
RAL-TR-2009-023

November 9, 2009

C Cartis N I M Gould Ph L Toint

On the complexity of steepest descent,

Newton’s method and regularized

Newton methods for nonconvex

unconstrained optimization



c© Science and Technology Facilities Council

Enquires about copyright, reproduction and requests for additional
copies of this report should be addressed to:

Library and Information Services
SFTC Rutherford Appleton Laboratory
Harwell Science and Innovation Campus
Didcot
OX11 0QX
UK
Tel: +44 (0)1235 445384
Fax: +44(0)1235 446403
Email: library@rl.ac.uk

The STFC ePublication archive (epubs), recording the scientific output of the
Chilbolton, Daresbury, and Rutherford Appleton Laboratories is available
online at: http://epubs.cclrc.ac.uk/

ISSN 1358-6254

Neither the Council nor the Laboratory accept any responsibility for loss or
damage arising from the use of information contained in any of their reports
or in any communication about their tests or investigation



RAL-TR-2009-023

On the complexity of steepest descent,

Newton’s method and regularized

Newton methods for nonconvex

unconstrained optimization

Coralia Cartis1,2, Nicholas I. M. Gould2,3 and Philippe L. Toint4,5

ABSTRACT

It is shown that the steepest descent and Newton’s method for unconstrained nonconvex

optimization under standard assumptions may require numbers of iterations and function

evaluations arbitrarily close to O(ǫ−2) to drive the norm of the gradient below ǫ. This

shows that the upper bound of O(ǫ−2) evaluations known for the steepest descent method

is tight, and that Newton’s method may be as slow as steepest descent in the worst case.

The improved evaluation complexity bound of O(ǫ−3/2) evaluations known for cubically-

regularised Newton methods is also shown to be tight.
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1 Introduction

We consider the numerical solution of the unconstrained (possibly nonconvex) optimization

problem

min
x
f(x) (1.1)

where we assume that f : IRn → IR is twice continuously differentiable and bounded below.

All practical methods for the solution of (1.1) are iterative and generate a sequence {xk}
of iterates approximating a local minimizer of f . A variety of algorithms of this form exist,

amongst which the steepest-descent and Newton method are preeminent.

At iteration k, the steepest descent method chooses the new iterate xk+1 by minimizing

(typically inexactly) f(xk − tgk), for t ≥ 0, where gk = ∇xf(xk). This first-order method

has the merit of simplicity and a theoretical guarantee of convergence under weak condi-

tions (see Dennis and Schnabel, 1983, for instance). The number of iterations required in

the worst case to generate an iterate xk such that ‖gk‖ ≤ ǫ (for ǫ > 0 arbitrarily small)

is known to be at most O(ǫ−2) (see Nesterov, 2004, page 29), but the question of whether

this latter bound is tight has remained open. The practical behaviour of steepest de-

scent may be poor on ill-conditioned problems, and it is not often used for solving general

unconstrained optimization problems.

By contrast, Newton’s method and its variants are popular and effective. At iteration

k, this method (in its simplest and standard form) chooses the next iterate by minimizing

the quadratic model

mk(xk + s) = f(xk) + gT
k s+ 1

2
sT

kHksk, (1.2)

where Hk
def
= ∇xxf(xk) is assumed to be positive definite. This algorithm to known to

converge locally and quadratically to strict local minimizers of the objective function f ,

but in general convergence from arbtrary starting points cannot be guaranteed, in partic-

ular because the Hessian Hk may be singular or indefinite, making the minimization of

the quadratic model (1.2) irrelevant. However, Newton’s method works surpringly often

without this guarantee, and, when it does, is usually remarkably effective. We again refer

the reader to classics in optimization like Dennis and Schnabel (1983) and Nocedal and

Wright (1999) for a more extensive discussion of this method. To the best of our knowl-

edge, no worst-case analysis is available for this standard algorithm applied on possibly

nonconvex problems (a complexity analysis is however available for the case where the

objective function is convex, see Nesterov, 2004, for instance).

Globally convergent variants of Newton’s method have been known and used for a

long time, in the linesearch, trust-region or filter frameworks descriptions may be found in

Dennis and Schnabel (1983), of which Conn, Gould and Toint (2000) and Gould, Sainvitu

and Toint (2005), respectively. Although theoretically convergent and effective in practice,

the complexity of most of these variants applied on general nonconvex problems has not yet

been investigated. The authors are only aware of the analysis by Gratton, Sartenaer and

Toint (2008), (Corollary 4.10) where a bound on the complexity of an inexact variant of the

trust-region method is shown to be of the same order as that of steepest descent, and of the



Complexity of methods for nonconvex unconstrained optimization 3

analysis by Ueda and Yamashita (2008, 2009) and Ueda (2009), which essentially proves

the same result for a variant of Newton’s method using Levenberg-Morrison-Marquardt

regularization.

Another particular globally convergent variant of Newton’s method for the solution of

nonconvex unconstrained problems of the form (1.1) is of special interest, because it is

covered by a better worst-case complexity analysis. Independently proposed by Griewank

(1981), Weiser, Deuflhard and Erdmann (2007) and Nesterov and Polyak (2006) and sub-

sequently adapted in Cartis, Gould and Toint (2009a), this method uses a cubic regulariza-

tion of the quadratic model (1.2) in that the new iterate is found at iteration k by globally

minimizing the cubic model

mk(xk + s) = f(xk) + gT
k s+ 1

2
sT

kHksk + 1

3
σk‖sk‖3, (1.3)

where σk ≥ 0 is a suitably chosen regularization parameters (the various cited authors differ

in how this choice is made). This method, which we call the Adaptive Regularization with

Cubics (ARC) algorithm, has been shown to require at most O(ǫ−3/2) iterations to produce

an iterate xk such that ‖gk‖ ≤ ǫ, provided the objective function is twice continuously

differentiable, bounded below and provided ∇xxf(x) is globally Lipschitz continuous on

each segment [xk, xk+1] of the piecewise linear path defined by the iterates. This result,

due to Nesterov and Polyak (2006) when the model minimization is global and exact and

to Cartis, Gould and Toint (2007) for the case where this minimization is only performed

locally and approximately, is obviously considerably better than that for the steepest-

descent method. We note here that even better complexity results in the convex case are

discussed for ARC by Nesterov (2008) and Cartis, Gould and Toint (2009b), and for other

regularized Newton’s methods by Polyak (2009) and Ueda (2009).

But obvious questions remain. For one, whether the steepest descent method may actu-

ally require O(ǫ−2) functions evaluations on functions with Lipschitz continuous gradients

is of interest. The first purpose of this paper is to show that this is so. The lack of com-

plexity analysis for the standard Newton’s method also raises the possibility that, despite

its considerably better performance on problems met in practice, its worst-case behaviour

could be as slow as that of steepest descent. A second objective of this paper is to show

that this is the case, even if the objective function is assumed to be bounded below and

twice-continuously differentiable with Lipschitz continuous Hessian on each segment of the

piecewise linear path defined by the iterates. This establishes a clear distinction between

Newton’s method and its ARC variant, for which a substantially more favourable analysis

exists. The question then immediately arises to decide whether this better bound for ARC

is actually the best that can be achieved. The third aim of the paper is to demonstrate

that it is indeed the best.

The paper is organized as follows. Section 2 introduces an example for which the

steepest descent method is as slow as its worst-case analysis suggests. Section 3 then

exploits the technique of Section 2 for constructing examples for which slow convergence

of Newton method can be shown, while Section 4 further discusses the implications of

these examples (and the interpretation of of worst-case complexity bounds in general).
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Section 5 then again exploits the same technique for constructing an example where the

ARC algorithm is as slow as is implied by the aforementioned complexity analysis. Some

conclusions are finally drawn in Section 6.

2 Slow convergence of the steepest descent method

Consider using the steepest descent method for solving (1.1). We would like to construct

an example on which this algorithm converges at a rate which corresponds to its worst-

case on general nonconvex objective functions, i.e. such that one has to perform O(ǫ−2)

iterations to ensure that

‖gk+1‖ ≤ ǫ. (2.1)

In order to achieve this goal, a suitable condition is to require that, for all k ≥ 0,

‖gk‖ ≥
(

1

k + 1

)

1

2

. (2.2)

An arbitrarily close approximation can considered by requiring that, for any τ > 0, New-

ton’s method needs O(ǫ−2+τ ) iterations to achieve (2.1), which leads to the condition that,

for all k ≥ 0,

‖gk‖ ≥
(

1

k + 1

)

1

2−τ

. (2.3)

Our objective is therefore to construct sequences {xk}, {gk}, {Hk} and {fk} such that

(2.3) holds and which may be generated by the steepest descent algorithm, together with

a twice continuously differentiable function f1(x) such that

fk = f1(xk), and gk = ∇xf1(xk) (2.4)

In addition, f1 must be bounded below and Hk must be positive definite for the algorithm

to be well-defined. We also would like f1 to be as smooth as possible; we are aiming at

AS.0 f is twice continuously differentiable, bounded below, and has bounded Lipschitz

continuous gradient,

since these are the standard assumptions under which globalized steepest descent is prov-

ably convergent (see Dennis and Schnabel, 1983, Theorem 6.3.3).

Our example is unidimensional and we define, for all k ≥ 0,

x0 = 0, xk+1 = xk + αk

(

1

k + 1

)

1

2
+η

, (2.5)

for some steplength αk > 0 such that, for constant α and α,

0 < α ≤ αk ≤ α < 2, (2.6)

giving the step

sk
def
= xk+1 − xk = αk

(

1

k + 1

)

1

2
+η

. (2.7)
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We also set

f0 =
1

2
ζ(1 + 2η), fk+1 = fk − αk(1 − 1

2
αk)

(

1

k + 1

)1+2η

, (2.8)

gk = −
(

1

k + 1

)

1

2
+η

, and Hk = 1, (2.9)

where

η = η(τ)
def
=

1

2 − τ
− 1

2
=

τ

4 − 2τ
> 0 (2.10)

and ζ(t)
def
=
∑∞

k=1 k
−t is the Riemann ζ function, which is finite for all t > 1 and thus for

t = 1 + 2η. Immediately note that the first part of (2.9) gives (2.3) by construction. In

what follow the choice of αk is arbitrary in the interval [α, α], but we observe that the

selected value of αk can be seen as resulting from a Goldstein-Armijo linesearch enforcing,

for some α, β ∈ (0, 1) with α < β,

f(xk) − f(xk+1) ≥ −αsT
k gk = ααk‖gk‖2 and f(xk) − f(xk+1) ≤ −βsT

k gk = βαk‖gk‖2,

since (2.8) ensures that 2(1 − α) < αk < 2(1 − β) and thus that (2.6) holds.

We now exhibit function f1(x) which satisfies AS.0 and (2.4)-(2.9). For this purpose,

we use polynomial Hermite interpolation on the interval [0, xk+1 − xk], which we will

subsequently translate. We are thus seeking a polynomial of the form

pk(t)
def
= c0,k + c1,kt+ c2,kt

2 + c3,kt
3 + c4,kt

4 + c5,kt
5 (2.11)

on the interval [0, µk] (where µk = sk) such that

pk(0) = αk(1 − 1

2
αk)

(

1

k + 1

)1+2η

, pk(µk) = 0, (2.12)

p′k(0) = −
(

1

k + 1

)

1

2
+η

p′k(µk) = −
(

1

k + 2

)

1

2
+η

, (2.13)

and we also impose that p′′k(0) = p′′k(µk) = 1. These conditions immediately give that

c0,k = αk(1 − 1

2
αk)

(

1

k + 1

)1+2η

, c1,k = −
(

1

k + 1

)

1

2
+η

and c2,k =
1

2
.

One then verifies that the remaining interpolation conditions may be written in the form








µ3
k µ4

k µ5
k

3µ2
k 4µ3

k 5µ4
k

6µk 12µ2
k 20µ3

k

















c3
c4
c5









=









0

p′k(µk)

0









,

whose solution turns out to be









c3,k

c4,k

c5,k









=





















−4
φk

µk

7
φk

µ2
k

−3
φk

µ3
k





















(2.14)
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where

φk =
1

αk
(1 − αk − ψk) with ψk

def
=

(

k + 1

k + 2

) 1

2
+η

. (2.15)

The definition of ψk implies that |ψk| ∈ (0, 1) for all k ≥ 0, The function f1 is then

recursively defined on the nonnegative reals1 by

f1(x) = pk(x− xk) + fk+1 for x ∈ [xk, xk+1] and k ≥ 0. (2.16)

The graph of this function and its first three derivatives are given on the first 16 intervals

and for η = 10−4 and αk = 1 by Figure 2.1.

0 1 2 3 4 5 6 7
2.4999

2.4999

2.4999

2.4999

2.4999

2.5

2.5

2.5

2.5

2.5
x 10

4

0 1 2 3 4 5 6 7
−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0 1 2 3 4 5 6 7
−3

−2

−1

0

1

2

3

0 1 2 3 4 5 6 7
−60

−40

−20

0

20

40

60

80

100

Figure 2.1: The function f1 and its first three derivatives (from top to bottom and left to

right) on the first 16 intervals

This figure confirms the properties inherited from the construction of the function f1,

namely that it is twice continuoulsy differentiable with bounded second derivatives. This

last observation results from the bound

|p′′(t)| = 2c2,k + 6c3,kt+ 12c4,kt
2 + 20c5,kt

3

≤ 2|c2,k| + 6|c3,k|µk + 12|c4,k|µ2
k + 20|c5,k|µ3

k

≤ 1 + 150|φk|
≤ 1 + 150 max[1, α]/α

(2.17)

1It can be easily smoothly extended to the negative reals while maintaining its boundedness and the

bounded nature of its second derivatives.
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for all k ≥ 0 and all t ∈ [0, µk], where we used (2.14) and the inequality |φk| ≤ 1.

The gradient of f1 is therefore Lipschitz continuous, but it is not the case for its second

derivative, as it can be seen in Figure 2.1 where one observes a linear increase in the third

derivative peaks with k. The fact that f1 is bounded below by zero finally results from the

bound

fk − fk+1 = αk(1 − 1

2
αk)

(

1

k + 1

)1+2η

≤ 1

2

(

1

k + 1

)1+2η

and the definition of the Riemann ζ function (note that ζ(1.0002) ≈ 50000.6).

This example thus implies that, for any τ > 0, the steepest descent method (with a

Goldstein-Armijo linesearch) may require, for any ǫ ∈ (0, 1), at least

⌊ 1

ǫ2−τ
⌋

iterations for producing an iterate xk such that ‖gk‖ ≤ ǫ. This bound is arbitrarily close

to the upper bound of O(ǫ−2), which proves that this latter bound is essentially sharp.

3 Slow convergence of Newton’s method

Now consider using Newton’s method for solving (1.1). We now would like to construct an

example on which this algorithm converges at a rate which corresponds to the worst-case

known for the steepest descent method on general nonconvex objective functions, i.e. such

that one has to perform O(ǫ−2) iterations to ensure (2.1). As above, a suitable condition

for achieving this goal is to require that (2.2) holds for all k ≥ 0, and an arbitrarily close

approximation can considered by requiring that, for any τ > 0, Newton’s method needs

O(ǫ−2+τ ) iterations to achieve (2.1), leading to the requirement that (2.3) holds for all

k ≥ 0. Our current objective is therefore to construct sequences {xk}, {gk}, {Hk} and

{fk} such that this latter condition holds and which may now be generated by Newton’s

algorithm, together with a twice continuously differentiable function f2(x) such that

fk = f2(xk), gk = ∇xf2(xk) and Hk = ∇xxf2(xk). (3.1)

In addition, f2 must be bounded below and Hk must be positive definite for the algorithm

to be well-defined. We also would like f2 to be as smooth as possible; we are aiming at

AS.1 f is twice continuously differentiable, bounded below, and had bounded and Lipschitz

continuous second derivatives along each segment [xk, xk+1],

since these are the standard assumptions under which globalized Newton’s method is prov-

ably convergent (see Dennis and Schnabel, 1983, Theorem 6.3.3, Fletcher, 1987, Theo-

rem 2.5.1, or Nocedal and Wright, 1999, Theorem 3.2).

Our example is bidimensional and we define, for all k ≥ 0,

x0 = (0, 0)T , xk+1 = xk +





(

1
k+1

)
1

2
+η

1



 , (3.2)
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f0 =
1

2
[ζ(1 + 2η) + ζ(2)] , fk+1 = fk −

1

2

[

(

1

k + 1

)1+2η

+
(

1

k + 1

)2
]

, (3.3)

gk = −







(

1
k+1

) 1

2
+η

(

1
k+1

)2





 , and Hk =





1 0

0
(

1
k+1

)2



 (3.4)

where, as in (2.10), η = τ/(4 − 2τ) > 0 and ζ(t)
def
=
∑∞

k=1 k
−t is the Riemann ζ function.

The first part of (3.4) then immediately gives (2.3) by construction, since the norm of that

vector is at least equal to the absolute value of its first component.

We now verify that, provided (3.1) holds, the sequences given by (3.2)–(3.4) may be

generated by Newton’s method. Defining

sk
def
= xk+1 − xk =





(

1
k+1

) 1

2
+η

1





def
=

(

µk

1

)

(3.5)

and remembering (1.2), this amounts to verifying that

gT
k sk + sT

kHksk = 0, (3.6)

Hk is positive definite (3.7)

and that

f(xk + sk) = mk(xk + sk) (3.8)

for all k ≥ 1. Note that, by definition µk ∈ (0, 1]. The first two of these conditions say

that the quadratic model (1.2) is globally minimized exactly. In our case, (3.6) becomes,

using (3.5), (3.2) and (3.4),

gT
k sk + sT

kHksk = −
(

1

k + 1

)1+2η

−
(

1

k + 1

)2

+
(

1

k + 1

)1+2η

+
(

1

k + 1

)2

= 0,

as desired, while (3.7) also follows from (3.4). Using (3.3) and (3.4), we also obtain that

mk(xk + sk) = f(xk) + gT
k sk + 1

2
sT

kHksk

= f(xk) −
1

2

(

1

k + 1

)1+2η

− 1

2

(

1

k + 1

)2

= f(xk+1),

which in turn yields (3.8).

We now have to exhibit a function f2(x) which satisfies AS.1 and (3.1)-(3.4). The above

equations suggest a function of the form

f2(x) = f2,1([x]1) + f2,2([x]2)

where [x]i is the i-th component of the vector x and where the univariate f2,1 and f2,2 are

computed separately. Since our conditions involve, for both functions, fixed values of the

function

f2,1(0) =
1

2
ζ(1 + 2η), f2,1([xk+1]1) = f2,1([xk]1) −

1

2

(

1

k + 1

)1+2η

, (3.9)



Complexity of methods for nonconvex unconstrained optimization 9

f2,2(0) = 1/2ζ(2), f2,2([xk+1]2) = f2,2([xk]2) −
1

2

(

1

k + 1

)2

, (3.10)

and of its first and second derivatives at the endpoints of the interval [xk, xk+1], we again

consider applying polynomial Hermite interpolation on the interval [0, xk+1−xk], which we

will subsequently translate. Considering f2,1 first, we note that it has to satsify conditions

that are identical to those stated for f1 in Section 2 for the case where αk = 1 for all k.

We may then choose

f2,1([x]1) = f1([x]1).

Let us now consider f2,2. Again, we seek a polynomial

qk(t)
def
= d0,k + d1,kt+ d2,kt

2 + d3,kt
3 + d4,kt

4 + d5,kt
5

on the interval [0, 1] such that

qk(0) =
1

2

(

1

k + 1

)2

, qk(1) = 0,

q′k(0) = −
(

1

k + 1

)2

q′k(1) = −
(

1

k + 2

)2

,

q′′k(0) =
(

1

k + 1

)2

and q′′k(1) =
(

1

k + 2

)2

,

These conditions immediately give that

d0,k =
1

2

(

1

k + 1

)2

, d1,k = −
(

1

k + 1

)2

and d2,k =
1

2

(

1

k + 1

)2

.

Applying the same interpolation technique as above, one verifies that









d3,k

d4,k

d5,k









=
1

2

















9
(

1
k+2

)2 −
(

1
k+1

)2

−16
(

1
k+2

)2
+ 2

(

1
k+1

)2

7
(

1
k+2

)2 −
(

1
k+1

)2

















,

yielding in turn that

f2,2([x]2) = qk([x2 − xk]2) + f2,2([xk+1]2) for [x]2 ∈ [[xk]2, [xk+1]2] and k ≥ 0,

and that
|q′′(t)| = 2d2,k + 6d3,kt+ 12d4,kt

2 + 20d5,kt
3

≤ 2|d2,k| + 6|d3,k| + 12|d4,k| + 20|d5,k|
≤ 1 + 6 × 5 + 12 × 9 + 20 × 4

= 219

for all k ≥ 0 and all t ∈ [0, 1].

The graph of this function and its first three derivatives are given on the first 16 intervals

and for η = 10−4 by Figure 3.1. As for f2,1 = f1, this figure confirms the properties
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inherited from the construction of the function f(x), namely that it is twice continuous

differentiable and has uniformly bounded second derivative. Its second derivative is now

globally Lipschitz continuous, as it can be seen in Figure 3.1 where one observes that the

third derivative is bounded above in norm for all k. The fact that f2 is bounded below by

zero results from (3.10) and the fact that ζ(2) = π2/6.
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4

Figure 3.1: The function f2 and its first three derivatives (from top to bottom and left to

right) on the first 16 intervals

One may also compute the third derivative of f2 along the step, which is given, in the

k-th interval, by

1
‖sk‖3 [p

′′′
k (t)(sk)

3
1 + q′′′k (t)] < p′′′k (t)(sk)

3
1 + q′′′k (t)

≤ (6c3,k + 24c4,kt+ 60c5,kt
2)µ3

k

+6d3,k + 24d4,kt+ 60d5,kt
2

< 6|c3,k|µk + 24|c4,k|µ2
k + 60|c5,k|µ3

k

+6|d3,k| + 24|d4,k| + 60|d5,k|
≤ 6 × 4 + 24 × 7 + 60 × 3 + 6 × 5 + 24 × 9 + 60 × 4

= 858,

where we used the inequalities ‖sk‖ > 1 and t ≤ 1 and hence, because of the mean-value

theorem, f2(x) has Lipschitz continuous second derivatives in each segment of the piecewise

linear path ∪∞
k=0[xk, xk+1]. The actual value of the third derivative on the first segments of
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Figure 3.2: The third derivative of the function f2(x) along the path [xo, . . . , x16], and this

path on the level curves of f2.

this path is shown on the left side of Figure 3.2, while the path itself is illustrated on the

right side, superposed on the levels curves of f . As a consequence, f2(x) satisfies AS.1, as

desired.

If we are now ready to give up smoothness of the objective function beyond continuous

differentiability, it is then possible to construct an example with τ = η = 0, thereby

guaranteeing that Newton’s method takes precisely ǫ−2 iterations to generate ‖gk−1‖ ≤ ǫ

when applied to f3, with a certain x0 and for any ǫ > 0. Thus we relax our asumptions to

AS.2 f is twice continuously differentiable and bounded below.

This second example is unidimensional and satisfies the conditions

x0 = 0, xk+1 = xk −
gk

hk

def
= xk + sk,

for k ≥ 0, where

gk = −
(

1

k + 1

)

1

2

, Hk = k + 1

and

f3(0) =
1

2
ζ(2), f3(xk + sk) = mk(xk + sk).

One easily checks that

f3(xk) −mk(xk + sk) = f3(xk) − f3(xk+1) =
1

2

(

1

k + 1

)2

.

We may now contruct a twice continuously differentiable univariate function from IR+ into

IR by constructing, on each interval [xk, xk+1], a polynomial of the type (2.11) such that

pk(0) =
1

2

(

1

k + 1

)2

, pk(sk) = 0,

p′(0) = −
(

1

k + 1

)

1

2

, p′(sk) = −
(

1

k + 2

)

1

2

,
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as well as p′′k(0) = k+1 and p′′k(sk) = k+2. Writing the interpolation conditions, one finds

that








s3
k s4

k s5
k

3s2
k 4s3

k 5s4
k

6sk 12s2
k 20s3

k

















c3
c4
c5









=









0

p′k(sk)

1









,

whose solution is given by

c0,k =
1

2

(

1

k + 1

)2

, c1,k = −
(

1

k + 1

)

1

2

, c2,k = 1

2
(k + 1),

and








c3
c4
c5









=









s−1
k ( 1

2
− 4φk)

s−2
k (−1 + 7φk)

s−3
k ( 1

2
− 3φk),









where now

φk =
p′k(sk)

sk
= −(k + 1)

(

k + 1

k + 2

) 1

2

.

To complete this example, we may then set

f3(x) = pk(x− xk) + f3(xx+1) for x ∈ [xk, xk+1].

Observe, as above that we may extend f3(x) to the negative reals by defining f3(x) =

f3(0)+xf ′
3(0)+1/2x2f ′′

3 (0) for x < 0, and beyond x∗ =
∑∞

k=0 sk = ζ(3/2) by symmetrizing

it with respect to this point, i.e.

f3(x+ ζ(3/2)) = f3(ζ(3/2)− x) for x > 0.

The resulting function is bounded below (by zero), continuously differentiable on IR (as thus

satisfies AS.2) and twice continuously differentiable everywhere except at ζ(3/2), where

both left and right second derivatives are infinite (it is therefore not Lipschitz continuous

either). It also has a unique minimizer in ζ(3/2). The graph of this function and its first

three derivatives on the first 16 intervals are shown in Figure 3.3.

It is unclear whether an example with τ = η = 0 can be found without weakening the

smoothness assumptions made at the start of this section, as we have just done. Interest-

ingly, yet another example of Θ(ǫ−2) convergence for Newton’s method may be constructed

along the lines of the one just presented, by defining Hk, the Hessian at xk, to be
√
k + 1

instead of k+1. The minimum of the function f is then at infinity, but continuous second

derivatives are preserved although they remain unbounded.

4 How slow is slow?

Having shown an example where the performance of Newton’s method is arbitrarily close

to the worst case known for steepest descent, we now wish to comment on the degree of

pessimism of this bound.
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Figure 3.3: The function f3 and its first three derivatives (from top to bottom and left to

right) on the first 16 intervals

Returning to multidimensional case, let us assume that (2.2) holds for some sequence of

iterates {xk} ⊂ IRn generated by Newton’s method on a twice continuously differentiable

objective function from IRn into IR which is also bounded below and has uniformly bounded

Hessian. Assume also that Hk is positive definite for all k and that the unit step is taken at

every iteration of this process. Assume finally that the quadratic model (1.2) is minimized

accurately enough to guarantee a model reduction at least as large as a fraction κ of that

obtained at the Cauchy point, which is defined as the solution of the (strictly convex)

problem

min
t≥0

mk(xk − tgk).

It is known (see Conn et al., 2000, Section 6.3.2, for instance) that the solution tCk of this

last problem and the associated model reduction satisfy

f(xk) −mk(xk − tCk gk) ≥
‖gk‖4

2gT
k Hkgk

.

Thus our assumption yields that

f(xk) −mk(xk + sk) ≥
κ‖gk‖4

2gT
kHkgk

≥ κ‖gk‖2

2‖Hk‖
≥ κ

2κH
‖gk‖2, (4.1)
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where we used the Cauchy-Schwartz inequality to deduce the penultimate inequality and

where κH is an upper bound on the Hessian norms. Because unit steps are taken, we

obtain from (2.2) and (4.1) that

f(x0) − flow ≥ κ
∞
∑

k=0

f(xk) −mk(xk + sk) ≥
κ

2κH

∞
∑

k=0

1

k + 1
, (4.2)

where flow is a lower bound on f(x). But this last inequality is impossible because the

harmonic series diverges. Hence we conclude that (2.2) cannot hold for our sequence of

iterates. Thus a gradient sequence satisfying (2.3) is essentially as close to (2.2) as possible

if the example is to be valid for all ǫ sufficiently small.

We may even pursue the analysis a little further. Let K denote the subset of the integers

such that (2.2) holds. Then (4.2) implies that

∑

k∈K

1

k + 1
< +∞.

We then know from Behforooz (1995) that, in this case,

lim
ℓ→∞

| K ∩ Nℓ |
10ℓ − |K ∩ Nℓ |

= 0, (4.3)

where Nℓ
def
= {p ∈ IN | 0 ≤ p ≤ 10ℓ}. But

| K ∩ (Nℓ \ Nℓ−1) |
10ℓ − 10ℓ−1

≤ 10| K ∩ Nℓ |
9 × 10ℓ

≤ 10

9

| K ∩ Nℓ |
10ℓ − |K ∩ Nℓ |

and therefore, using (4.3),

lim
ℓ→∞

| K ∩ (Nℓ \ Nℓ−1) |
| Nℓ \ Nℓ−1 |

= lim
ℓ→∞

| K ∩ (Nℓ \ Nℓ−1) |
10ℓ − 10ℓ−1

= 0.

Thus, if ℓ(k) is defined k such that k ∈ Nℓ(k) \Nℓ(k)−1, we have that limk→∞ ℓ(k) = ∞ and

therefore that

lim
k→∞

Probk[ ‖gk‖ ≥ (k + 1)−2 ] = lim
k→∞

Probk[ k + 1 ∈ K ]

= lim
k→∞

Probk[ k + 1 ∈ K ∩ (Nℓ(k) \ Nℓ(k)−1) ]

= 0

where Probk[·] is the probability with uniform density on {10ℓ(k)−1 + 1, . . . , 10ℓ(k)}. As a

consequence, the probability that the termination test (2.1) is satisfied for an arbitrary k

in the range [ 10ℓ(⌊ǫ−1/2⌋−1) + 1, 10ℓ(⌊ǫ−1/2⌋) ] tends to one when ǫ tends to zero.

How do we interpret these results? What we have shown is that, under the conditions

stated before, the statement

there exists θ > 0 such that, for all k arbitrarily large, ||gk|| ≥ θ
(

1

k + 1

)2



Complexity of methods for nonconvex unconstrained optimization 15

is false. This is to say that

for all θ > 0 there exists k arbitrarily large such that ||gk|| < θ
(

1

k + 1

)2

.

In fact, we have proved that the proportion of “good” k’s for which this last inequality

holds (for a given θ) grows asymptotically. But it is important to notice that this last

statement doe not contradicts the worst-case bound of O(ǫ−2) mentioned above, which is

there exists θ > 0 such that, for all ǫ > 0 and k ≥ θ

ǫ2
, ‖gk‖ ≤ ǫ.

Indeed, if ǫ is given, there is no guarantee that the particular k such that k = θ(k + 1)−2

belongs to the set of “good” k’s. As a consequence, we see that the worst-case analysis is

increasingly pessimistic for ǫ tending to zero.

We conclude this section by noting that the arguments developped for Newton’s method

also turn out to apply for the steepest descent method, as it can also be shown for this

case that

f(xk) −mk(xk − tCk gk) ≥ κSD‖gk‖2,

for some κSD > 0 depending on the maximal curvature of the objective function (see, for

instance, Conn et al., 2000, Theorem 6.3.3 with ∆k sufficiently large, or Nesterov, 2004,

relation (1.2.13) page 27). This inequality then replaces (4.1) in the above reasoning.

5 Less slow convergence for ARC

Now consider using the ARC algorithm for solving (1.1), using exact second-order informa-

tion. As above, we would like to construct an example on which ARC converges at a rate

which corresponds to its worst-case behaviour for general nonconvex objective functions,

i.e. such that one has to perform O(ǫ−
3

2 ) iterations to ensure (2.1). In order to achieve

this goal, a suitable condition is now to require that

‖gk‖ ≥
(

1

k + 1

)

2

3

.

An arbitrarily close approximation is again considered by requiring that, for any τ > 0,

the ARC method needs O(ǫ−
3

2
+τ ) iterations to achieve (2.1), which leads to the condition

that, for all k ≥ 0,

‖gk‖ =
(

1

k + 1

)

2

3−2τ

. (5.1)

Our new objective is therefore to construct sequences {xk}, {gk}, {Hk}, {σk} and {fk}
such that (5.1) holds and which may be generated by the ARC algorithm, together with

a function f4(x) satisfying AS.1 such that (3.1) holds, which is bounded below and whose

Hessian ∇xxf4(x) is Lipschitz continuous with global Lipschitz constant L ≥ 0.
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Our example is now unidimensional and we define, for all k ≥ 0,

x0 = 0, xk+1 = xk +
(

1

k + 1

)

1

3
+η

, (5.2)

f4,0 =
2

3
ζ(1 + 3η), f4,k+1 = f4,k −

2

3

(

1

k + 1

)1+3η

, (5.3)

gk = −
(

1

k + 1

)

2

3
+2η

, Hk = 0 and σk = 1, (5.4)

where now

η = η(τ)
def
=

1

2

(

2

3 − 2τ
− 2

3

)

=
2τ

9 − 6τ
> 0.

Observe that (5.4) gives (5.1) by construction.

Let us verify that, provided (3.1) holds, the sequences given by (5.2)–(5.4) may be

generated by the ARC algorithm, whose every iteration is very successful. Using (1.3),

this amounts to verifying that

gT
k sk + sT

kHksk + σk‖sk‖3 = 0, (5.5)

sT
kHksk + σk‖sk‖3 ≥ 0, (5.6)

σk > 0, σk+1 ≤ σk (5.7)

and

f4(xk + sk) = mk(xk + sk) (5.8)

for all k ≥ 1. Because the model is unidimensional, the first two of these conditions says

that the cubic model is globally minimized exactly. Observe first that (5.7) immediately

results from (5.4). In our case, (5.5) becomes, using (5.2) and (5.4),

gT
k sk + sT

kHksk + σk‖sk‖3 = −
(

1

k + 1

)1+3η

+ 0 +
(

1

k + 1

)1+3η

= 0,

as desired, while inequality (5.6) also follows from (5.2) and (5.4). Using (5.3) and (5.4),

we also obtain that

mk(xk + sk) = f4(xk) + gT
k sk + 1

2
sT

kHksk + 1

3
σk‖sk‖3

= f4(xk) − 2
3

(

1
k+1

)1+3η

= f4(xk+1),

which in turn yields (5.8).

As was the case in the previous sections, the only remaining question is to exhibit

bounded below and twice continuously differentiable function f4(x) with a Lipschitz con-

tinuous Hessian (in each segment [xk, xk+1]) satisfying conditions (5.2)-(5.4), and we may
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once more consider applying polynomial Hermite interpolation on the interval [0, xk+1−xk].

Thus we are seeking a polynomial of the form (2.11) on the interval [0, sk] such that

pk(0) =
2

3

(

1

k + 1

)1+3η

, pk(sk) = 0 (5.9)

p′k(0) = −
(

1

k + 1

)

2

3
+2η

, p′k(sk) = −
(

1

k + 2

)

2

3
+2η

and p′′k(0) = p′′k(sk) = 0. (5.10)

These conditions immediately give that

c0,k =
2

3

(

1

k + 1

)1+3η

, c1,k = −
(

1

k + 1

)

2

3
+2η

and c2,k = 0.

In this case, the remaining interpolation conditions may be written in the form









s3
k s4

k s5
k

3s2
k 4s3

k 5s4
k

6sk 12s2
k 20s3

k

















c3,k

c4,k

c5,k









=









pk(sk) − pk(0) − p′k(0)sk

p′k(sk) − p′k(0)

0









,

whose solution is now given by









c3,k

c4,k

c5,k









=















10
3
− 4φk

1
sk

[−5 + 7φk]

1
s2

k
[2 − 3φk]















(5.11)

with

φk
def
= (k + 1)µ

[(

1

k + 1

)µ

−
(

1

k + 2

)µ]

where µ
def
=

2

3
+ 2η.

The definition of φk implies that φk ∈ (0, 1) for all k ≥ 0, and hence, using (5.11), that

|p′′′(t)| = 6c3,k + 24c4,kt+ 60c5,kt
2

≤ 6c3,k + 24c4,ksk + 60c5,ks
2
k

≤ 6 × 10
3

+ 24 × 13 + 60 × 2

= 452

(5.12)

for all k ≥ 0 and all t ∈ [0, sk], and f has Lipschitz continuous second derivatives along the

path of iterates, which is IR+. The desired objective function for our final counterexample

is then recursively defined on the nonnegative reals2 by

f4(x) = pk(x− xk) + f4(xk+1) for x∈[xk, xk+1] and k ≥ 0,

and clearly satisfies AS.1. The graph of this function and its first three derivatives are given

on the first 16 intervals and for η = 10−4 by Figure 5.1. This figure confirms the properties

2Again, it can be easily smoothly extended to the negative reals while maintaining its boundedness and

the Lipschitz continuity of its second derivatives.
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of the function f4(x), namely that it is twice continuous differentiable and has uniformly

bounded third derivative (in Figure 5.1, the maximum is achieved on each interval by the

first point in the interval, where (5.11) and (5.12) imply that |p′′′(0)| ≤ 20). Thus its second

derivative is globally Lipschitz continuous with constant L ≤ 452 (L = 20 for the function

plotted). As in our first example, the figure reveals the nonconvexity and monotonically

decreasing nature of f(x). The fact that f(x) is bounded below by zero finally results from

(5.3) and the definition of the Riemann ζ function (note that ζ(1.0003) ≈ 33333.9).
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Figure 5.1: The function f4 and its first three derivatives (from top to bottom and left to

right) on the first 16 intervals

6 Conclusions

We now summarize the result obtained in this paper. Considering the steepest method

first and assuming Lipzschitz continuity of the objective function’s gradient along the path

of iterates, we have, for any τ > 0, exhibited valid examples for which this algorithm

produces a sequence of slowly converging gradients. This in turn implies that, for any

ǫ ∈ (0, 1) at least
⌊

1

ǫ2−τ

⌋
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iterations and function evaluations are necessary for this algorithm to produce an iterate

xk such that ‖gk‖ ≤ ǫ. This lower bound is arbitrarily close to the upper bound of O(ǫ−2)

known for this algorithm. Other examples have also been constructed showing that the

same complexity can be achieved by Newton’s method for twice continuously differentiable

functions whose Hessian is Lipschitz continuous on the path defined by the iterates, thereby

proving that Newton’s method may be as (in)efficient as the steepest descent method (in its

worst-case). The fact that (3.8) and (5.8) hold ensures that our conclusions are also valid if

the standard Newton’s method is embedded in a trust-region globalization framework (see

Conn et al., 2000 for an extensive coverage of such methods), since it guarantees that every

iteration is very successful in that case, and that the initial trust-region may then be chosen

large enough to be irrelevant. The conclusions also apply if a linesearch globalization is

used (see Dennis and Schnabel, 1983, or Nocedal and Wright, 1999), because the unit

step is then acceptable at every iteration, or in the filter context, because the gradient

is monotonically converging to zero. We have also provided an example where Newton’s

method requires exactly 1/ǫ2 iterations to produce an iterate xk such that ‖gk−1‖ ≤ ǫ,

but had to give up boundedness of second derivatives to obtain this sharper bound. In

addition, we have provided some analysis in an attempt to quantitfy how pessimistic the

obtained worst-case bounds can be.

We have then extended the methodology to cover the Adaptive Regularization with

Cubics (ARC) algorithm, which can be viewed as a regularized version of Newton’s method.

For any τ > 0, we have exhibited a valid example for which the ARC algorithm produces a

sequence of gradients satisfying (5.1). This equality yields that, for any ǫ ∈ (0, 1) at least

⌊

1

ǫ
3

2
−τ

⌋

iterations and function evaluations are necessary for this algorithm to produce an iterate

xk such that ‖gk‖ ≤ ǫ. This lower bound is arbitrarily close to the upper bound of O(ǫ−3/2)

thereby proving that this last bound is sharp.

In our examples for the Newton’s and ARC methods, exact global model minimization

is carried out, covering the “exact” variants of these algorithms. But the conditions used

((3.6)-(3.7) and (5.5)-(5.6)) only require this exact minimization to occur along the step

sk, which makes the conclusions presented in this paper applicable if one prefers using

approximate minimization where the global model minimum is only sought in subspaces, as

in the case for truncated conjugate-gradients (see Steihaug, 1983, and Toint, 1981), GLTR

(Gould, Lucidi, Roma and Toint, 1999, LSTR and LSRT (Cartis, Gould and Toint, 2009c),

or for other subspace methods (Ni and Yuan, 1997, Hager, 2001, Erway, Gill and Griffin,

2009). This is however less surprising, as one could expect approximate minimization to

deteriorate the global effiency of the minimization algorithm.

We have not been able to show that the steepest descent method may take at least

O(ǫ−2) evaluations to achieve a gradient accuracy of ǫ on functions with Lipschitz continu-

ous second derivatives, thereby not exluding the (unlikely) possibility that steepest descent

could be better than Newton’s method on sufficiently smooth functions.
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Our result that the ARC method is the best second-order algorithm available so far

(from the worst-case complexity point of view) suggests further research directions beyond

that of settling the open question mentoned in the previous paragraph. Is the associated

complexity bound in O(ǫ−3/2) the best that can be achieved by any second-order method

for general nonconvex objective functions? And how best to characterize the complexity

of an unconstrained minimization problem? These interesting issues remain challenging.
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