
This is the author’s final, peer-reviewed manuscript as accepted for publication (AAM). The version

presented here may differ from the published version, or version of record, available through the publisher’s

website. This version does not track changes, errata, or withdrawals on the publisher’s site.

Published version information

Citation: AE Arenas et al. ‘An Event-B approach to Data Sharing Agreements.’ In 8th
International Conference on Integrated Formal Methods (IFM 2010), Nancy, France,
11-14 Oct 2010, (2010): 28-42. Lecture Notes in Computer Science, vol. 6396.
Springer, Berlin, Heidelberg.

DOI: 10.1007/978-3-642-16265-7_4

This is a post-peer-review, pre-copyedit version of an article published in Lecture
Notes in Computer Science. The final authenticated version is available online at the
DOI above.

This version is made available in accordance with publisher policies. Please cite only
the published version using the reference above. This is the citation assigned by the
publisher at the time of issuing the AAM. Please check the publisher’s website for
any updates.

This item was retrieved from ePubs, the Open Access archive of the Science and Technology

Facilities Council, UK. Please contact epublications@stfc.ac.uk or go to http://epubs.stfc.ac.uk/ for

further information and policies.

An Event-B approach to Data Sharing Agreements

Alvaro E. Arenas, Benjamin Aziz, Juan Bicarregui
and Michael D. Wilson

https://doi.org/10.1007/978-3-642-16265-7_4
mailto:epublications@stfc.ac.uk
http://epubs.stfc.ac.uk/

An Event-B Approach to Data Sharing Agreements

Alvaro E. Arenas, Benjamin Aziz, Juan Bicarregui, and Michael D. Wilson

e-Science Centre, STFC Rutherford Appleton Laboratory
Oxfordshire OX11 0QX, U.K.

{ alvaro.arenas, benjamin.aziz, juan.bicarregui, michael.wilson }@stfc.ac.uk

Abstract. A Data Sharing Agreement (DSA) is a contract among two or more
principals regulating how they share data. Agreements are usually represented
as a set of clauses expressed using the deontic notions of obligation, prohibition
and permission. In this paper, we present how to model DSAs using the Event-B
specification language. Agreement clauses are modelled as temporal-logic for-
mulas that preserve the intuitive meaning of the deontic operators, and constrain
the actions that a principal can execute. We have exploited the ProB animator and
model checker in order to verify that a system behaves according to its associ-
ated DSA and to validate that principals’ actions are in agreement with the DSA
clauses.

Key words: Data Sharing Agreements; Formal Analysis; Event-B

1 Introduction

Data sharing is increasingly important in modern organisations. Every organisation re-
quires the regular exchange of data with other organisations. Although the exchange of
this data is vital for the successful inter-organisational process, it is often confidential,
requiring strict controls on its access and usage. In order to mitigate the risks inherent
in sharing data between organisations, Data Sharing Agreements (DSAs) are used to
ensure that agreed data policies are enforced across organisations [11].

A DSA is a legal agreement among two or more parties regulating who can access
data, when and where, and what they can do with it. DSAs either include the data poli-
cies explicitly as clauses, or include existing organisational data policies by reference.
DSA clauses includes deontic notions stating permissions for data access and usage,
prohibitions on access and usage which constrain these permissions, and obligations
that the principles to the agreement must fulfil. DSA can be created between an or-
ganisation and each of many collaborators. A single data set may result from multiple
sources, so that the clauses in the DSA with each contributor need to be combined to-
gether and applied to it. DSAs are represented in natural language with its concomitant
ambiguities and potential conflicts, which are exacerbated by DSA combination. Natu-
ral language DSA clauses can be enforced by transforming them into executable policy
languages [5]. However, support is required to ensure this transformation conveys the
intention of the natural language, while avoiding its potential problems. The formal
representation and analysis of agreement clauses could provide this support.

2 Alvaro E. Arenas, Benjamin Aziz, Juan Bicarregui, and Michael D. Wilson

This paper presents a formalisation of DSAs using the Event-B specification lan-
guage [2]. This involves incorporating normative deontic notions (obligations, permis-
sions and prohibitions) into the Event-B modelling process. The main contribution of
the paper is the development of an approach to model agreements using the Event-B
specification language. The process itself forces the explicit statement of implicit as-
sumptions underlying the natural language which are required in the formal modelling.
The contribution includes a method to transform natural-language data-sharing agree-
ment clauses, including deontic notions, into linear temporal logic predicates suitable
for verification and validation.

The paper is structured as follows. Section 2 introduces DSAs and their main com-
ponents. Then, section 3 summarises the Event-B method. Section 4 presents our ap-
proach to model contracts in Event-B, and section 5 applies that approach to a DSA
for scientific collaborations. Section 6 discusses the verification and validation of con-
tracts in Event-B. Finally, section 7 relates our work with others, and section 8 presents
concluding remarks and highlights future work.

2 An Overview of Data Sharing Agreements

To introduce DSAs, we take as an example data sharing in scientific collaborations [4].
Large-scale research facilities such as particle accelerators and synchrotrons are used
by teams of scientists from around the world to produce data about the structure of
materials which can be used in many ways, including to create new products, change
industrial methods or identify new drugs. There are many individuals and organisations
involved in these processes who make agreements with each other to share the data
from the facilities, within specified time limits, and for use in particular ways.

Data sharing requirements are usually captured by means of collaboration agree-
ments among the partners, typically established during the scientific proposal prepa-
ration. They usually contains clauses defining what data will be shared, the deliv-
ery/transmission mechanism, the processing and security framework, among others.
Following [12], a DSA consists of a definition part and a collection of agreement
Clauses. The definition part usually includes the list of involved Principals; the start and
end dates of the agreement; and the list of Data covered by the agreement. Three type
of clauses are relevant for DSAs: Authorisation, Prohibitions and Obligation clauses.
Authorisations indicate that specified roles of principal are authorised to perform ac-
tions on the data within constraints of time and location. Prohibitions act as further
constraints on the authorisations, prohibiting actions by specific roles at stated times
and locations. Obligations indicate that principals, or the underlying infrastructure, are
required to perform specified actions following some event, usually within a time pe-
riod. The DSA will usually contain processes to be followed, or systems to be used to
enforce the assertions, and define penalties to be imposed when clauses are breached.

For instance, in the case of scientific collaborations, principals typically involve in-
vestigators and co-investigators from universities or industrial research departments,
and a scientific facility provider, whose facilities provide the infrastructure for perform-
ing scientific experiments. Data generated from experiments is usually held on a exper-

An Event-B Approach to Data Sharing Agreements 3

imental database, which is exposed via a web service API. The following are examples
of DSA clauses, taken from existing DSAs:

1. During the embargo period, access to the experimental data is restricted to the prin-
cipal investigator and co-investigators.

2. After the embargo period, the experimental data may be accessed by all users.
3. Access to data must be denied to users located in un-secure locations such as the

cafeteria.
4. System must notify principal investigator when a public user access experimental

data, within 2 days after the access.
5. User must renew use license within 30 days if it has expired before the three year

embargo period.

Clauses 1 and 2 correspond to authorisation clauses. Clause 3 is a prohibition.
Clauses 4 and 5 are examples of obligation clauses.

2.1 Main components of Data Sharing Agreements

The set-up of DSAs requires technologies such as DSA authoring tools [8], which may
include controlled natural language vocabularies to define unambiguously the DSAs
conditions and obligations; and translators of DSAs clauses into enforceable policies.
Our work aims at providing formal reasoning support to DSA authoring tools such as
the one presented in [8], focusing mainly on the clauses part of a DSA.

We represent DSA clauses as guarded actions, where the guard is a predicate char-
acterising environmental conditions, such as time and location, or restrictions for the
occurrence of the event, such as ”user is registered” or ”data belongs to a project”.

Definition 1. (Action). An action is a tuple consisting of three elements 〈p, an, d〉,
where p is the principal, an is an action name, and d is the data.

Action 〈p, an, d〉 expresses that the principal p performs action name an on the data
d. Action names represent atomic permissions, where actions are built from by adding
the identity of the principal performing the action name and the data on which the action
name is performed. Actions are analogous to fragments defined in [8], We assume that
actions are taken from a pre-defined list of actions, possibly derived from an ontology.
An example of an action is ”Alice accesses experimental data”, where ”Alice” is the
principal, ”accesses” is the action and ”experimental data” is the data.

We are interested in four types of of clauses: permissions, prohibitions, bounded
obligations, and obligations. Clauses are usually evaluated within a specific context,
which is represented by a predicate characterising environmental conditions such as
location and time.

Definition 2. (Agreement Clause). Let G be a predicate, n an integer denoting a time
unit, and a = 〈p, an, d〉 be an action. The syntax of agreement clauses is defined as
follows:

C ::= IF G THEN P(a) | IF G THEN F(a)
| IF G THEN O(a) | IF G THEN On(a)

4 Alvaro E. Arenas, Benjamin Aziz, Juan Bicarregui, and Michael D. Wilson

In the following, we provide an intuitive explanation of the clause syntax. A more
precise meaning will be given later when representing agreement clauses in the Event-B
language. A permission clause is denoted as IF G THEN P(a), which indicates that
provided the condition G holds, the system may perform action a. A prohibition clause
is denoted as IF G THEN F(a), which indicates that the system must not perform ac-
tion a when condition G holds. An obligation clause is denoted as IF G THEN O(a),
which indicates that provided the condition G holds, the system eventually must per-
form action a. Finally, a bounded-obligation clause is denoted as IF G THEN On(a),
which indicates that provided the condition G holds, the system must perform action a
within n time units.

A data sharing agreement can be defined as follows.

Definition 3. (Data Sharing Agreement). A DSA is a tuple
〈Principals, Data, ActionNames, fromTime, endT ime, P(C)〉.

Principals is the set of principals signing the agreement and abiding by its clauses.
Data is the data elements to be shared. ActionNames is a set containing the name of
the actions that a party can perform on a data. fromTime and endT ime denotes the
starting and finishing time of the agreement respectively; this is an abstraction rep-
resenting the starting and finishing date of the agreement. Finally, P(C) is the set of
clauses of the agreement.

3 Event-B with Obligations

3.1 Introduction to Event-B

Event-B [2] is an extension of Abrial’s B method [1] for modelling distributed systems.
In Event-B, machines are defined in a context, which has a unique name and is identified
by the keyword CONTEXT. It includes the following elements: SETS defines the sets
to be used in the model; CONSTANTS declares the constants in the model; and finally,
AXIOMS defines some restrictions for the sets and includes typing constraints for the
constants in the way of set membership.

An Event-B machine is introduced by the MACHINE keyword, it has a unique name
and includes the following elements. VARIABLES represents the variables (state) of
the model. INVARIANT describes the invariant properties of the variables defined
in the clause VARIABLES. Typing information and general properties are described
in this clause. These properties shall remain true in the whole model and in further
refinements. Invariants need to be preserved by the initialisation and events clauses.
INITIALISATION allows to give initial values to the variables of the system. EVENTS
cause the state to change by updating the values of the variables as defined by the gener-
alised substitution of the event. Events are guarded by a condition, which when satisfied
implies that the event is permitted to execute by applying its generalised substitution in
the current state of the machine.

Event-B also incorporates a refinement methodology, which can be used by software
architects to incrementally develop a model of a system starting from the initial most
abstract specification and following gradually through layers of detail until the model
is close to the implementation.

An Event-B Approach to Data Sharing Agreements 5

In Event-B, an event is defined by the syntax: EVENT e WHEN G THEN S END ,
where G is the guard, expressed as a first-order logical formula in the state variables, and
S is any number of generalised substitutions, defined by the syntax S ::= x := E(v) |
x := z : |P (z). The deterministic substitution, x := E(v), assigns to variable x the
value of expression E(v), defined over set of state variables v. In a non-deterministic
substitution, x := z : |P (z), it is possible to choose non-deterministically local vari-
ables, z, that will render the predicate P (z) true. If this is the case, then the substitution,
x := z, can be applied, otherwise nothing happens.

3.2 Linear Temporal Logic in Event-B

The Event-B Rodin platform1 has associated tools, such as ProB2 and Atelier B3 for
expressing and verifying Linear Temporal Logic (LTL) formulae properties of Event-
B specifications. LTL formulae are defined based on a set of propositional variables,
p1, p2 . . ., the logical operators, ¬ (not), ∧ (and), ∨ (or), → (implication), as well as
future temporal operators: � (always), ♦ (eventually), # (next), U (until), W (weak
until) andR (release). It also includes dual operators for modelling the past.

The propositions themselves can be atomic, which include predicates on states
written as {. . .}, and the event enabled predicate (in the case of ProB), written as
enabled(a), which states that event a is enabled in the current state. They can also
be transition propositions, such as [a], to state that the next event to be executed in the
path is a. Finally, (P ⇒ Q) is often written to denote the formula �(P → Q).

3.3 Modelling Obligations in Event-B

Classical Event-B does not include a notion of obligation. When the guard of an event
is true, there is no obligation to perform the event and its execution may be delayed as a
result of, for example, interleaving it with other permitted events. The choice of schedul-
ing permitted events is made non-deterministically. In [3], we describe how obligations
can be modelled in Event-B as events, interpreting the guard of an event as a trigger
condition. An obliged event is written as EVENT e WHEN T WITHIN n NEXT S END ,
where T is the trigger condition such that when T becomes true, the event must be
executed within at most n+ 1 number of time units, provided the trigger remains true.
If the trigger changes to false within that number, the obligation to execute the event
is canceled. This type of event represents a bounded version of the leads-to modality,
represented by the obligation (T ⇒ ♦≤n(T → e)). The obliged event is a syntactic
sugar and can be encoded and refined in the standard Event-B language (see [3]). In the
rest of the paper, we adopt Event-B with obligations as our specification language.

4 Formal Modelling of Data Sharing Agreements in Event-B

This section introduces our method for modelling DSAs in Event-B. The method con-
sists of a number of stages, as shown in Figure 1.

1 www.event-b.org/platform.html
2 www.stups.uni-duesseldorf.de/ProB
3 www.atelierb.eu

6 Alvaro E. Arenas, Benjamin Aziz, Juan Bicarregui, and Michael D. Wilson

DSA in Deontic Logic DSA in Natural Language

DSAs in LTL System in Event-B

DSA-constrained

System in Event-B

Context in Event-B

generate

model-check

see

see

model

model

Fig. 1. A Lifecycle for Modelling DSAs in Event-B.

First, the system domain and variables are defined, and actions are identified (see
subsections 4.1 and 4.2). Second, once defined the system vocabulary, the agreement
clauses are modelled using the deontic operators introduced in definition 2 (see subsec-
tion 4.3). Finally, each agreement clause is modelled as a logical formula that holds as
an invariant in the Event-B system (see subsections 4.4, 4.5 and 4.6).

4.1 Defining System Domains

The first step in the modelling of DSAs in Event-B consists of defining the domains
to be used in the model. This corresponds to the definition of primitive sets and con-
stant values. A DSA includes three main sets: PRINCIPALS indicating the principals
participating in the DSA; DATA indicating the date to be shared, and PACTIONNAMES
denoting the actions that principals may perform on data. Following definition 1, an
action is defined as a tuple consisting of a principal, an action name, and a data. In
addition, we are interested in registering the actions performed by the system, there-
fore we introduce set SACTIONNAMES to indicate such actions. The main motive in
distinguishing user and system action names stems from our later treatment of obliga-
tions where we distinguish between the non-enforceable obligations on users and the
enforceable obligations on systems.

Our example follows a role-based model, hence we identify the roles to be used in
the system; LOCATIONS indicates the set of location of a principal may be located.
Below, we present the context for our DSA example. We are using a slightly different
syntax to the one used in Event-B for readability purpose, associating each set with its
constant elements.

An Event-B Approach to Data Sharing Agreements 7

CONTEXT

PRINCIPALS = { Alice, Bob, Charlie , · · · }
PACTIONNAMES = { access, renewlicence, · · · }
DATA = { ExpData, · · · }
PACTION = PRINCIPALS × PACTIONNAMES ×DATA

SACTIONNAMES = { notify }
MESSAGE = PRINCIPALS ×DATA
SACTION = SACTIONNAMES × PRINCIPAL×MESSAGE

LOCATIONS = { room1, room2, cafeteria, · · · }
ROLES = { PI, CoI, PublicUser }

4.2 Modelling System Variables

The following are the main variables associated to a DSA. action is the input to the
system. actionLog represents the actions performed by principals, where each action
is labelled with the occurrence time. Those actions performed by the system are logged
into the systemLog. Variables fromTime, endT ime and currentT ime denote the
starting time of the agreement, final time, and the current time respectively. In addi-
tion, there are domain-specific variables related to specific DSAs. For our example of
DSA in the scientific domain, we require variables such as embargoT ime, indicating
the end of the embargo on the data being shared; location associates each principal
with his current location and safeLocation indicates if a location is safe. The relation
roleAssig associates principals with their role in the system; and getPI is a function
that given a data returns its associated principal investigator. Finally, licenceExpT ime
indicates the time when the licence of a principal for accessing a data expires. Below,
we present the variables of our DSA, their domain, and their main properties.

INVARIANTS

action ∈ PACTION ∪ SACTION
actionLog ∈ P(N× PACTION)
systemLog ∈ P(N× SACTION)

fromTime ∈ N
endT ime ∈ N
currentT ime ∈ N
location ∈ PRINCIPALS → LOCATIONS
safeLocation ∈ LOCATIONS → B
embargoT ime ∈ DATA→ N
getPI ∈ DATA→ PRINCIPALS
roleAssig ∈ (PRINCIPALS ×DATA)→ ROLES
licenceExpT ime ∈ (PRINCIPALS ×DATA)→ N
fromTime ≤ currentT ime ≤ endT ime
∀t ∈ ran licenceExpT ime · t ≤ endT ime
∀d ∈ DATA · roleAssig(getPI(d), d) = PI

8 Alvaro E. Arenas, Benjamin Aziz, Juan Bicarregui, and Michael D. Wilson

4.3 Initial Modelling of Agreement Clauses

Having defined system variables enables us to model the guard associated to each
clause, and to identify the actions of the system. The next step consists in represent-
ing agreement clauses in the style presented in Definition 2. For instance, the clauses
described in Section 2 can be modelled as follows.

C1 : ∀p ∈ PRINCIPALS, d ∈ DATA ·
IF (d = ExpData ∧

currentT ime ≤ embargoT ime(d) ∧ roleAssig(p, d) ∈ {PI,CoI})
THEN P(〈p, access, d〉)

C2 : ∀p ∈ PRINCIPALS, d ∈ DATA ·
IF (d = ExpData ∧ currentT ime > embargoT ime(d))
THEN P(〈p, access, d〉)

C3 : ∀p ∈ PRINCIPALS, d ∈ DATA ·
IF ¬ safeLocation(location(p))
THEN F(〈p, access, d〉)

C4 : ∀p ∈ PRINCIPALS, d ∈ DATA ·
IF (〈p, access, d〉 ∈ ran (actionLog) ∧ roleAssig(p, d) = PublicUser)
THEN O2(〈notify, getPI(d), (p, d)〉)

C5 : ∀p ∈ PRINCIPALS, d ∈ DATA ·
IF currentT ime > licenceExpT ime(p, d)
THEN O30(〈p, renewlicence, d〉)

4.4 Modelling Permission and Prohibition Clauses.

We proceed now to represent agreement clauses in Event-B. As a starting point, we as-
sume that principal actions are modelled in the system as Event-B events. For instance,
if 〈p, a, d〉 is an arbitrary principal action, we assume then there is an event called a that
models the effect of principal p performing action a on data d as a guarded substitution.

EVENT a1 ANY action WHERE action = 〈p1, a1, d1〉 THEN
· · · /* Execution of action a1 */ END

EVENT a2 ANY action WHERE action = 〈p2, a2, d2〉 THEN
· · · /* Execution of action a2 */ END
· · ·

We represent agreement clauses as assertions that the system must validate. Let
〈p, a, d〉 be an arbitrary principal action and a be its associated Event-B event. Let
IFG THEN P(〈p, a, d〉) be an arbitrary permitted clause. The following assertion must
be valid in the system, indicating that the event associated to the clause may be executed
when condition G holds:

((action = 〈p, a, d〉 ∧ G) ⇒ enabled(a))

where enabled is the event-B enable proposition, indicating that an event is enabled
in the current state.

Let IF G THEN F(〈p, a, d〉) be an arbitrary prohibition clause. The following
assertion must be valid in the system, indicating that the event associated to the clause
must not be executed when condition G holds:

An Event-B Approach to Data Sharing Agreements 9

((action = 〈p, a, d〉 ∧ G) ⇒ ¬ enabled(a))

In order to validate agreement clauses, some changes are needed in the structure
of the events associated to actions. First, the permitted clauses indicate when an action
may be executed, then the guard of the associated actions should be strengthened with
the disjunction of the clauses conditions. Second, the prohibition clauses indicate when
an action must not be executed, then the guard of the associated actions is strengthened
with the conjunction of the negation of the clauses. Formally, let 〈p, a, d〉 be an arbitrary
principal action and a be its associated event. Let IF Gi THEN P(〈pi, a, di〉), for
i = 1, · · · , k be all the permitted clauses associated to action a, and let
IF G′j THEN F(〈pj , a, dj〉), for j = 1, · · · , l be all the prohibition clauses associated
to action a. The event is transformed as follows to meet the agreement clauses.

EVENT a ANY action WHERE action = 〈p, a, d〉 ∧
k∨

i=1

Gi ∧
l∧

j=1

¬G′
j THEN

· · · ‖ actionLog := actionLog ∪ {currentT ime 7→ (p 7→ a 7→ d)}
END

4.5 Modelling Obligations on the System.

Without loss of generality, we will consider only bounded-obligation clauses. Any un-
bounded obligation in a DSA can be transformed into a bounded one by limiting it by
the duration of the contract. Let 〈b, c, d〉 be an arbitrary system action; and
C : IF G THEN Ok(〈b, c, d〉) be an arbitrary obligation clause. This imposes an obli-
gation on the system expressed by the following temporal logic formula.

(G ∧ currentT ime < clockC + k) ⇒
♦((¬G ∨ (currentT ime 7→ (b 7→ c 7→ d)) ∈ systemLog) ∧

currentT ime ≤ clockC + k)

In above LTL formula, variable clockC indicates the time when trigger condition G
becomes true. The formula expresses that condition G holds for at most k time units,
until a new action 〈b, c, d〉 is registered in the systemLog. This is indeed the intuitive
meaning of the obligation clause expressed using deontic operators. The above obliga-
tion could be enforced by adding a new event performing the associated change in the
system state, as described in subsection 5.4.

4.6 Modelling Obligations on Users.

Let 〈p, a, d〉 be a principal action and C : IF G THEN Ok(〈p, a, d〉) be an arbitrary
obliged clause. In general, the system cannot enforce users’ obligations, but it can detect
when a user’s obligation has not been fulfilled, as illustrated by the formula below.

(G ∧ currentT ime < clockC + k) ⇒
♦((¬G ∨ (currentT ime 7→ (p 7→ a 7→ d)) ∈ actionLog) ∧

currentT ime ≤ clockC + k)

10 Alvaro E. Arenas, Benjamin Aziz, Juan Bicarregui, and Michael D. Wilson

5 An Example of a DSA in Event-B

This section applies the method presented previously to our DSA example for scientific
collaborations. The first two steps, defining system domain and variables and expressing
the agreement clauses using deontic operators, were presented in section 4. We continue
with the modelling of the clauses as logic formulae.

5.1 The Agreement Clauses as Logic Formulae.

Below we model the clauses introduced in subsection 4.3 as logic formulae, following
the patterns presented in the previous section. Permission and prohibition clauses are
modelled in predicate logic, and can be represented as invariants of the system. Obliga-
tions are modelled in LTL, and can be represented as theorems that the system can verify
using model-checking techniques or validate via simulators. We assume that all clauses
are universally quantified with the variable p ∈ PRINCIPALS and d ∈ DATA.

C1 : (action = 〈p, access, d〉 ∧ d = ExpData ∧
currentT ime ≤ embargoT ime(d) ∧ roleAssig(p, d) ∈ {PI,CoI}) ⇒

enabled(access)
C2 : (action = 〈p, access, d〉 ∧ d = ExpData ∧ currentT ime > embargoT ime(d)) ⇒

enabled(access)
C3 : (action = 〈p, access, d〉 ∧ ¬ safeLocation(location(p))) ⇒

¬enabled(access)
C4 : ((clockC4 7→ (p 7→ access 7→ d)) ∈ actionLong) ∧

roleAssig(p, d) = PublicUser ∧ currentT ime < clockC4 + 2) ⇒
♦((currentT ime 7→ (notify 7→ getPI(d) 7→ (p 7→ d))) ∈ systemLog ∧

currentT ime ≤ clockC4 + 2)
C5 : (currentT ime > licenceExpT ime(p, d) ∧ currentT ime < clockC5 + 30) ⇒

♦((currentT ime 7→ (p 7→ renewlicence 7→ d)) ∈ actionLog) ∧
currentT ime ≤ clockC5 + 30

5.2 Initialising the System

For completeness sake, we include here the initialisation of the system. The DSA is
assumed to have a duration of 100 time units.

INITIALISATION

actionLog, systemLog := ∅,∅
fromTime, endT ime, currentT ime := 1, 100, 1
location := { Alice 7→ room1, Bob 7→ room2, Charlie 7→ cafeteria }
safeLocation := { room1 7→ TRUE, room2 7→ TRUE, cafeteria 7→ FALSE }
embargoT ime := { ExpData 7→ 60 }
getPI := { ExpData 7→ Alice }
roleAssig := { (Alice, ExpData) 7→ PI, (Bob,ExpData) 7→ CoI,

(Charlie, ExpData) 7→ PublicUser }
licenceExpT ime := { (Alice, ExpData) 7→ 50, (Bob,ExpData) 7→ 30,

(Charlie, ExpData) 7→ 30 }

An Event-B Approach to Data Sharing Agreements 11

5.3 User Actions as Event-B Events

The system includes two events: access, indicating that a principal will access a data,
and renewlicence, indicating that a principal has renewed the licence to access a data.

In the case of access, the event guard is strengthened with the disjunction of the
guards of its associated permitted clauses (clauses C1 and C2 in subsection 4.3) and the
conjunction of the negation of the forbidden clauses (clause C3).

EVENT access ANY action WHERE
action = 〈p, access, d〉 ∧ d = ExpData ∧
((currentT ime ≤ embargoT ime(d) ∧ (roleAssig(p, d) ∈ {PI,CoI})) ∨

currentT ime > embargoT ime(d)) ∧
safeLocation(location(p)) THEN

actionLog := actionLog ∪ {currentT ime 7→ (p 7→ access 7→ d)}
END

For renewlicence, we introduce a new constant RENEWTIME that indicates
the constant time a licence is increased once the event occurs.

EVENT renewlicence ANY action WHERE
action = 〈p, renewlicence, d〉 THEN

licenceExpT ime(p, d) := currentT ime+RENEWTIME ‖
actionLog := actionLog ∪ {currentT ime 7→ (p 7→ renewlicence 7→ d)}

END

5.4 System Obligations as Events

The system is obliged to notify the principal investigator when a data item is accessed
by a public user. This is modelled as the obligated Event-B event notify, which must
be executed within 2 time units after the guard holds.

EVENT notify WHEN
((p 7→ download 7→ d) ∈ ran (actionLog) ∧ roleAssig(p, d) = PublicUser)
WITHIN 2 NEXT

systemLog := systemLog ∪ {currentT ime 7→ (notify 7→ getPI(d) 7→ (p, d))}
END

5.5 User Obligations as Events

As mentioned before, user obligations cannot be enforced by the system, although
they can be detected. Below, we show the checklicence event, which checks if a
principal has renewed a licence for accessing a data within 30 time units after ex-
piring the license. If the licence is not renewed, the principal is blacklisted for using
such data. To model such action, we assume the existence of a predicate blacklist :
PRINCIPALS ×DATA → B, which is initialisated as false for any principal and

12 Alvaro E. Arenas, Benjamin Aziz, Juan Bicarregui, and Michael D. Wilson

any data. We also assume that the RENEWTIME constant is greater that 30 time
units. The system designer could, for instance, use the blacklist information to restrict
access to the associated data.

EVENT checklicence WHEN
(currentT ime > licenceExpT ime(p, d)) WITHIN 30 NEXT

blacklist(p, d) := (currentT ime > licenceExpT ime(p, d))
END

5.6 Dealing with the Environment

In our model of the DSAs in Event-B, we assume that the environment is modelled
through time and location. Our notion of time can based on some standard represetation
(e.g. ISO 8601), which could include a combined date and time representation. We
assume, for simplicity, that currentTime is a natural number and that every event in the
machine representing an action will perform its own time incrementation. Hence, the
event representing action a will become as follows, assuming that the event lasts for
only one time unit,

EVENT a1 WHEN . . . THEN
· · · ‖ currentTime := currentTime + 1 END

The other environment variable is location, where we have assumed the second
solution, i.e. a separate event for changing locations of users, which has overrides the
current value of the location function with a new location for some principal.

6 Formal Verification and Validation of DSA Properties

6.1 Verifying DSA Properties

The minimum global property that must hold for any DSA is that all permissions, pro-
hibitions and system obligations stated in the DSA clauses must hold true.

One example of common conflicts is when an event corresponding to a principal
action is both enabled (permitted) and disabled (prohibited) in the same state of the
machine. Verifying that the model is free from this sort of conflicts corresponds to
model-checking the following LTL formulae:

�¬(enabled(a) ∧ ¬(enabled(a)))

Another example of conflicts is when obligations are not permitted. Hence, for ex-
ample, a user obligation of the sort IF G THEN On(〈p, a, d〉) must be permitted,

∀t ∈ N · (G ∧ currentT ime = t) ⇒
¬((¬enabled(a)) U (currentTime > t+ n))

An Event-B Approach to Data Sharing Agreements 13

which means that the obliged event a must have been enabled at some stage prior to the
current time passing the deadline t+ n.

Healthiness properties are desirable aspects of the DSA that are not expressed by
any of the previous properties we mentioned above. For example, healthiness property
of our DSA for scientific collaborations state that all accesses to experimental data are
performed by principals with a valid licence. This would correspond to the following
formula, which was verified in our system.

∀p ∈ PRINCIPALS, d ∈ DATA, n ∈ N :
(n, (p, access, d)) ∈ actionLog ⇒ n ≤ licenceExpTime(p, d)

Other possible healthiness properties would be: to check that no accesses occur at
unsafe locations; to prove that system-notification events are idempotent; and to ver-
ify that any penalties associated with obligation violation (both for systems and users)
are properly enforced. For example, in the case of violating user obligations, that the
associated capabilities (certain events) are disabled if the user has not fulfilled their
obligation.

6.2 Validating DSA Properties

The validation of the example DSA was carried out using the animation capabilities of
the Pro-B plug-in for Rodin. This method of validation has a number of advantages for
revealing problems with the specification, mainly:

– It helps monitor every value of the state variables as the machine executes each
event. This may reveal certain under-specifications of the types of variables. For
example, in one instance, it was discovered that sets are not sufficient to model logs
(both action and system logs), since sets do not distinguish different instances of
the same actions. Hence, timestamps were added to achieve that effect.

– It helps to view which of the events of the machine are currently active. In the case
of modelling user obligations, this is quite helpful since it can reveal whether the
obligation conditions are strong enough to disable other events in the case where
the obliged event has not yet been executed. More generally, this gives an idea as
to whether the activation of events is as expected or not.

– Simulating the machine allows understanding better traces that violate invariants,
for those invariants that cannot be verified. For example, in the case of the obli-
gations on users to renew the licence when it expires, these cannot be enforced.
Hence, there are runs of the machine in which the user will not renew the licence.
Therefore, simulation is beneficial since it will demonstrate the effects of not ful-
filling such obligations.

7 Related Work

There have been other attempts to model and analyse contracts using event/state-based
modelling approaches. [10] presents how standard conventional contracts can be de-
scribed by means of Finite State Machines (FSMs). Rights and obligations extracted

14 Alvaro E. Arenas, Benjamin Aziz, Juan Bicarregui, and Michael D. Wilson

from the clauses of the contract are mapped into the states, transition and output func-
tions, and input and output symbols of a FSM. The FSM representation is then used to
guarantee that the clauses stipulated in the contract are observed when the contract is
executed. The approach is more directed to contract monitoring than analysis, since no
formal reasoning is included.

In [6], Daskalopulu discusses the use of Petri Nets for contract state tracking, and
assessing contract performance. Her approach is best suited for contracts which can nat-
urally be expressed as protocols, or workflows. She model-checks a contract to verify
desired properties. Our work has been inspired by hers, but it differs in that we sep-
arate the modelling of the contract – declarative approach by representing clauses as
temporal-logic predicates – from the modelling of the system. Following similar ob-
jectives, [7] uses the Event Calculus to represent a contract in terms of how its state
evolves according to a narrative of (contract-related) events.

An initial model of DSAs is proposed in [12]. The model is based on dataflow
graphs whose nodes are principals with local stores, and whose edges are channels along
which data flows. Agreement clauses are modelled as obligation constraints expressed
as distributed temporal logic predicates over data stores and data flows. Although the
model is formal, they do not exploit formal reasoning about agreements.

In [9], the authors propose an event language with deontic concepts like permis-
sions, rights and obligations, which are relevant to the modelling of DSAs. However,
their main focus is the access control framework, whereas we focus on a more general
framework related to clauses that may occur in any DSA.

Our work has been influenced by the work by Matteucci et al [8], which presents an
authoring tool for expressing DSAs in a controlled natural language. One of our aims
is to provide formal reasoning support for such a tool. The underlying semantic model
for DSAs in [8] is an operational semantics expressing how a system evolves when
executed under the restriction of an agreement. Within this view, agreement clauses are
encoded within the system. We consider that for formal reasoning, it is important to
separate the agreement clauses from the system functionality, hence we have proposed
to represent clauses as LTL assertions that the system must respect.

8 Conclusion and Future Work

This paper presents an approach for modelling contracts using the Event-B specification
language. This involves incorporating normative deontic notions (obligations, permis-
sions and prohibitions) into the Event-B modelling process. We have focused on one
particular type of contract, the so-called data sharing agreements (DSAs).

The starting point of the proposed method is an informal DSA. In order to formalise
it, the following steps are proposed. First, the system domain and variables are defined,
and actions are identified. Second, agreements clauses are modelled using deontic logic.
Third, each deontic-logic clause is represented in linear temporal logic (LTL), and the
Event-B event dealing with the action is transformed so that the LTL predicate is valid
in the model. The relation between the LTL clause and the Event-B model is established
by applying verification (model-checking) and validation (animation) techniques.

An Event-B Approach to Data Sharing Agreements 15

DSAs typically follow a lifecycle comprising the following stages: (1) contract
drafting, which includes the drafting of contracts with the aid of authoring tools; (2)
contract analysis, which includes the formalisation and analysis of contracts in order to
detect potential conflicts among contract clauses; (3) policy derivation from the contract
clauses; and (4) finally, monitoring and enforcement of contract policies. This paper has
concentrated on the second stage, contract analysis. As future work, we plan to study
formally the policy derivation process. In addition, we will investigate the problem of
agreement evolution (changes in an agreement), and whether those changes can be ver-
ified/maintained using refinement techniques.

Acknowledgment

This work was partly supported by the EU FP7 project Consequence (Context-Aware
Data-Centric Information Sharing), project grant 214859.

References

1. J-R. Abrial. The B Book. Cambridge University Press, 1996.
2. J-R. Abrial and S. Hallerstede. Refinement, Decomposition, and Instantiation of Discrete

Models: Application to Event-B. Fundamenta Informaticae, 77(1-2):1–28, 2007.
3. J. Bicarregui, A. E. Arenas, B. Aziz, P. Massonet, and C. Ponsard. Toward Modelling Obli-

gations in Event-B. In International Conference of ASM, B and Z Users, volume 5238 of
Lecture Notes in Computer Science, pages 181–194. Springer, 2008.

4. S. Crompton, B. Aziz, and M. D. Wilson. Sharing Scientific Data: Scenarios and Challenges.
In W3C Workshop on Access Control Application Scenarios, 2009.

5. N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The Ponder Policy Specification Lan-
guage. In Policies for Distributed Systems and Networks, volume 1995 of Lecture Notes in
Computer Science, pages 18–38. Springer, 2001.

6. A. Daskalopulu. Model Checking Contractual Protocols. In Legal Knowledge and Informa-
tion Systems, Frontiers in Artificial Intelligence and Applications Series, 2001.

7. A. D. H. Farrell, M. J. Sergot, M. Sallé, and C. Bartolini. Using the Event Calculus for
Tracking the Normative State of Contracts. International Journal of Cooperative Information
Systems, 14(2-3):99–129, 2005.

8. I. Matteucci, M. Petrocchi, and M. L. Sbodio. CNL4DSA a Controlled Natural Language
for Data Sharing Agreements. In 25th Symposium on Applied Computing, Privacy on the
Web Track. ACM, 2010.

9. D. Méry and S. Merz. Event Systems and Access Control. In D. Gollmann and J. Jürjens,
editors, 6th Intl. Workshop Issues in the Theory of Security, pages 40–54, Vienna, Austria,
2006. IFIP WG 1.7, Vienna University of Technology.

10. C. Molina-Jimenez, S. Shrivastava, E. Solaiman, and J. Warne. Run-Time Monitoring and
Enforcement of Electronic Contracts. Electronic Commerce Research and Applications,
3(2):108–125, 2004.

11. J. E. Sieber. Data Sharing: Defining Problems and Seeking Solutions. Law and Human
Behaviour, 12(2):199–206, 1988.

12. V. Swarup, L. Seligman, and A. Rosenthal. A Data Sharing Agreement Framework. In ICISS
2006, Second International Conference on Information Systems Security, volume 4332 of
Lecture Notes in Computer Science, pages 22–36. Springer, 2006.

Appendix: Event-B Model of the Example DSA

CONTEXT Context
The context of the contract example in the paper

SETS
PRINCIPALS The set of principals
PACTIONNAMES The set of user action names
DATA The set of data
SACTIONNAMES The set of system action names
LOCATIONS The set of locations
ROLES The set of roles

CONSTANTS
Access

Renewlicence

Alice

Charlie

ExpData

notify

Room1

Room2

Cafeteria

PI

COI

PublicUser
AXIOMS

axm1 : partition(PACTIONNAMES , {Access}, {Renewlicence})
axm2 : partition(PRINCIPALS , {Alice}, {Charlie})
axm3 : partition(DATA, {ExpData})
axm4 : partition(SACTIONNAMES , {notify})
axm5 : partition(LOCATIONS , {Room1}, {Room2}, {Cafeteria})
axm6 : partition(ROLES , {PI }, {COI }, {PublicUser})

END

An Event-B Approach to Data Sharing Agreements 17

MACHINE Contract
A machine modelling the contract example in the paper

SEES Context
VARIABLES

actionLog The log registering all the user actions
systemLog The log registering all the system actions
currentTime The current time of the machine
fromTime The time of the start of the contract
endTime The time of the end of the contract
embargoTime The embargo time on a dataset
roleAssig a function mapping principals to their role with respect to some

dataset
location a function giving the location of a principal
getPI a function giving the PI of a dataset
safeLocation a function indicating whether a location is safe or not
licenceExpTime a function giving the time at which the licence for a user

expires with respect to some dataset
notifycounter a counter for the notify event
clocknotify a clock for the notify event to register the first time its condition

becomes true
blackList a function denoting whether a user is blacklisted with respect to a

dataset
checklicencecounter a counter for the checklicence event

INVARIANTS
inv4 : actionLog ∈ P(N× PRINCIPALS × PACTIONNAMES ×DATA)
inv5 : systemLog ∈ P((N × SACTIONNAMES × PRINCIPALS) × (N ×

PRINCIPALS × PACTIONNAMES ×DATA))
inv6 : currentTime ∈ N
inv12 : fromTime ∈ N
inv13 : endTime ∈ N
inv7 : embargoTime ∈ DATA→ N
inv8 : roleAssig ∈ (PRINCIPALS ×DATA)→ ROLES
inv9 : location ∈ PRINCIPALS → LOCATIONS
inv11 : getPI ∈ DATA→ PRINCIPALS
inv14 : fromTime ≤ currentTime ∧ currentTime ≤ endTime
inv15 : safeLocation ∈ LOCATIONS → BOOL
inv16 : licenceExpTime ∈ (PRINCIPALS ×DATA)→ N
inv17 : ∀t ·t ∈ ran(licenceExpTime)⇒ t ≤ endTime
inv18 : ∀d ·d ∈ DATA ∧ (∃p ·((d 7→ p) ∈ getPI) ⇒ ((p 7→ d) 7→ PI) ∈

roleAssig)
inv21 : notifycounter ∈ N
inv23 : 0 ≤ notifycounter ∧ notifycounter ≤ 3
inv24 : clocknotify ∈ N
inv27 : blackList ∈ (PRINCIPALS ×DATA)→ BOOL
inv28 : checklicencecounter ∈ N
inv29 : 0 ≤ checklicencecounter ∧ checklicencecounter ≤ 5

EVENTS

18 Alvaro E. Arenas, Benjamin Aziz, Juan Bicarregui, and Michael D. Wilson

Initialisation
The initialisation event
begin

act4 : actionLog := ∅
act5 : systemLog := ∅
act6 : currentTime := 1
act11 : fromTime := 1
act12 : endTime := 100
act7 : embargoTime := {ExpData 7→ 3}
act8 : roleAssig := {(Alice 7→ ExpData) 7→ PI , (Charlie 7→ ExpData) 7→

PublicUser}
act9 : location := {Alice 7→ Room1 ,Charlie 7→ Cafeteria}
act10 : getPI := {ExpData 7→ Alice}
act13 : safeLocation := {Room1 7→ TRUE ,Room2 7→ TRUE ,Cafeteria 7→

FALSE}
act14 : licenceExpTime := {(Alice 7→ ExpData) 7→ 15 , (Charlie 7→

ExpData) 7→ 10}
act17 : notifycounter := 3
act18 : clocknotify := 0
act19 : blackList := {(Alice 7→ ExpData 7→ FALSE), (Charlie 7→ ExpData 7→

FALSE)}
act20 : checklicencecounter := 5

end
Event access =̂

An event for allowing users to access datasets
any

action
p
d

where
grd1 : action = (p 7→ Access 7→ d) ∧ (blackList(p 7→ d) = FALSE) ∧

(safeLocation(location(p)) = TRUE)∧((currentTime ≤ embargoTime(d)∧
roleAssig(p 7→ d) ∈ {PI ,COI })∨(currentTime > embargoTime(d)))

grd7 : (¬(∃t1 , q , e ·((t1 7→ q 7→ Access 7→ e) ∈ actionLog)∧(roleAssig(q 7→
e) = PublicUser)∧(¬(t1 7→ q 7→ Access 7→ e) ∈ ran(systemLog))))∨
(notifycounter > 1)
(not T1 or counter1¿ 0)

grd8 : (¬(currentTime > licenceExpTime(p 7→ d)))∨(checklicencecounter >
1)
(not T2 or counter2¿ 1)

then
act1 : actionLog := actionLog ∪ {currentTime 7→ p 7→ Access 7→ d}
act2 : notifycounter : |∃q , e, t1 ·(((t1 7→ q 7→ Access 7→ e) ∈ actionLog)∧

(roleAssig(q 7→ e) = PublicUser) ∧ (¬(t1 7→ q 7→ Access 7→ e) ∈
ran(systemLog))∧(notifycounter ′ = notifycounter−1))∨(¬(∃p, d , t2 ·((t2 7→
p 7→ Access 7→ d) ∈ actionLog)∧ (roleAssig(p 7→ d) = PublicUser)∧

An Event-B Approach to Data Sharing Agreements 19

(¬(t2 7→ p 7→ Access 7→ d) ∈ ran(systemLog))) ∧ (notifycounter ′ =
3))

act3 : clocknotify : |((((roleAssig(p 7→ d) = PublicUser))∧(clocknotify =
0)) ∧ (clocknotify ′ = currentTime)) ∨ (¬(((roleAssig(p 7→ d) =
PublicUser)) ∧ (clocknotify = 0)) ∧ (clocknotify ′ = clocknotify))

act4 : currentTime := currentTime + 1
act5 : checklicencecounter : |∃q , e ·((currentTime > licenceExpTime(q 7→

e))∧(checklicencecounter ′ = checklicencecounter−1))∨((¬(∃r , f ·(currentTime >
licenceExpTime(r 7→ f)))) ∧ (checklicencecounter ′ = 5))

end
Event notify =̂

An event for notifying PIs when public users access datasets
any

p
d
t1
z

where
grd1 : ((t1 7→ p 7→ Access 7→ d) ∈ actionLog) ∧ (roleAssig(p 7→ d) =

PublicUser) ∧ (¬(t1 7→ p 7→ Access 7→ d) ∈ ran(systemLog))
grd2 : (¬(currentTime > licenceExpTime(p 7→ d)))∨(checklicencecounter >

1)
not T2 or counter2¿ 1

grd3 : (currentTime > licenceExpTime(p 7→ d))⇒(z = (checklicencecounter−
1))

grd4 : (¬(currentTime > licenceExpTime(p 7→ d)))⇒ (z = 5)
then

act5 : systemLog := systemLog∪{((currentTime 7→ notify 7→ getPI (d)) 7→
(t1 7→ p 7→ Access 7→ d))}

act2 : notifycounter := 3
act3 : clocknotify := 0
act4 : currentTime := currentTime + 1
act6 : checklicencecounter := z

end
Event locationchange =̂

An environment event to change the locations of users
any

p
l

where
grd2 : p ∈ PRINCIPALS
grd1 : location(p) 6= l

then
act1 : location(p) := l
act2 : currentTime := currentTime + 1

end
Event renewlicence =̂

An event to renew the data licences

20 Alvaro E. Arenas, Benjamin Aziz, Juan Bicarregui, and Michael D. Wilson

any
action
p
renewtime
d

where
grd1 : p ∈ PRINCIPALS
grd2 : action ∈ PRINCIPALS × PACTIONNAMES ×DATA
grd3 : renewtime ∈ N
grd4 : action = (p 7→ Renewlicence 7→ d)
grd5 : (¬(∃t1 , q , e ·((t1 7→ q 7→ Access 7→ e) ∈ actionLog)∧(roleAssig(q 7→

e) = PublicUser)∧(¬(t1 7→ q 7→ Access 7→ e) ∈ ran(systemLog))))∨
(notifycounter > 1)
(not T1 or counter1¿ 1)

grd6 : (¬(currentTime > licenceExpTime(p 7→ d)))∨(checklicencecounter >
1)
(not T2 or counter2¿ 1)

then
act1 : licenceExpTime(p 7→ ExpData) := currentTime + renewtime
act2 : actionLog := actionLog ∪ {currentTime 7→ p 7→ Renewlicence 7→

ExpData}
act3 : notifycounter : |∃q , e ·((((currentTime − 1) 7→ q 7→ Access 7→

e) ∈ actionLog∧(roleAssig(q 7→ e) = PublicUser))∧(notifycounter ′ =
notifycounter − 1)) ∨ (¬(((currentTime − 1) 7→ q 7→ Access 7→ e) ∈
actionLog ∧ (roleAssig(q 7→ e) = PublicUser)) ∧ (notifycounter ′ =
3))

act4 : clocknotify : |∃w , f ·(((((currentTime − 1) 7→ w 7→ Access 7→
f) ∈ actionLog ∧ (roleAssig(w 7→ f) = PublicUser))∧ (clocknotify =
0))∧(clocknotify ′ = currentTime))∨(¬((((currentTime−1) 7→ w 7→
Access 7→ f) ∈ actionLog ∧ (roleAssig(w 7→ f) = PublicUser)) ∧
(clocknotify = 0)) ∧ (clocknotify ′ = clocknotify))

act5 : currentTime := currentTime + 1
end

Event checklicence =̂
An event to blacklist users with expired licences
any

p
d
z

where
grd1 : currentTime > licenceExpTime(p 7→ d)
grd2 : (¬(∃t1 , q , e ·((t1 7→ q 7→ Access 7→ e) ∈ actionLog)∧(roleAssig(q 7→

e) = PublicUser)∧(¬(t1 7→ q 7→ Access 7→ e) ∈ ran(systemLog))))∨
(notifycounter > 1)
(not T1 or counter1¿ 0)

grd3 : ((∃t ·(t 7→ p 7→ Access 7→ d) ∈ actionLog ∧ (roleAssig(p 7→ d) =
PublicUser)))⇒ z = (notifycounter − 1)

An Event-B Approach to Data Sharing Agreements 21

grd4 : (¬(∃y ·(y 7→ p 7→ Access 7→ d) ∈ actionLog ∧ (roleAssig(p 7→
d) = PublicUser)))⇒ z = 2

then
act1 : blackList(p 7→ d) := TRUE
act2 : checklicencecounter := 5
act3 : notifycounter := z
act4 : currentTime := currentTime + 1

end
END

	Juan3.pdf
	DSA-EventB-HAL-INRIA.pdf

