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Interpolation in practical formal developmentJuan Bicarregui and Theo Dimitrakos�CLRC Rutherford Appleton Laboratory, OX11 0QX, UKDov Gabbay and Tom MaibaumKing's College,London, WC2R 2LS, U.K.AbstractInterpolation (together with completeness and decidability) has be-come one of the standard properties that logicians investigate when de-signing a logic. In this paper, we provide strong evidence that the pres-ence of interpolants is not only cogent for scienti�c reasoning but has alsoimportant practical implications in computer science. We illustrate thatinterpolation in general, and uniform splitting interpolants, in particular,play an important role in applications where formality and modularityare invoked. In recognition of the fact that common logical formalismsoften lack uniform interpolants, we advocate the need for developing gen-eral methods to (re)engineer a speci�cation logic so that (at least) somecritical uniform interpolants become available.Category: position paper Topics: Applications, Logics1 IntroductionThe (formal or informal) speci�cation of a system such as a software artefactcan be conceived as a �nite presentation of a theory (in the sense of naturalscience) over a certain reality. As Cengarle and Haeberer also note in [15] therole of logic in computer science is analogous to the role of calculus in physics.1However, computer science is not a conventional natural science. A physicist ora chemical engineer, on the one hand, usually apply well established, existinggeneral theories based on laws of nature and rarely recourse to creating newtheories for an application. The creation of new theories, on the other hand,(as well as the extension, amalgamation, update and revision of existing theo-ries) is an everyday activity for a computer scientist. Logic can be useful foraccommodating the construction of semantic models for the theories developedby a computer scientist, and for providing mechanisms that amalgamate, up-date or revise this semantics in a way that matches the amalgamation, update�Correspondence author. t.dimitrakos@rl.ac.uk, www.itd.clrc.ac.uk/Person/T.Dimitrakos1It is unrealistic to assert that computer science is reducible to logic, as it is illusory tomaintain that physics is reducible to calculus.1



or revision of the computer scientist's theories.2 In order for logic to be suc-cessful in supporting computer science, methods for enhancing useful deductivesystems with meta-logical properties that facilitate e�ciency in scienti�c rea-soning, modular axiomatic presentation and proof decomposition have to bepursued further. In this paper we advocate that such meta-logical propertieshave to include interpolation, in general, and the possession of certain uniformsplitting interpolants, in particular.A summary of original key results relating interpolation to modularizationand other practically useful mechanisms such as proof decomposition and pre-sentation modularity is presented in section 2.As a motivating case study, we provide an overview of the formal supportrequired by an industrial strength formal method in subsection 5. Finally insection 6 we describe a general approach to overcoming the di�culties causedby the potential absence of some critical uniform interpolants in a speci�cationlogic and emphasise the need for developing concrete methods to support it.This will require a closer collaboration between information systems engineers,theoretical computer scientists and logicians.2 Interpolation in speci�cation theoryIn this section we provide a summary of key results linking interpolation tomodularization, information hiding, and other practically useful concepts suchas presentation modularity and proof decomposition in the veri�cation of com-plex system designs.In addition to the work of logicians, interpolation has, sporadically, gainedthe attention of some groups of researchers in formal methods and theoreti-cal computer science. Some of these groups have contributed useful results {most of them related to applications of interpolation-like properties in modularspeci�cation.First, interpolation is the most critical condition for engineering a soundand complete compositional calculus to reason about speci�cations over a givenalgebraic speci�cation formalism. Algebraic speci�cation [43, 49, 42] are de�nedover any logical system which can be represented as an Institution [28]. Foreach of these formalisms there is a sound compositional calculus for reasoningabout speci�cations (cf. [13] and [14]). Amongst the conditions that make sucha calculus complete (with respect to the underlying logical system) the mostcritical is a generalized interpolation property [13].Second, an equivalence between a generalisation of a \splitting" variant ofinterpolation and a generalisation of the so called \modularization" property(ie., stability of theorem conservation under amalgmation) has been establishedin [20] for every (structured) family of re
exive, transitive and monotonic entail-ment relations. Such an equivalence was earlier conjectured in [35] (see also [32]2This semantics can be conceived as de�ning a correspondence (interpretation) betweenthe computer scientist's theory which can be rigorous but need not be formal and a logicaltheory over a deductive system which is formal.2



non-uniform For all (� 2 L1 and �; ' 2 L2) there is # 2 L0 such thatuniform For all (� 2 L1 and � 2 L2) there is # 2 L0 such that for all ' 2 L2if e0(�); i0(�)) i0(') then �) e(#) and i(#); � ) 'where L1 �i0! L3  e0� L2 is the amalgamation (pushout) of L1  e� L0 �i! L2pushout (e; i) is an arbitrary pair of translations.simple (e; i) are both language expansions, L3 = L1 [ L2, L0 = L1 \ L2.ordinary � does not appear in the premises.splitting � is a secondary assertion.common �; �; ';# are sentences.generalised �; �; # are sets of sentences, ' is a sentence.arrow ) denotes an implication connective.turnstile ) denotes entailment.Figure 1: The various variants of interpolation emphasise on di�erent aspectsof a common meta-logical property.and [33]). Detailed proofs for unsorted �rst order logic were given in [47] and in[48]. An analogously strong correspondence between ordinary interpolation andamalgamation of models (which leads to the stability of conservativeness in theamalgamation of a span of conservative extensions - a special case of Modular-isation) had been observed earlier in [36], where an equivalence was shown tohold for every (propositional) super-intuitionistic logic. (See also [25, 26, 39].)Finally, an equivalence between pushout interpolation, \splitting" interpolationand ordinary interpolation for compact entailments with a deduction theoremand �nite syntax3 has also been shown in [20]. A taxonomy of these variants ofinterpolation for re
exive, monotonic and transitive entailment relations over a�nite syntax is depicted in Figure 1.Third, modularization facilitates1. the composibility of a form of re�nement for axiomatic speci�cation, c.f.[46, 48, 17];2. the correct instantiation of (multi)parametric axiomatic speci�cations ofdata types, c.f. [19];3. the mixed-variance re�nement of parameterisations which unfolds to a(contravariant) parameter instantiation followed by a (covariant) non-parameterised re�nement c.f. [18] discussing [44];4. the proof of correctness for various operations of module algebras, c.f.[40]discussing an earlier version of [8];5. the orthogonality of presentation when sharing speci�cation text followingan \one writer, many readers" architecture in state based speci�cation3Where grammatical expressions correspond to inductively de�ned �nite strings of symbolsand translations enjoy a mono-epi factorisation. See [18] and [20] for further details.3



languages such as B, Z and VDM, c.f. [21] discussing [2, 30] and thecontextual proof obligations generated by B-Toolkit [6];6. the promotion of data re�nement by some schemata in the Z formalmethod, c.f. [21] discussing [34, 50].3 Localisation and uniform interpolantsIn many of the studies that we refer to in section 2, the following facts aboutthe employed interpolants have not been considered.4.1. Interpolation can be relativised over syntactical loci, thus allowing thestudy of interpolants in calculi that do not posses interpolation globally.2. Uniform interpolants are more appropriate for use in modular speci�cationthan ordinary (splitting) interpolants.This is because uniform interpolants depend only on the assertions andthe shared language; they are independent of the conclusion. As such,they assist in decomposing �nite axiomatisations as ordinary interpolantsassist in decomposing derivations.Possessing ordinary (splitting) interpolation facilitates various activities relatedto speci�cation modularity. These activities include the modular structuring,the orthogonal speci�cation of components and component re�nements, the pro-motion of valid re�nements from the components to the composite speci�cation.Furthermore, a uniform presentation of the interpolants facilitates the speci�ca-tion of submodules, the generation of proof obligations which are su�cient forvalidating the correctness of re�nements and the correctness of those structur-ing mechanisms that allow building a subsystem from encapsulated componentswhich are available for blind use elsewhere. (See also chapters 4 and 5 of [18] and[20].) There is not much use in assisting in \correctly" composing implemen-tations, if one is not su�ciently supported in detecting, verifying, classifyingor constructing \correct" implementations. Possessing interpolants does notalways provide adequate support for designing and developing formal speci�ca-tions, unless a uniform presentation of these interpolants is available. Possessing(at least some critical) uniform interpolants is therefore important.There is no need, though, to require that the employed deductive systempossesses (uniform) interpolation globally. For reasons which depend on thenotation that is used for speci�cation and on the application at hand, it is verycommon that the user provided speci�cations utilise only a fragment of theexpressive power provided by the underlying deductive system.5 It thereforesu�ces that the employed deductive system provides sentences which act as4These facts were �rst indicated, recently, in [18] and [17, 20]. Their practical implicationsin speci�cation theory were indicated in [17, 18] for logical/algebraic speci�cation. They arefurther exempli�ed in [21] for state based speci�cations.5As a syntax in mathematical logic often accommodates only a fragment of what can bestated in the underlying model theory. 4



(uniform) interpolants for derivations in this fragment. As we illustrate in thefollowing section there are interesting cases where the above mentioned sentencesinterpolate entailments between sentences in a fragment of the employed logicwhile being outside this fragment themselves.4 Further practical applicationsIn the following paragraphs we indicate potential applications of interpolantsfor controlling non-interference in concurrent and object-based speci�cationand controlling information in the hierarchical design of secure systems (in thesense of con�dentiality) using process based models. Unfortunately, in mostof these cases the role of interpolants has not received enough attention and acommon syntactic form of the critical interpolants has not been yet identi�ed.Though, both non-interference between (sub-)operations that share state andno-information-
ow between high and low security components are related tothe presence of a (power) bisimulation between the corresponding operationsor traces, c.f. [11] and [41]. Notably, a strong connection between entailmentalong bisimulation and interpolation has recently been brought into attention ,c.f. [9, 37, 3]. In particular, Barwise and van Benthem investigated in [5] someweaker forms of interpolation for in�nitary logics and proved that the existenceof such an interpolant for a given pair of formulae (�; �) is equivalent to that� entails � along potential isomorphisms (viz. bisimulations) on the commonlanguage. We intend to further investigate the potentially latent relationshipbetween the existence of such interpolants on the shared part of two componentspeci�cations and non-interference in concurrent and state based speci�cation.Non-interference between (sub-)operations provides a key mechanism in thecompositional development of operations that share state within a module [11].The read and write frames in VDM implicit operations de�nitions can be under-stood as constraints on the read and write accesses which can be made by validimplementations [10]. A strong relation between non-interference and the exis-tence of a (strong) bisimulation between (sub-)operations has been establishedin [11]. Non-interference is equally important in concurrent system speci�cation.A mechanism based on roles describing rely/guarantee conditions has been de-veloped by Jones [29] and St�len [45] in order to reason about concurrent ratherthan modular sharing in a VDM/LPF-like framework.Interpolation may also assist in the detection of information 
ow betweena High security system and a Low security subsystem or interface. In general,provided that High is a speci�cation of a security critical system and Low is thepublicly available speci�cation of a (visible) subsystem, High is secure if there isno visible behaviour of the system which betrays a property that was not meantto be revealed. Formally, this amounts to assuring that every interpolant of Highto the visible language is deducible from the speci�cation of Low. Then Highcan reveal at most what is already deducible by analysing Low. If, in particu-lar, a process-based or trace-based approach is employed then the interpolantsentences describe the impact of the High system's computations to the context5



of the Low subsystem. This impact captures information that 
ows from Highto Low. By establishing that all these interpolants are potential behaviours ofLow, one establishes that the overall system does not betray to the intruder anydistinguishable behaviour, i.e. that there is no information 
ow from High toLow.The usefulness of interpolants in assisting to identify testing equivalence canemerge from a similar viewpoint. The philosophy is strikingly similar: in [1]tests can be understood as encapsulating all possible attacks, and equivalenceunder testing establishes that no such attack can succeed in distinguishing areal system from an ideal one. As is argued in [41] tests can alternatively beconsidered to encapsulate all possible ways in which information may 
ow fromHigh to Low (as a result of High-communication, Low-elicitation, some collusioninvolving shared data, etc.) and equivalence under testing establishes that nosuch way can succeed.We further explain the role of interpolants and modularization in supportingthe promotion of property enrichment from a component to a subsystem (i.e.,an aggregate of components) and in controlling interference by means of a casestudy that is provided in section 5. This case study focuses on the internalstructure of elementary speci�cation units and on the (external) compositionalstructuring assemblies that are used to specify shared data in the B-Method.The choice of the B-Method as an example of a useful application of interpola-tion has been made merely for two reasons. First, it has been taken-up by theindustry with considerable success6 and there are commercial tools to supportit ([4] and [6]). Second, the uniform splitting interpolants appear without muchdisguise, almost in their commonP11 (or Q12) meta-forms.5 Case Study: Interpolation in Industrial StrengthFormal MethodsTypically, an industrial strength formal method is expected to be equippedwith an unambiguous notation, a formal semantics, and a collection of toolswhich support speci�cation construction, layered implementation and proof ofcorrectness. The built-in constructs of the method are realised (interpreted)into a logical theory over a chosen deductive system, which we may call the\base theory" (BTh). The B-Method [2, 30] is a typical example of an industrialstrength formal method which is supported by commercial tools. The basictheory of the B-Method is the amalgamated union of a �rst order set theory,a �rst order theory of natural numbers and a �rst order theory of generalisedsubstitutions.7. In order to facilitate speci�cation, it is also equipped with a col-6The safety critical components of the �rst driverless metro in Paris have been developedusing the B-Method in all phases (c.f. the M�et�eor project [7]).7This set theory is a subtheory of ZFC which focuses on reasoning with arbitrarily large�nite sets and a single in�nite set BIG. Most importantly, this set theory lacks the ReplacementAxiom, the Pairing Axiom and the Foundation Axiom and uses a speci�c instance of the Axiomof Choice (c.f. Chapter 2 of [2]). The notion of an ordered pair is de�ned in B outside set6



machine M(p)constraints CN(p)sets sconstants cproperties PROP(s; c)variables vinvariant I(p; s; c; v)initialisation INIToperationsr  op(x) =PRE PRETHEN Send: : : other operations : : :end
IC1. 9p:CNIC2. CN) 9(s; c):PROPIC3. CN ^PROP) 9(v):IIC4. CN ^PROP) [INIT ]IIC5. CN ^PROP^ I ^PRE) [S]IIC1 asserts that there are possible machineparameter values that satisfy the speci�edconstraints.IC2 asserts that, assuming the machine con-straints on the machine parameter, thereare sets and constants (i.e. auxiliarytypes, functions and predicates) satisfyingthe speci�ed properties.IC3 asserts that, assuming the speci�ed con-straints on the machine parameters and theproperties of the constant identi�ers, thereis at least one machine state satisfying theinvariant.IC4 and IC5 give the base case and induc-tion step of a proof that all reachable statessatisfy the invariant.Figure 2: The general pattern of an abstract machine speci�cation and thecorresponding internal consistency proof obligations.lection of pre-speci�ed data types such as (an arbitrarily large �nite fragmentof) integers, enumerable sets, sequences and trees. In [21] we provide an elabo-rate analysis of the compositional structuring assemblies of the B-Method froma logical view-point. This analysis exposes a wide use of uniform interpolants inthe proof obligations generated by the B-Toolkit in order to prove the internalconsistency of the B speci�cation units, on the one hand, and the correctnessof some structuring assemblies of the B-Method, on the other hand. In thissection we review some selected examples where interpolants are most relevant.See [21] for further details.5.1 Internal consistency of speci�cation unitsA typical elementary component speci�cation in B, called an \abstractmachine"(AM), has the general form depicted in Figure 2. The formal semantics of AMare given by an extension of BTh which incorporates a static part specifying theparameters, data types, auxiliary functions and possible states, and a dynamictheory, and type-checking all set theoretic statements ensures that ordinal numbers are notdealt with, and that statements of the form 9x:x 2 x (or their negation) are not a part ofthe allowed discourse. The employed �rst order theory of natural numbers it proves Peano'saxiomatisation of arithmetic (c.f. Section 3.5.2 of [2]), but de�nes 0 as BIG - BIG, the successorusing BIG and choice, and induction using Knaster and Tarski's �xpoint theorem (c.f. Chapter3 of [2]). Generalised substitutions give rise to a concept similar to Dijkstra's \predicatetransformers" [22]. 7



part specifying the initialisation of the AM and the operations by means gener-alised substitutions that relate \before" and \after" state similarly to predicatetransformers (c.f. [30] and Chapter 5 of [2]). An elementary AM speci�cationis internally consistent if the proof obligations presented Figure 2 are satis�ed.The notion of internal consistency is analogous to the notion of soundness inlogic; if these proof obligation can be discharged then the AM speci�cation hassome \meaningful" model in B, c.f. [30]. As we elaborate in [21], the creationof a formal semantics for an AM speci�cation over the underlying deductivesystem corresponds to a chain of extensions of BTh. Proof obligations IC1{IC3ensure that each extension in the chain is conservative. This is achieved byrequiring that the uniform interpolant of the extension axioms is in the theoryto be extended. The conservativeness of these extensions introduces a relativeconsistency and a relative completeness argument. Firstly, every theory in thechain is consistent i� its predecessor is consistent. Hence, the logical consis-tency of the semantics of an AM is reduced to the logical consistency of BTh.Secondly, they ensure that the logical theory describing the semantics of an AMis constructed in a modular fashion.85.2 System-wide data types and inquiry-only sharingVery often, when large speci�cations are structured incrementally, the semanticsof a compound speci�cation describing a subsystem need not be conservativeover the semantics of the components. Indeed, various assembly primitives suchas includes, extends and refines amount to non-conservative extensions de-noting a (non-conservative) transition from one chain of conservative extensionsof BTh to another, c.f. [21] . However, the modeling of certain architectures,where a subsystem is allowed to \read" or to \inquire" but not to \write" orimplicitly modify the state of a component, invokes some form of (occasion-ally partial) conservativeness. More generally, \closed" assemblies involve somefrom of partial conservativeness between the underlying (chains of conservativeextensions of) logical theories whereas conservativeness (between such chains)is not an issue with \open" assemblies.9sees is a typical example of a structuring assembly where no implicit or ex-plicit modi�cation of the component speci�cation is premited. sees allows thesharing of an AM and can be used in AM a re�nement or an implementation.The state of the seen component AM can be consulted, but not modi�ed, by theseeing module. Most often, the sees primitive is used in re�nements and imple-mentations for the purpose of sharing code and providing inquiry-only access toshared data. The intention is that the code implementing the AM that is seen8That is, all properties about the built-in primitives of the method are those provable fromBTh, all properties about the parameters are provable from BTh+CN, all properties aboutthe static context are provable from BTh+CN+PROP and all global properties about themachine state are provable from BTh+CN+PROP+ I.9These terms refer to the open-closed duality principle (e.g. Meyer [38]). \Open" meansbuilding larger systems by extensions, e.g. when appending or amalgamating abstract speci�-cation modules. \Closed" means building an encapsulated component available for blind useelsewhere, e.g. when linking independently constructed code modules.8



machine M3(p3)constraints CN3sees M1sets s3constants c3properties PROP3[s3; c3; s1; c1]variables v3invariant I3(v3; p3; s3; c3; s1; c1)... Sh1: 9(p3):CN3Sh2: context(M1))9(s3; c3):PROP3Sh3: context(M3)) 9(v3):I3...Note: We write context(M3) as a shorthand for context(M1) ^CN3 ^PROP3.Figure 3: The general form of the context-related clauses and proof obligationsfor the sees and uses primitives.will be linked only once, thus establishing an \one writer, many readers" shar-ing scheme. Another common use of sees is for sharing separately implemented,system-wide data types. The speci�cation of such data types is provided in astateless machine. Importing such a machine only once in a development, andseeing it many times, ensures that a single copy of code will be present in the�nal product. A special case of this is to specify abstract (mathematical) datatypes de�ned using static context of an operationless shared machine. Suchmachines can be seen by any other machine. Such machines may not need im-plementing; they provide a library of useful mathematical concepts that willease the speci�cation of algorithms and architectures, and can be \programmedaway" during the development.In the case of sees, the static context-related proof obligations take theform provided in Fig. 3. Sh2 guarantees that the logical theory describing theproperties of the constant fragment of M3 is conservative over the correspond-ing component of M1. This is obtained by proving the uniform interpolant9(s3; c3):PROP3(s1; c1; s3; c3) of PROP3 in the sublanguage generated by theconstants of M1. In addition, Sh3 guarantees that the logical theory of thestatic context of M3 is conservative over the logical theories describing thestateless fragment of M3, the stateless fragment of M1, and the whole con-text of M1. Therefore the properties of the seeing machine cannot impose anyfurther \emerging" properties on the constants of the seen machine. This isfundamental for the following reasons.1. The seen machine M1 may be consulted from machines other than M2and any emerging properties fromM2 may have unpredictable side-e�ectson the operation of those machines by implicitly enriching their propertiesclause with the potential of creating con
icts or inconsistencies.2. If M1 is enriched (viz. re�ned) in a development, such a modi�cationtakes place on the only shared copy of M1 and the only properties abouts1; c1 taken into consideration are those speci�ed withinM1; any emerging9



machine M2 sees M1constants gpropertiesg:NAT ! NAT ^8x:(x:NAT ) (g(x) < 5 ^ f(x) < g(x)))endmachine M3 sees M1constants hpropertiesh:NAT ! NAT ^ f(1) 6= h(1) ^8x:(x:NAT ) h(x) = 3)end machine M1constants fpropertiesf : NAT ! NAT ^8x:(x:Nat) f(x) > 2)endFigure 4: The speci�cation examples of subsection 5.2.properties cannot be considered.3. The seen machine M1 will be implemented separately and in such animplementation only the properties about the sets and constants s1; c1are considered. If emerging properties on the constants of M1 hadbeen allowed these will not be considered by the implementation thereforecausing incompatibilities in parallel development.Given that Sh2 holds, then Sh3 is equivalent to the corresponding proof obli-gation of a machine M30 whose context is the result of the enrichment of M3with the constants and properties of M1. Notice that the parameters p1 andthe state variables v1 of the seen machine do not appear in I3. This \hid-ing principle", together with the context-related proof obligations, ensures theconservativeness of I3.10The following example demonstrates the importance of the context-relatedproof obligations associated with the sees primitive. Assume that AM M1 isseen by two other AMs M2 and M3 as presented in Fig. 4. Although each ofM2 and M3 extend M1 in a consistent way, they induce contradictory emergingproperties on M1. On the one hand, M2 alters the context of M1 by forcingthe f to accept only one possible model interpretation, namely the constantfunction f(x) = 3. On the other hand, M3 alters f by accepting only thosemodel interpretations where f(1) > 3.In fact, both M2 and M3 are ill de�ned. Because they implicitly modify thestatic context of M1 by imposing (in this example con
icting) emerging prop-erties. In order to avoid such side-e�ects when a machine M sees a machine10Because of the modularization property, the implication context(M3)) (I1) 9(v3):I3)reduces to context(M3) ) 9(v3):I3, by the de�nition of context(M3) (Fig. 3) and becausecontext(M1) ) 9(v1):I1, by the assumption that M1 is internally consistent, and v1 doesnot appear in I3 by the syntactical conditions of sees. In fact, with an analogous argumentone can also drop CN1 from the assumption in Sh3-sees.10



M1, the context of M must be conservative on the context of M1. That is,all sentences about the sets and constants identi�ers of M1 that are prov-able in the context of seeing machine M should also be provable in the contextof the seen machine M1. The latter is the case if and only if the sentences9g:(g:NAT ! NAT ^ 8x:(x:NAT ) (g(x) < 5 ^ f(x) < g(x)))) and, respec-tively, 9h:(h:NAT ! NAT ^ 8x:(x:NAT ) h(x) = 3) ^ f(1) 6= h(1)) followfrom the context axioms of M1. Clearly, in this example, none of the abovementioned proof obligations can be discharged.5.3 Using interpolants to control information 
owWhenever the absence of any emerging properties from a subsystem to a com-ponent is required, the automatically generated proof obligations (which vali-date the conservativeness of the associated extension) follow the same pattern:BTh ` context! �(extension) where context is the formula describing theaxiomatisation of the component, extension is the conjunction of the extensionaxioms and �(extension) is the uniform interpolant of extension in the lan-guage of the component. As is elaborated in [21], such uniform interpolants existin the logic that provides formal semantics to the B-Method. In a few words,this is because the incorporation of a deductive presentation of set theoreticmembership, and appropriate relativization predicates, allow all the identi�ersdeclared in the static context signature of a component to be treated as settheoretic constants (possibly indexed by state). So, �(extension) can be un-derstood as the �rst order reduction of a general second orderP11 sentence: thequanti�ers inside context and extension quantify over individuals whereas theexistential quanti�ers in the pre�x of �(extension) quantify over identi�ers.11Such sentences are syntactically and ontologically di�erent from the �rst orderexistential sentences that can appear in a user-provided AM speci�cation. Onthe one hand, they are not relativised to a domain of individuals and, on theother hand, they cannot appear as user provided axioms in a speci�cation; theirpurpose in a formal development is to facilitate feasibility and non-interferenceproofs. See [21] for further details. If the conservation of all behaviours de-scribed by an operation is to be established then the corresponding uniforminterpolant �(op) can be conceived as the �rst order reduction of a Q12 (i.e.universal-extistential) sentence where the \before" state extension is abstractedaway by a universally quanti�ed variable and the \after" state extension is ab-stracted away by an existentially bounded variable.11The main idea behind this reduction is that, unlike the usual (\absolute") second orderlogic where basic notion such as \being a subset" are �xed primitives in the model theory,general second order logic avoids appealing to a �xed notion of such primitives and is thusreducible to �rst order logic enriched with (a �rst order presentation of) set theoretic mem-bership and appropriate relativisation predicates. General second order generates a recursiveenumerable set of valid sentences which is a proper subset of the non-enumerable set generatedby \absolute" second order logics. See [21, 18] and Chapter 4 of [23] for further details.11



6 (Re)engineering logics to support formal designSo far in this paper, we referred to a variety of applications of interpolationin computer science and emphasised some cases where uniform (splitting) in-terpolants were the protagonists. In recognition of the fact that a variety of,otherwise useful and well understood, logics lack uniform interpolants, we con-clude this position paper by outlining a general approach to alleviating thepotential problems caused by the use of such formalisms in the absence of uni-form interpolation and advocate the need for developing methods that will assistin realising such an approach.The obvious question to ask if one's favourite formalism does not possess acrucial modularity property is how to \�x" it. In general, there are two obviouspossibilities: either extend the formalism to one which has some form of theproperty, or alternatively, restrict the speci�cations which are \acceptable" toa subclass which enjoy this property. Let us consider the �rst design choice(expansion) and view the appropriate restriction of \acceptable" speci�cationsretrospectively. First, we need to place uniform interpolation in the perspectiveof the uniform extension of logical systems. A simple case of such an extensionis obtained when extending an entailment `SP conservatively to an entailment`DES by adding new logical connectives and without changing the correspond-ing (extralogical) alphabets.12 Now, assume that `SP lacks uniform (splitting)interpolation and that `DES provides uniform interpolants for derivations be-tween `SPsentences. One can use the simpler and perhaps more e�cient `SPfor presenting the formal semantics of the speci�cations and reasoning with re-quirements and recourse to `DES in order to generate and attempt to dischargeproof obligations that are related to modular structuring as well as the controlof interference and any information 
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