaotic with several degrees of non lin-
earity. While in some cases the NN could be trained on a dataset and allowed to
extrapolate outside those values, in other cases the strong divergence could easily
bring to completely wrong answer and strongly affect its robustness. Moreover,
even if an high accuracy is achieved, this does not mean that we understood
the phenomena. This is due to the still black box understanding of current NN
which limits our interpretation of the several layers.

Moreover, dealing with data and model uncertainties and having comprehen-
sive Uncertainty Quantification approaches for those is very important. Data-
related uncertainties are usually common for many practical problems, and in
particular many problems discussed are multi-scale and are modelled by PDE’s
or systems of PDE’s, and SPDEs. Often Multi-Level Monte Carlo methods are
employed in this case since MLMC ([11], [12], [13]) is a highly efficient variance
reduction method. Examples of applying Machine Learning in combination with
MLMC in case of environmental modelling can be found in Kani et al. [14]. while
example of using MLMC for UQ is used in many areas, for example, in structural
engineering [15], in oil fields modelling by SPDE’s using MLMC [16].
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The basic idea is to accelerate the standard (single level) Monte Carlo algo-
rithm by carefully defining coarser levels, representing the expected value of the
quantity of interest at the fine level in identical form as telescopic sum, equal to
the expected value at the coarsest level, plus corrections between levels. Thus
the main idea being employed is to perform many calculations at coarser lev-
els (which are cheap), and fewer calculations at the finest level(s) (which are
expensive). In respect to integrating this approach with surrogate models, the
coarser levels can be defined in different ways, e.g, as approximate and easier to
solve models, while the surrogate model can be used replacing the finest level(s).
In more detail, MLMC will define the levels, will generate realizations for the
parameters, and will call the surrogate model for particular applications to solve
for each realization of the coefficients at corresponding level(s).

3 Constrained vs unconstrained

We present here a classification of the surrogate models according to 3 criteria
(see Fig. 1) the type of equations solved, i.e. full Partial Differential Equations
(PDEs) vs Reduced Parameter; 2) the use of physics constraints to enforce the
PDEs or conservation laws like mass, energy and momentum vs fully uncon-
strained NN; 3) the type of constraint which can be soft or hard, according
if the equations works as a regularization of the loss function or are actually
enforced by the NN.

The constraint usually reduces the flexibility during the design of the NN and
then its abstraction power as mentioned in section II. On the other side, fully
unconstrained NN can take advantage of the most complex state of art archi-
tectures and achieve higher results in terms of accuracy. However, they cannot
enforce conservation laws and the understanding of their prediction capability
is undermined. Reduced parameters are usually unconstrained, however we will
see an examples where a soft constraint has been applied [17].

Fig. 1. Type of surrogate models.
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3.1 Physics-constrained

A good starting point for Physics-constrained NN has been given by Raissi et al.
[18] with the introduction of Physics-Informed Neural Networks (PINNs). The
idea is as follows. Given the equation:

ut +N [u] = 0 (1)

we define a function f(t, x) as left-hand side of eqn 1 and approximate u(t, x) via
a DNN. The implementation is trivial and a high accuracy is achieved in solv-
ing notorious PDEs: Burgers’ equation, Shrödingher’s equation and Allen-Cahn
equation. To note that the DNN used in the paper is rather small and a merely
done of a series of fully connected layers. A main drawback of these approaches
is in the large amount of sampling points needed for more complex 3D-systems
like the Navier-Stokes equations describing fluid dynamics. Moreover, the con-
servation law of physics happens in a so called weak form, in the sense that the
solution is driven by the loss function towards values satisfying Eqn. 1, but it
does not guarantee that conservation laws are completely satisfied.

A stronger form, reported as hard constraint, has been provided by Mohan
et el. [19] via Embedded-informed NN (see Fig. 3). Here the equations are ac-
tually enforced in the solution process via the NN layers itself. The kernels of
the convolutional layers downstream the decoder section calculate the deriva-
tive components of the PDE. During the training, this constraint, forces the
encoder to learn the main features of only those solutions which satisfy the im-
posed equations. Moreover, boundary conditions can be applied in the same way
allowing the model to correctly reproduce also those values far from bulk of
the physical system. The NN, named Physics Embedded Convolutional Autoen-
coder (PhyCAE) has been trained with Direct Numerical Simualtion data of a
3D homogeneous isotropic turbulent flow. Results show very good agreement for
the large scales, while at small values the loss of accuracy of the autoencoder
creates an acceptable departure. More important, results shows a better satis-
faction of the conservation of mass compared to the same autoencoder without
the physics-constraints.

3.2 Fully unconstrained

When no physics is enforced into the neural network we have a fully uncon-
strained model. The main advantage is of course that no knowledge at priori
is required. For experimental data this approach would allow to replicate the
real system without any tuning ad hoc of parameters of a mathematical rep-
resentation. A good example are the Reynolds Average Navier-Stokes (RANS)
equations where an unique model for all possible flow regimes has never been
found. However, on the drawback side, fully unconstrained surrogate models can
seriously undermine the confidence in the solution provided, especially in systems
where conservation laws apply. Ideally, we would like a mathematical correlation
between the feature extracted from the NN and the solution itself such to verify
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Fig. 2. Mohan et al. [19]: Physics Embedded Convolutional Autoencoder.

that hidden constraints are actually enforced from the architecture itself. For
example, if the training of a CNN via incompressible velocity flow fields would
end up in a series of kernels which enforce the velocity free-divergence, then
the mass conservation would be guaranteed. This is of course a naive wish, but
preliminary results look promising. Let’s see some.

A good example of fully unconstrained model has been given by Breen et al.
[20]. In their work their are able to solve the famous three body problem using
a simple fully connected NN trained with a time series of data obtained from a
very accurate numerical solver (Brutus). The basic idea is very simple: we feed in
the NN the position of a particle positions at time t and we give as correct output
the values of the second planet at the same time t. The third planet position is
obtained via conservation of the center of mass. The importance of this work is in
to the strong non linearity of the problem, solved in the difficult scenario of equal
masses. Predictions from the NN are in good agreements with the numerical
solutions. However, sometimes the error on the energy can have some spikes
when the particles are very close to each other. An improved solution is obtained
adding a soft physics-constraint on the particle position via a projection layer.
The intention of this layer is to reduce the energy imbalance minimizing following
problem:

Er(x, ν)2 + γ1Dx(x)2 + γ2Dν(ν)2 (2)

where Er(x, ν) is the energy error, while the other terms have the intention
to penalize deviations from the initial values of position x and velocity ν. How-
ever, it does not enforce the conservation of energy, nor momentum, as a hard
constraint would do.

The natural extension of the three many body problem is to larger systems
like those used in MD. An excellent work has been presented by Kadupitiya et
al. [21] where they used a RNN to simulate an MD system with 16 particles and
different force potentials. The algorithm is very robust and allows to use a 4000x
larger time step than that used in the Verlet integrator to the generate the train-
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ing dataset. In the paper author’s view, the RNN seems to really have learned
the Newton equations of motion as proven by the excellent energy conservation,
without this being enforced in any layer of the NN.

Another good example of fully unconstrained NN has been recently given by
Kim and Lee [17]. They used a RNN-GAN architecture to create instantaneous of
turbulent flows at different Reynolds number after training it with a time series
produced via Direct Numerical Simulation (see Fig. 3). Results are very good
in agreement in both instantaneous and mean flow field values. However, better
results are achieved introducing a soft constraint on the statistical variation
enforced into the loss function of the generator (Lg) and RNN (LRNN ):

LG = ...+MSEG +MSERNN−G (3)

LRNN = ...+MSERNN−G +MSEG (4)

where MSEG and MSERNN−G are Mean Square Error for the GAN Gen-
erator and the RNN, respectively.

Fig. 3. Kim and Lee [22]: RNN-GAN used to generate inflow turbulent flow fields at
different Reynolds numbers.

3.3 Examples of surrogate models on Reduced Parameters

A strong mathematical formulation of a reduced parameters example has been
given by Lye et al. [23] where the NN learns the mapping from a series of input
parameters to observable output using few training samples. For example, given
a set of point values from a flow field around and airfoil, they are able to calculate
the lift on the airfoil itself. Combined with a Monte Carlo (MC) and Quasi Monte
Carlo methods (QMC), this approach allows to efficiently compute uncertainty
propagation which compensates for the lack of physical constraints. The speedup
achieved is between one and two order of magnitude when compared to the
baseline MC and QMC methods.
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Another interesting example of constrained surrogate model on reduced pa-
rameters has been given by Kim et al. [17] with their DeepFluid network. They
start from a set of reduced parameters to train a generative CNN using a set
of fluid velocity fields from numerical simulations. To conserve the overall mass,
they enforce the divergency-free velocity field at all times in the loss function.
This is referenced as stream function and it is defined as:

LG(c) = ||uc −∇×G(c)|| (5)

where uc is a sample from the training data and G(c) is the network output (c
indicates a set of parameters, like position and width of the inlet). This constraint
is also a weak form as mentioned above and does not rigorously enforce boundary
conditions. However, results are pretty good in capturing complex turbulent
effects, like vorticity in smoke plumes and dam break simulations. Moreover,
beside achieving the 700x speedup compared to the CPU solver used to generate
the training data, DeepFluid is able to extrapolate, with plausible results, up to
a 10% outside the training parameters range.

4 Surrogate models in nuclear fusion

Nuclear fusion is an extremely complex process due to the multi-physics and
multi-scale phenomena occurring inside a nuclear reactor like the Tokamak under
construction in the ITER project. The design of such a reactor based only first
principles is not currently (nor in the near future) feasible.

One of main complexity comes from the turbulence in the plasma which
affects the core transport fluxes reducing its temperature and then the capabil-
ity of ignite the fusion process. If a continuous approach is taken, the plasma
behaviour is well described by the magneto-hydrodynamic, which are a combi-
nation of the Navier-Stokes equations for fluid dynamic and Maxwell’s equations
for electromagnetic fields. These are difficult to solve due to their strong cou-
pling and non linearity. On the other side, a particle description is still unfeasible
even on next generation of Exascale supercomputers due to the high number of
particles involved in a Tokamak (∼ 1022) despite the low density of the plasma
inside the reactor [24].

4.1 Latest developments

Surrogate model can help at different levels and in different approaches. For
example, in the recent work of Ma et al. [25] the Landau closure 1D equation
is solved using three different type of Neural Networks: 1) a MLP with only
two hidden layers; 2) a CNN with four convolution-pooling layers; 3) a discrete
Fourier transform neural network (DFT) which does not contain hidden layers.
Results are in good agreement and extension to 2D and 3D seems feasible for the
CNN type as the computational cost scales linearly with the number of neurons
(while is quadratic with MLP and DFT).

https://www.iter.org/
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In the work of Meneghini [26], two main solvers of the so called Whole Device
Modelling (WDM) are replaced by MLP. Despite its simplicity, the NN is able
to simplify the prediction of the turbulent transport fluxes in the core of the
plasma satisfying that delicate balance between accuracy and speed required in
the WDM concept itself. This is a good example of reduced parameters without
enforced physics-constraints.

On a completely different approach, a series of machine learning models have
been developed since 1990 on the prediction of disruptive instabilities in con-
trolled fusion plasma ([27],[28]). A recent work using deep learning has been
presented by Kates-Harbeck et al. [29]. This is a case of reduced parameters
modelling where the signal from different sensors have been used to predict the
time evolution of plasma instabilities and then be able to take counter acting
measures for an active control mode. The NN used consists essentially of two
parts: a) a 1D feature extractor and b) a LSTM for concatenating the time series
data. There are no constraints applied to the output results. The software can
be applied to the International Thermonuclear Experimental Reactor (ITER),
allowing to detect disruptions within 30ms time frame and potentially save the
rector from expensive disruptions.

A good example of a reduced parameters model for describing the temporal
plasma evolution and neutral characteristics at the edge of a Tokamak has been
provided by Gopakumar and Samaddar [30]. They developed a multi CNN with
two inputs and two outputs to combine the effects from the plasma behaviour
and the neutral particles (see Fig. 4). The focus on the temporal evolution of 7
parameters (5 for the plasma and 2 for the neutral) spread around the poloidal
region of the Tokamak. Despite no constraints on the output results, they achieve
good results in terms of accuracy (0.01% difference from the numerical solver
SOLPS used to generate the training data) and generalization.

Another case of multi input reduced parameters model, but with a soft
physics-constrained, to predict the core Tokamak transport heat and particle
fluxes named QLKNN (the name comes from the quasilinear gyrokinetic trans-
port model QuaLiKiz NN). It consists of 3 separate feed forward NN, each for
a well chosen training dataset, and then combined together (see Fig. 5). The
constraints are applied by adding them into the cost function: the sharp insta-
bility thresholds, zero flux in the region where no instabilities are predicted, and
identical transport flux thresholds for all transport channels.

4.2 A full model for the core plasma turbulence

Despite its importance, we could not find in the literature a surrogate model
for the full PDEs governing the plasma core turbulence. This could be due to
two main difficulties: 1) the problem itself in formalize a NN with soft or, even
more difficult, hard constraints due the complex mathematical structure of the
magneto-hydrodynamic equations; 2) the generation of a high fidelity training
dataset even on a small sub-geometry of the full Tokamak. On the other side,
particle in cell methods can be used as a starting point to build a complete
surrogate model, being a fundamental integrator of the Newton’s equation under
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Fig. 4. Gopakumar and Samaddar [30]: NN combining two different physics phenom-
ena.

Fig. 5. van de Plassche et al. [31]: physics-constrained multi input NN for particle heat
and particle flux estimation.
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a Coulomb potential field. The scaling over large systems would recover the
above magneto-hydrodynamic equations. A possible approach could then be as
follows: we train a NN with particle positions at different time steps t undergoing
a simple linear potential and no electromagnetic fields. We iterate on the model
until satisfactory results are achieved. If not, we add a physics-constraint and
reiterate on the NN model. In a similar manner, the electrostatic field first and
then a full electromagnetic potential can be added. We then move to a coarser
model where group of particles are replaced by coarser beads, following the
same procedure applied in the Dissipative Particle Dynamics (DPD), and then
train those beads to replicate the overall behaviour of the smaller beads. We
keep scaling until the larger structures of the turbulence are represented with a
reasonable number of particles keeping the inter medium/smaller representation
for the small scales lengths. The intention is to achieve the best NN for accuracy
using the least number of physical constraints. The procedure, which can be
generalized also to different physics, is resumed in the Fig. 6 with red comments
referred to the plasma physics problem.

Fig. 6. Building a surrogate model: in red the specifications for a plasma model.

5 Surrogate models and HPC

The forward and backwards pass of the DNN breaks down into matrix multiply-
and-accumulate (MAC) operations. MAC are easily parallelised on accelerators
[32] (primarily GPUs) and recent hardware innovations, spurred by deep learn-
ing, have accelerated the operations further. These devices have become increas-
ingly complex but the size of the DNN, thus the abstraction capabilities, are
restricted by the amount of available memory on the device. Scientific data
usually comes from extremely large-scale simulations and experiments with a
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huge number of parameters; therefore, the model needs to be powerful enough
to capture the relevant information of the domain. The need for larger models
also comes with the requirement of the distributed and parallel training of the
networks on modern supercomputers.

DNNs typically involve strict data dependencies between each layer of the
network, restricting the inter-layer parallelisation strategies. Therefore one ap-
proach for parallelisation is model parallelism: which involves dividing the actual
network across the nodes of a cluster, with the same batch of data but will per-
form independent weight updates and computation, depending on the activation
functions of the neurons they are distributed. This form of parallelism conserves
memory as the full network and parameters are not stored on the GPU, allowing
the training of large-scale networks, but conversely require an all-to-all commu-
nication step at each layer for synchronisation, which can lead to load-balancing
issues if the work is not equal. Data parallelism approaches instead partition
the inputs of the network over the cluster, reducing the communication needs
by only synchronising the weights and parameters at the end of a training iter-
ation, but this approach requires a copy of the model for each node, hindering
the available memory for each. Often a combination of these methods which are
usually designed for individual cases. Pipelining is another strategy used for com-
bining these methods which introduces softer dependencies between the layers,
allowing for the overlapping of computation between the layers to compute par-
tial results, removing the issue of idle processing time. Google Brain developed
GPipe [33] which applied this in a generalised form and achieved state-of-the-art
performance on both the ImageNet and CIFAR-10 benchmarks, by estimating
the computational cost for each unit given their activation functions and train-
ing data, allowing the development of a framework to intelligently divide the
work-load. These techniques will be very important to consider when developing
large-scale models.

Model design is often a trial-and-error approach; iteratively refining the
model and hyperparameters to gain greater performance yield or simply using
a predefined standard. This approach is inefficient and can hinder performance,
especially in the case of large-scale models which may take a long time to com-
plete training. HPC methods can assist in this process and the MENNDL [34]
project is one attempt to automate hyperparameter optimisation, deploying a
genetic algorithm with optimises a population of networks across a supercom-
puter, drastically reducing the engineering of hand-tailoring networks. Similar
approaches to network structure have been applied through Neural Architecture
Search [35], which attempts to find a DNN structure which is suited for a partic-
ular problem, this has given promising results, finding well-performing network
structures in surrogate models across several domains of science.

6 Conclusion and Future work

We presented a series of state of art surrogate models for different scientific fields
ranging from molecular dynamics to nuclear fusion. We classified them according
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the capability of reproducing the solution of a full set of PDEs or solve a reduced
parameter problem. We also distinguish between physics-constrained models,
which can be applied to improve the solution accuracy and its reliability. Such
constraints can be classified in soft and hard and, usually, reduced parameter
models do not have it.

In the author’s knowledge, in nuclear fusion reseach we do not have yet full
PDEs surrogate models. A strategy for developing a such surrogate models has
been propsed. The same stragegy can be generalized to different problems. As
future work we will apply this procedure to the DL MESO code, a software
package developed at Daresbury Laboratory [36] based on Dissipative Particle
Dynamics methodology very similar to particle in cell methods when dealing
with electrostatic forces between particles.
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