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SHARP WORST-CASE EVALUATION COMPLEXITY BOUNDS FOR
ARBITRARY-ORDER NONCONVEX OPTIMIZATION WITH INEXPENSIVE

CONSTRAINTS

CORALIA CARTIS∗, NICHOLAS I. M. GOULD† , AND PHILIPPE L. TOINT‡

Abstract. We provide sharp worst-case evaluation complexity bounds for nonconvex minimization problems
with general inexpensive constraints, i.e. problems where the cost of evaluating/enforcing of the (possibly nonconvex
or even disconnected) constraints, if any, is negligible compared to that of evaluating the objective function. These
bounds unify, extend or improve all known upper and lower complexity bounds for nonconvex unconstrained and
convexly-constrained problems. It is shown that, given an accuracy level ǫ, a degree of highest available Lipschitz
continuous derivatives p and a desired optimality order q between one and p, a conceptual regularization algorithm

requires no more than O(ǫ
−

p+1

p−q+1 ) evaluations of the objective function and its derivatives to compute a suitably
approximate q-th order minimizer. With an appropriate choice of the regularization, a similar result also holds if
the p-th derivative is merely Hölder rather than Lipschitz continuous. We provide an example that shows that the
above complexity bound is sharp for unconstrained and a wide class of constrained problems; we also give reasons
for the optimality of regularization methods from a worst-case complexity point of view, within a large class of
algorithms that use the same derivative information.

Key words. evaluation complexity, worst-case analysis, regularization methods.

1. Introduction. Ever since the seminal paper by Vavasis [23] on the complexity of find-
ing first-order critical points in unconstrained nonlinear optimization was published 25 years ago,
the question of the optimal worst-case complexity of optimization methods has been of interest
to mathematicians and also, because of its strong connection with deep learning, to computer
scientists. Of late, there has been a growing interest in this research field, both for convex and
nonconvex problems. This paper focuses on the latter class and follows a now substantial1 research
trend that derives bounds on the worst-case evaluation complexity (or oracle complexity) of first-
and (more rarely) second-order-necessary minimizers2 of nonlinear nonconvex unconstrained op-
timization problems [23, 20, 16, 21, 5]. These papers all provide upper evaluation complexity
bounds: they show that, to obtain an ǫ-approximate first-order-necessary minimizer (for uncon-
strained problem, this is a point at which the gradient of the objective function is less than ǫ
in norm), at most O(ǫ−2) evaluations of the objective function3 are needed if a model involving
first derivatives is used, and at most O(ǫ−3/2) evaluations are needed if using second derivatives
is permitted. This result was extended to convexly-constrained problems in [7]. A broader frame-
work allowing the use of Taylor series of degree p was more recently proposed in [2], in which case
the worst-case evaluation complexity bound for ǫ-first-order-necessary unconstrained minimizer is

shown to be O(ǫ−
p+1

p ), thereby generalizing the previous results for this case. Complexity for ob-
taining ǫ-approximate second-order-necessary unconstrained minimizers was considered in [21, 5],
where a bound of O(ǫ−3) evaluations was proved to obtain an ǫ-second-order-necessary minimizer

using a Taylor’s model of degree two, and a bound of O(ǫ−
p+1

p−1 ) evaluations was shown in [9] for
the case where a Taylor model of degree p is used. Defining q-th-order-necessary minimizers for
q > 2 was considered in [12], where the difficulty of stating and verifying necessary optimality
was discussed. In particular, it was concluded in this latter reference that defining and computing
ǫ-approximate q-th-order-necessary minimizers for q > 2 is likely to remain elusive, essentially
because of the nonlinearity and lack of continuity of the kernels of the derivatives involved. A
more general Taylor-based definition of optimality was introduced instead, which allowed to show

∗Mathematical Institute, Oxford University, Oxford OX2 6GG, UK. Email: coralia.cartis@maths.ox.ac.uk. (cor-
responding)

† Computational Mathematics Department, STFC Rutherford Appleton Laboratory, Chilton, Oxfordshire, OX11
0QX, England, UK. Email: nick.gould@sftc.ac.uk.

‡ Namur Center for Complex Systems (NAXyS), University of Namur, 61, rue de Bruxelles, B-5000 Namur,
Belgium. Email: philippe.toint@unamur.be

1See [13] for a more complete list of references.
2That is points satisfying the first- or second-order necessary optimality conditions for minimization.
3And its available derivatives.

1



2 C. Cartis, N. I. M. Gould and Ph. L. Toint

an upper bound of O(ǫ−(q+1)) on evaluation complexity for convexly-constrained problems, in
particular improving on the bound of O(ǫ−9/2) stated in [1] for the case p = q = 3.

The unconstrained and convexly-constrained cases where the assumption of Lipschitz conti-
nuity is replaced by the weaker β-Hölder continuity (β ∈ (0, 1]) have also been studied for q = 1 in

[15, 8, 10]. These references show that at most O(ǫ−
p+β

p−1+β ) evaluations are needed for obtaining
an ǫ-first-order-necessary minimizer.

While upper complexity bounds are important as they provide a handle on the intrinsic dif-
ficulty of the considered problem, they do so at the condition of not being overly pessimistic. To
address this last point, lower bounds on the evaluation complexity of unconstrained nonconvex
optimization problems and methods were derived in [4, 20] and [13], where it was shown that the
known upper complexity bounds are sharp (irrespective of problem’s dimension) for most known
methods using Taylor’s models of degree one or two. That is to say that there are examples for
which the complexity order predicted by the upper bound is actually achieved. More recently,

Carmon et al. [3] provided an elaborate construction showing that at least a multiple of ǫ−
p+1

p

function evaluations may be needed to obtain an ǫ-first-order-necessary unconstrained minimizer
where derivatives of order at most p are used. This result, which matches in order the upper
bound of [2], covers a very wide class of potential optimization methods4 but has the drawback of
being only valid for problems whose dimension essentially exceeds the number of iterations needed,
which can be very large and quickly grows when ǫ tends to zero.

Contributions. The present paper aims at unifying and generalizing all the above results
in a single framework, providing, for problems with inexpensive or no constraints, provably opti-
mal evaluation complexity bounds for arbitrary optimality order, all relevant model degrees and
levels of smoothness of the objective function. By “inexpensive constraints”, we mean general
set constraints whose enforcement and evaluation5 cost is negligible compared to the cost of eval-
uating the objective function. As a consequence, the evaluation complexity for such problems
is meaningfully captured by focusing of the number of evaluations of this latter function. This
class of minimization problems contains important cases such as bound-constrained problems and
convexly-constrained problems (when the projection onto the feasible set is inexpensive), but also
allows possibly nonconvex or even disconnected feasible sets.

In order to achieve these objectives, we first revisit the Taylor-based optimality measure of
[12] and define (ǫ,δ)-q-th-order-necessary minimizers, a notion extending the standard ǫ-first- and
ǫ-second-order cases to arbitrary orders. We then present a conceptual regularization algorithm

using degree p models and show that this algorithm requires at most O(ǫ−
p+β

p−q+β ) evaluations of f
and its derivatives to find such an (ǫ,δ)-q-th-order-necessary minimizer when the p-th derivative
of f is assumed to be β-Hölder continuous. (If the p-th derivative is assumed to be Lipschitz

continuous, the bound becomes O(ǫ−
p+1

p−q+1 ).) This bound matches the best known lower bounds
for first- and second-order, and improves on the bound in O(ǫ−(q+1)) given by [12]. We then
show that this bound is sharp in order for unconstrained problems with Lipschitz continuous p-th
derivative by completing and extending the result of [3] in two ways. The first is to show that the

lower worst-case bound of order ǫ−
p+1

p evaluations for obtaining a first-order-necessary minimizer
using at most p derivatives is also valid for problems of every dimension, and the second is to show

that this bound can be generalized to a multiple of ǫ−
p+1

p−q+1 for obtaining a q-th-order-necessary
minimizer of any order q ≤ p. In particular, this result matches in order the upper bound obtained
in the first part of the paper and subsumes or improves known lower bounds for first- and second-
order-necessary minimizers. While our lower bounds are derived for regularization algorithms
applied to unconstrained problems, we also indicate that they may be extended to a much wider
class of minimization methods and to a significant class of constrained problems.

The paper is organized as follows. Section 2 introduces the (possibly constrained) minimization
problem of interest and the concept of (ǫ,δ)-approximate q-th-order-necessary minimizers. It also
presents a variant of the Adaptive Regularization algorithm using degree p Taylor’s models (ARp)

4In particular, it covers randomized methods, which we do not consider in this paper.
5Constraint’s values and that of their derivatives, if relevant.
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whose purpose is to find such minimizers. Section 3 then provides an upper bound on the evaluation
complexity for the ARp algorithm to achieve this task. Section 4 then discusses specialization of
this result to the case where ǫ-approximate second-order-necessary minimizers are sought. The
complexity upper bound of Section 3 is then proved to be sharp in Section 5 for the Lipschitz-
continuous cases where the feasible set contains a ray. Some conclusions are finally presented in
Section 6.

Notation. Throughout the paper, ‖v‖ denotes the standard Euclidean norm of a vector
v ∈ IRn. For a symmetric tensor S of order p, S[v1, . . . , vp] is the result of applying S to the
vectors v1, . . . , vp, S[v]

p is the result of applying S to p copies of the vector v and

‖S‖[p]
def
= max

‖v‖=1
|S[v]p| = max

‖v1‖=···=‖vp‖=1
|S[v1, . . . , vp]| (1.1)

(where the second equality results from Theorem 2.1 in [25]) is the associated induced norm for
such tensors. If S1 and S2 are tensors, S1 ⊗ S2 is their tensor product and Sk⊗

1 is the product
of S1 k times with itself. For a real, sufficiently differentiable univariate function f , f (i) denotes
its i-th derivative and f (0) is a synonym for f . For an integer k and a real β ∈ (0, 1], we define

(k + β)!
def
=
∏k

ℓ=1(β + ℓ) (this coincides with the standard factorial if β = 1) and β! = 1. As is
usual, we also define 0! = 1. If M is a symmetric matrix, λmin(M) is its left-most eigenvalue. If α
is a real, ⌈α⌉ and ⌊α⌋ denote the smallest integer not smaller than α and the largest integer not
exceeding α, respectively. Finally globminx∈S f(x) denotes the smallest value of f(x) over x ∈ S.

2. High-order necessary conditions for optimality and the ARp algorithm.

2.1. A high-order optimality measure. Given p ≥ 1, this paper considers the set-
constrained optimization problem

min
x∈F

f(x), (2.1)

where we assume that F ⊆ IRn is closed and nonempty, and where f ∈ Cp,β(IRn), namely, that:
• f is p-times continuously differentiable,
• the p-th derivative tensor of f at x is globally Hölder continuous, that is, there exist

constants L ≥ 0 and β ∈ (0, 1] such that, for all x, y ∈ IRn,

‖∇p
xf(x)−∇p

xf(y)‖[p] ≤ L‖x− y‖β . (2.2)

Observe that convexity or even connectedness of F is not requested. Observe also that the more
usual case of Lipschitz continuous p-th derivative corresponds to β = 1. We note that our as-
sumption covers the continuous range of objective function’s smoothness from Hölder continuous
gradients to Lipschitz continuous p-th derivatives. In what follows, we assume that β is known.
If Tp(x, s) is the standard p-th degree Taylor’s expansion of f about x computed for the increment
s, that is

Tp(x, s)
def
= f(x) +

p
∑

ℓ=1

1

ℓ!
∇ℓ

xf(x)[s]
ℓ, (2.3)

(2.2) provides crucial approximation bounds, whose proof can be found in the appendix.

Lemma 2.1. Let f ∈ Cp,β(IRn), and Tp(x, s) be the Taylor approximation of f(x+ s) about
x given by (2.3). Then for all x, s ∈ IRn,

f(x+ s) ≤ Tp(x, s) +
L

(p+ β)!
‖s‖p+β , (2.4)

‖∇j
xf(x+ s)−∇j

sTp(x, s)‖[j] ≤
L

(p− j + β)!
‖s‖p−j+β . (j = 1, . . . , p). (2.5)
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In order to characterise minimizers of (2.1), we follow [12] and introduce, for given δ ∈ (0, 1]
and j ≤ p,

φδf,j(x)
def
= f(x)− globmin

x+d∈F

‖d‖≤δ

Tj(x, d), (2.6)

which can be interpreted as the magnitude of the largest decrease achievable on the Taylor’s

expansion of degree j within the intersection of a ball of radius δ with the feasible set. It was shown
in [12] that φδf,j(x) is a proper generalization of well-known unconstrained optimality measures
for low orders. In particular, for any δ > 0, we have

φδf,1(x) = ‖∇1
xf(x)‖ δ, (2.7)

φδf,2(x) =
1
2

∣

∣min[0, λmin

(

∇2
xf(x)

)∣

∣ δ2 (2.8)

provided ∇1
xf(x) = 0, and also, if additionally ∇2

xf(x) is positive semi-definite, that

φδf,3 = ‖ projection of ∇3
xf(x) onto the nullspace of ∇2

xf(x) ‖ δ
3. (2.9)

At variance with other optimality measures, φδj,f (x) is well-defined for any order j ≥ 1 and varies
continuously when x varies continuously in F . The role of the “optimality radius” δ in (2.6) merits
some discussion. It follows from (2.7)–(2.9) that the choice of δ = 1 is adequate for retrieving
known optimality conditions in the unconstrained case for j = 1, and j = 2 provided ∇1

xf(x) = 0,
and j = 3 provided additionally ∇2

xf(x) is positive semi-definite. However, δ becomes important
in other cases. Corollary 3.6 in [12] indicates that, when F is convex, q-th-order necessary “path-
based” optimality conditions hold if

lim
δ→0

φδf,j(x)

δj
= 0 for j = 1, . . . , q. (2.10)

The limit for δ → 0 is necessary to capture the notion of local minimizer for (2.1). This implies
that δ should be seen as a truly local quantity associated with x. However, considering φδf,j(x)
for non-vanishing δ has substantial advantages from the point of view of optimization: while it
may fail to indicate that x is a local minimizer, it does so only by providing a direction leading to
values of f below f(x), thereby helping to avoid local but non-global approximate solutions. We
refer the reader to [12] for a further discussion, but conclude that considering large δ has strong
advantages when solving (2.1).

A special case is when x is an isolated feasible point, that is a point which is the sole intersection
between F and any sufficiently small neighbourhood of x. Such a point is clearly a local minimizer,
and this is reflected by the fact that φδf,q(x) = 0 for any f , any q and any sufficiently small δ.

The main drawback of using φδf,j(x) is, of course, that its computation requires the global
minimization of Tp(x, d) in the intersection of the ball of radius δ with F . We are not aware of an
easy way to do this in general6 when n > 1, which is why our analysis remains of an essentially
theoretical nature, as was the case for [12]. Note however that, albeit potentially very difficult,
solving this global minimization problem does not involve calculating the value of f or of any of its
derivatives. In that sense, this drawback is thus irrelevant for the worst-case evaluation complexity
which solely focuses on these evaluations.

Observe now that, if we were to relax the first-order condition ∇1
xf(x) = 0 for uncon-

strained problems to ‖∇1
xf(x)‖ ≤ ǫ and, at the same time, relax the second-order condition

to
∣

∣min[0, λmin

(

∇2
xf(x)

)

]
∣

∣ ≤ ǫ, we then deduce that

φδf,2(x) ≤ ǫδ + 1
2
ǫδ2 = ǫ

2
∑

ℓ=1

δℓ

ℓ!
. (2.11)

6A small value of δ might help, but this computation remains NP-hard in most cases.
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A natural generalization of this observation is to define an (ǫ, δ)-approximate q-th-order-necessary
minimizer of f as a point x such that

φδf,q(x) ≤ ǫχq(δ) (2.12)

where

χq(δ)
def
=

q
∑

ℓ=1

δℓ

ℓ!
. (2.13)

Because (2.12) is a new way to look at approximate optimality and is crucial for the rest of this
paper, it is worthwhile to motivate and discuss it further.

1. When ǫ = 0, (2.12) implies that the complicated path-based necessary optimality con-
ditions derived in [12] do hold. This results from the fact that these latter conditions
merely express that the Taylor’s model of order q cannot decrease close enough to x along
any feasible polynomial path emanating from x, which is clearly the case if x is a global
minimizer of the same models in the intersection of the feasible set and a ball of radius
δ centered at x. By continuity, these path-based conditions must therefore hold in the
limit under (2.12) when ǫ tends to zero. The role of (2.12) as a condition for approximate
minimization is thus coherent and consistent with known necessary conditions.

2. Inspired by (2.10), the stronger approximate optimality condition

φδf,j(x) ≤ ǫ δj for j ∈ {1, . . . , q} (2.14)

was used in [12] instead of (2.12). Our main reason to prefer (2.12) is the following.
Observe that (2.14) implies in particular that φδf,q(x) ≤ ǫδq, which in turn implies, for δ

small enough for the first-order term to dominate, that φδf,1(x) ≤ ǫδq. In the unconstrained

case (for example), this requires ‖∇1
xf(xk)‖ ≤ ǫδq−1, imposing an inordinate level of first-

order optimality, much stronger than the standard condition ‖∇1
xf(xk)‖ ≤ ǫ. No such

difficulty arises with (2.12) because the right-hand side of the condition involves all powers
of δ, which is not the case of the right-hand side of (2.14). Note however that the vital
continuity properties of φδf,q are not affected by the choice of the right-hand side, and are
thus inherited by (2.12).

3. For given δ ∈ (0, 1], (2.12) does not imply that φδf,j(x) ≤ ǫχj(δ) for j ∈ {1, . . . , q − 1},

although the violation of this condition tends to zero with δ7. This slight blemish can be
cured by requiring that φδf,j(x) ≤ ǫχj(δ) for j ∈ {1, . . . , q} instead of (2.12).

4. Since δ ∈ (0, 1], we note that χq(δ) = Θ(δ), and so an equivalent alternative to the
termination condition (2.12) is to require that φδf,q(x) ≤ ǫδ. We use (2.12) as it naturally
occurs in subsequent proofs.

In order to further justify (2.12), we now make more explicit the “minimizing guarantees” provided
by this approximate optimality condition, by formulating a result analogous to Theorem 3.7 in
[12]. This result gives a lower bound on the value of f(x) in the feasible neighbourhood of an
(ǫ, δ)-approximate q-th-order-necessary minimizer.

Theorem 2.2. Suppose that f is p times continuously differentiable and that∇q
xf is β-Hölder

continuous with constant L (in the sense of (2.2) with p = q) in an open neighbourhood of
radius δ ∈ (0, 1] of some x ∈ F . Suppose also that x is an (ǫ, δ)-approximate q-th-order-
necessary minimizer of f in the sense of (2.12). Then

f(x+d) ≥ f(x)−2ǫχq(δ) for all d with x+d ∈ F and ‖d‖ ≤ min

[

δ,

(

(q + β)! ǫ

L

)
1

q+β−1

]

.

(2.15)

7When δ tends to zero, the terms of orders j + 1 and higher in the Taylor’s expansion defining φδ
f,q

(x) and

χq(δ) become negligible compared to the first j.
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Proof. Using the triangle inequality, (2.2), (2.4) and (2.12), we obtain that, for ‖d‖ ≤ δ,

f(x+ d) ≥ f(x+ d)− Tq(x, d) + Tq(x, d)

≥ −|f(x+ d)− Tq(x, d)|+ Tq(x, 0)− φδf,q(x)

≥ −
L

(q + β)!
‖d‖q+β + f(x)− ǫχq(δ).

Thus,

f(x+ d) ≥ f(x)−
L

(q + β)!
‖d‖q+β−1 δ − ǫχq(δ)

and the desired bound follows from the fact that δ ≤ χq(δ).

2.2. The ARp algorithm for high-order criticality. In order to find (ǫ, δ)-approximate
q-th-order-necessary minimizers, we consider applying a variant of the ARp algorithm to (2.1).
This algorithm, described as Algorithm 2.1 on the facing page, is of the regularization type in
that, at each iterate xk, a step sk is computed which approximately minimizes (in a sense defined
below) the model

mk(s) = Tp(xk, s) +
σk

(p+ β)!
‖s‖p+β (2.16)

subject to xk + s ∈ F , where p in an integer such that p ≥ q and σk ≥ σmin is a “regularization
parameter”.
A few comments are useful at this stage.

1. Since σk ≥ σmin by (2.22), we have that mk(s) is bounded below as a function of s and the
existence of a constrained global minimizer s∗k is guaranteed because β > 0. To the best
of our knowledge, the only methods that can use β = 0 are universal methods [8, 15, 19],
where a higher power of regularization is required and additional precautions are taken
when computing a step, and which we do not cover here.

2. Conditions (2.19) and (2.20) essentially ensure that the step is long enough, which will be
important for proving the important lower bound on the steplength in Lemma 3.3 below.
If (2.19) holds, the possibly expensive computation of φδsmk,q

(sk) in (2.20) is unnecessary
and δs may be chosen arbitrarily in (0, 1].

3. Our choice to update δk+1 in parallel with xk+1 reflects our earlier comment on the fact
that δ is a local quantity: hence δk+1 should be consistent with its corresponding value
at xk+1 = xk + sk, which is δs.

4. We assume the availability of a feasible starting point, which is without loss of generality
for inexpensive constraints.

5. Before termination, each successful iteration requires the evaluation of f and its first p
derivative tensors, while only the evaluation of f is needed at unsuccessful ones.

6. The mechanism of the algorithm ensures the non-increasing nature of the sequence {f(xk)}k≥0.
Iterations for which ρk ≥ η1 (and hence xk+1 = xk + sk) are called “successful” and we denote

by Sk
def
= {0 ≤ j ≤ k | ρj ≥ η1} the index set of all successful iterations between 0 and k. We

immediately observe that the total number of iterations (successful or not) can be bounded as a
function of the number of successful ones (and include a proof in the appendix).

Lemma 2.3. [2, Theorem 2.4] The mechanism of Algorithm 2.1 guarantees that, if

σk ≤ σmax, (2.23)

for some σmax > 0, then

k + 1 ≤ |Sk|

(

1 +
| log γ1|

log γ2

)

+
1

log γ2
log

(

σmax

σ0

)

. (2.24)
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Algorithm 2.1: ARp for (ǫ, δ)-approximate q-th-order-necessary minimizers

Step 0: Initialization. An initial point x0 ∈ F and an initial regularization parameter
σ0 > 0 are given, as well as an accuracy level ǫ ∈ (0, 1). The constants δ0, ̟, θ, η1,
η2, γ1, γ2, γ3 and σmin are also given and satisfy

̟ ∈ (0, 1], θ > 0, δ0 ∈ (0, 1], σmin ∈ (0, σ0], 0 < η1 ≤ η2 < 1
and 0 < γ1 < 1 < γ2 < γ3.

(2.17)

Compute f(x0) and set k = 0.
Step 1: Test for termination. Evaluate {∇i

xf(xk)}
q
i=1. If (2.12) holds with δ = δk, ter-

minate with the approximate solution xǫ = xk. Otherwise compute {∇i
xf(xk)}

p
i=q+1.

Step 2: Step calculation. Attempt to compute an approximate minimizer sk of model
mk(s) and an optimality radius δs ∈ (0, 1] such that xk + sk ∈ F ,

mk(sk) < mk(0) (2.18)

and either

‖sk‖ ≥ ̟ǫ
1

p−q+β (2.19)

or

φδsmk,q
(sk) ≤

θ‖sk‖
p−q+β

(p− q + β)!
χq(δs). (2.20)

If such a step does not exist, terminate with the approximate solution xǫ = xk.
Step 3: Acceptance of the trial point. Compute f(xk + sk) and define

ρk =
f(xk)− f(xk + sk)

Tp(xk, 0)− Tp(xk, sk)
. (2.21)

If ρk ≥ η1, then define xk+1 = xk + sk and δk+1 = δs; otherwise define xk+1 = xk
and δk+1 = δk.

Step 4: Regularization parameter update. Set

σk+1 ∈







[max(σmin, γ1σk), σk] if ρk ≥ η2,
[σk, γ2σk] if ρk ∈ [η1, η2),
[γ2σk, γ3σk] if ρk < η1.

(2.22)

Increment k by one and go to Step 1 if ρk ≥ η1, or to Step 2 otherwise.

2.3. Specific properties of the ARp algorithm. We now need to verify that the algorithm
is well-defined in the sense that either a step sk and associated δs satisfying (2.18)–(2.20) can
always be found, or termination is justified. For unconstrained problems with q ∈ {1, 2}, the first
possibility directly results from the observation that φδsmk,j

(sk) (as given by (2.7)-(2.9) for f = mk

and j ∈ {1, 2, 3}) can be made suitably small at a global minimizer of the model. In those cases
δs = 1 is always acceptable. (More details for the case q = 2 are provided in Section 4). The
situation is more complicated for q ≥ 3 because a global minimizer of the model (2.16) may not
be a global minimizer of its q-th order Taylor’s expansion in the intersection of F and a ball of
arbitrary radius: we may have to restrict this radius for this important property to hold. In order
to clarify this issue, we first state a useful technical lemma, whose proof is in the appendix.
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Lemma 2.4. Let s be a vector of IRn. Then

‖∇j
s

(

‖s‖p+β
)

‖[j] =
(p+ β)!

(p− j + β)!
‖s‖p−j+β for j ∈ {0, . . . , p} (2.25)

and

‖∇p+1
s

(

‖s‖p+β
)

‖[p+1] = β (p+ β)! ‖s‖β−1. (2.26)

We next provide reasonable sufficient conditions for a nonzero step sk and an optimality radius
δs to satisfy (2.18)–(2.20).

Lemma 2.5. Suppose that s∗k is a global minimizer of mk(s) under the constraint that
xk + s ∈ F , such that mk(s

∗
k) < mk(0). Then there exist a neighbourhood of s∗k and a range

of sufficiently small δ such that (2.18) and (2.20) hold for any sk in the intersection of this
neighbourhood with F and any δs in this range.

Proof. Let s∗k be the global minimizer of the model mk(s) over all s such that xk + s ∈ F .
Since mk(s

∗
k) < mk(0), we have that s∗k 6= 0. By Taylor’s theorem, we have that, for all d,

0 ≤ mk(s
∗
k + d)−mk(s

∗
k) =

p
∑

ℓ=1

1

ℓ!
∇ℓ

smk(s
∗
k)[d]

ℓ +
1

(p+ 1)!
∇p+1

s mk(s
∗
k + ξd)[d]p+1

for some ξ ∈ (0, 1). Thus, using the triangle inequality, (2.16) and (2.26),

−

q
∑

ℓ=1

1

ℓ!
∇ℓ

smk(s
∗
k)[d]

ℓ ≤

p
∑

ℓ=q+1

‖d‖ℓ

ℓ!
‖∇ℓ

smk(s
∗
k)‖[ℓ] +

‖d‖p+1

(p+ 1)!
‖∇p+1

s mk(s
∗
k + ξd)‖[p+1]

=

p
∑

ℓ=q+1

‖d‖ℓ

ℓ!
‖∇ℓ

smk(s
∗
k)‖[ℓ] + βσk

‖d‖p+1

(p+ 1)!
‖s∗k + ξd‖β−1.

(2.27)
Since s∗k 6= 0, we may then choose δs < ‖s∗k‖ such that, for every d with ‖d‖ ≤ δs, ‖s

∗
k + ξd‖ ≥

1
2
‖s∗k‖ > 0 and

p
∑

ℓ=q+1

‖d‖ℓ

ℓ!
‖∇ℓ

smk(s
∗
k)‖[ℓ] + 21−ββσk

‖d‖p+1

(p+ 1)!
‖s∗k‖

β−1 ≤
θ‖s∗k‖

p−q+β

2(p− q + β)!
‖d‖. (2.28)

Hence we deduce from (2.27) and (2.28) that, for ‖d‖ ≤ δs,

−

q
∑

ℓ=1

1

ℓ!
∇ℓ

smk(s
∗
k)[d]

ℓ ≤
θ‖s∗k‖

p−q+β

2(p− q + β)!
δs ≤

θ‖s∗k‖
p−q+β

2(p− q + β)!
χq(δs),

where the last inequality follows from (2.13). Continuity of mk and its derivatives and the in-
equality mk(s

∗
k) < mk(0) then imply that there exists a neighbourhood of s∗k 6= 0 such that (2.18)

holds and

−

q
∑

ℓ=1

1

ℓ!
∇ℓ

smk(s)[d]
ℓ ≤

θ‖s‖p−q+β

(p− q + β)!
χq(δs).

for all s in this neighbourhood and all d with ‖d‖ ≤ δs. This yields that, for all such s with
xk + s ∈ F ,

φδsmk,q
(s) = max

[

0, globmax
‖d‖≤δs
xk+d∈F

(

−

q
∑

ℓ=1

1

ℓ!
∇ℓ

smk(s)[d]
ℓ

)]

≤
θ‖s‖p−q+β

(p− q + β)!
χq(δs),
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as requested.

As can be seen in the proof of this lemma, δs may need to be small if any of the tensors

∇ℓ
smk(s

∗
k) =

p
∑

j=ℓ

1

j!
∇j

smk(0)[s
∗
k]

j−ℓ

for ℓ ∈ {1, . . . , p+ 1} has a large norm. This may occur in particular if β and ‖s∗k‖ are both close
to zero, as is shown by the last term in the left-hand side of (2.28). We also note that (2.20)
obviously holds for sk = s∗k if xk + s∗k is an isolated feasible point.

That one needs to consider the second case in Step 2 (where no step exists satisfying (2.18) –
(2.20)) can be seen by examining the following one-dimensional example. Let p = q = 3 and β = 1,
and suppose that δk = 1, Tq(xk, s) = s2 − 2s3 and σk = 4! = 24. Then mk(s) = s2 − 2s3 + s4 =
s2(s − 1)2 and the origin is a global minimizer of the model (and a local minimizer of Tq(xk, s))

but yet Tq(xk, δk) = −1, yielding that φδkf,q(xk) = 1 > ǫχq(1) for ǫ ≤ 1/χq(1) = 4
7
. Thus, Step 1

with δk = 1 has failed to identify that termination was possible. It now remains to verify that it
is justified to terminate in Step 2 when no suitable nonzero step can be found.

Lemma 2.6. Suppose that the algorithm terminates in Step 2 of iteration k with xǫ = xk.
Then there exists a δ ∈ (0, 1] such that (2.12) holds for x = xǫ and xǫ is an (ǫ, δ)-approximate
qth-order-necessary minimizer.

Proof. Given Lemma 2.5, if the algorithm terminates within Step 2, it must be because every
global minimizer s∗k of mk(s) under the constraints xk + s ∈ F is such that mk(s

∗
k) ≥ mk(0). In

that case, s∗k = 0 is one such global minimizer and we have that, for all d,

0 ≤ mk(d)−mk(0) =

q
∑

ℓ=1

1

ℓ!
∇j

xf(xk)[d]
j +

p
∑

ℓ=q+1

1

ℓ!
∇j

xf(xk)[d]
j +

σk
(p+ β)!

‖d‖p+β .

We may now choose δ ∈ (0, 1] small enough to ensure that, for all d with ‖d‖ ≤ δ,

∣

∣

∣

∣

∣

∣

p
∑

ℓ=q+1

1

ℓ!
∇j

xf(xk)[d]
j +

σk
(p+ β)!

‖d‖p+β

∣

∣

∣

∣

∣

∣

≤ ǫ‖d‖ ≤ ǫ χq(δ), (2.29)

which in turn implies that, for all d with ‖d‖ ≤ δ,

φδf,q(xk) = max

[

0, globmax
‖d‖≤δ

xk+d∈F

(

−

q
∑

ℓ=1

1

ℓ!
∇ℓ

xf(xk)[d]
ℓ

)]

≤ ǫ χq(δ),

concluding the proof.

Observe that, in this proof, we could have chosen δ small enough to ensure

σk
(p+ β)!

‖d‖p+β ≤ ǫχp(δ)

instead of (2.29), yielding φδf,p(xk) ≤ ǫχp(δ), which is a stronger necessary optimality condition
than (2.12). Together, Lemmas 2.5 and 2.6 ensure that Algorithm 2.1 is well-defined.

However, none of the inner step and criticality computations involve the (re-)evaluation of f
or its derivatives, and therefore the evaluation complexity bound presented in the next section is
unaffected.
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3. An upper bound on the evaluation complexity. The proofs of the following two
lemmas are very similar to corresponding results in [2] and hence we again defer them to the
appendix (but still include them for completeness, as the algorithm has changed).

Lemma 3.1. The mechanism of Algorithm 2.1 guarantees that, for all k ≥ 0,

Tp(xk, 0)− Tp(xk, sk) ≥
σk

(p+ β)!
‖sk‖

p+β , (3.1)

and so (2.21) is well-defined.

Lemma 3.2. Let f ∈ Cp,β(IRn). Then, for all k ≥ 0,

σk ≤ σmax
def
= max

[

σ0,
γ3L

1− η2

]

. (3.2)

We are now in position to prove the crucial lower bound on the step length.

Lemma 3.3. Let f ∈ Cp,β(IRn). Then, for all k ≥ 0 such that iteration k is successful and
Algorithm 2.1 does not terminate at iteration k + 1,

‖sk‖ ≥ κsǫ
1

p−q+β , (3.3)

where

κs
def
= min

[

̟,

(

(p− q + β)!

(L+ σmax + θ)

)
1

p−q+β

]

. (3.4)

Proof. If ‖sk‖ > ̟ǫ
1

p−q+β (i.e. (2.19) holds), the result is obvious. Suppose now that

‖sk‖ ≤ ̟ǫ
1

p−q+β , which, in view of Step 2 of the algorithm, implies that (2.20) holds. Since the
algorithm does not terminate at iteration k + 1, we have that

φ
δk+1

f,q (xk+1) > ǫχq(δk+1) (3.5)

Let the global minimum in the definition of φ
δk+1

f,q (xk+1) be achieved at d with ‖d‖ ≤ δk+1. Since

φ
δk+1

f,q (xk+1) > 0, we have from (2.6) that

q
∑

ℓ=1

1

ℓ!
∇ℓ

xf(xk+1)[d]
ℓ < 0

Then, successively using (2.6) for f at xk+1, the triangle inequality, (2.16), (1.1) and (2.25), we
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deduce that

φ
δk+1

f,q (xk+1) = −

q
∑

ℓ=1

1

ℓ!
∇ℓ

xf(xk+1)[d]
ℓ

= −

q
∑

ℓ=1

1

ℓ!
∇ℓ

xf(xk+1)[d]
ℓ +

q
∑

ℓ=1

1

ℓ!
∇ℓ

sTp(xk, sk)[d]
ℓ −

q
∑

ℓ=1

1

ℓ!
∇ℓ

sTp(xk, sk)[d]
ℓ

−
σk

(p+ β)!

q
∑

ℓ=1

1

ℓ!

(

∇ℓ
s

[

‖s‖p+β
]

(sk)
)

[d]ℓ +
σk

(p+ β)!

q
∑

ℓ=1

1

ℓ!

(

∇ℓ
s

[

‖s‖p+β
]

(sk)
)

[d]ℓ

≤

∣

∣

∣

∣

∣

q
∑

ℓ=1

1

ℓ!

[

∇ℓ
xf(xk+1)−∇ℓ

sTp(xk, sk)
]

[d]ℓ

∣

∣

∣

∣

∣

−

q
∑

ℓ=1

1

ℓ!

(

∇ℓ
s

[

Tp(xk, s) +
σk

(p+ β)!
‖s‖p+β

]

s=sk

)

[d]ℓ

+
σk

(p+ β)!

∣

∣

∣

∣

∣

q
∑

ℓ=1

1

ℓ!

(

∇ℓ
s

[

‖s‖p+β
]

s=sk

)

[d]ℓ

∣

∣

∣

∣

∣

≤

q
∑

ℓ=1

L

ℓ!(p− ℓ+ β)!
‖sk‖

p−ℓ+βδℓk+1

−

q
∑

ℓ=1

1

ℓ!
∇ℓ

smk(sk)[d]
ℓ +

q
∑

ℓ=1

σk
ℓ!(p− ℓ+ β)!

‖sk‖
p−ℓ+βδℓk+1

(3.6)
Now, since ‖d‖ ≤ δk+1, and using (2.6) for mk at sk,

−

q
∑

ℓ=1

1

ℓ!
∇ℓ

smk(sk)[d]
ℓ ≤ max

[

0,−

q
∑

ℓ=1

1

ℓ!
∇ℓ

smk(sk)[d]
ℓ

]

≤ φδk+1

mk,q
(sk).

Using the fact that iteration k is successful, and thus δk+1 = δs, we obtain, from (2.20) and (3.6),
that

φ
δk+1

f,q (xk+1) ≤

q
∑

ℓ=1

L

ℓ!(p− ℓ+ β)!
‖sk‖

p−ℓ+βδℓk+1 +
θ χq(δk+1)

(p− q + β)!
‖sk‖

p−q+β

+

q
∑

ℓ=1

σk
ℓ!(p− ℓ+ β)!

‖sk‖
p−ℓ+βδℓk+1

≤

[

L+ σk + θ
]

χq(δk+1)

(p− q + β)!
‖sk‖

p−q+β ,

(3.7)

where we have used the fact that ‖sk‖ ≤ ̟ǫ
1

p−q+β ≤ 1 to deduce the last inequality. As a
consequence, (3.5) implies that

‖sk‖ ≥

[

ǫ(p− q + β)!

(L+ σk + θ)

]
1

p−q+β

and (3.3) then immediately follows from (3.2).

The bound given in the above lemma is another indication that choosing θ of the order of L
(when this is known a priori) makes sense. Observe also that the statement of the above lemma
is completely independent of δk+1.

We now combine all the above results to deduce an upper bound on the maximum number of
successful iterations, from which a final complexity bound immediately follows.
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Theorem 3.4. Let f ∈ Cp,β(IRn) and suppose that f(x) ≥ flow for all x ∈ IRn. Then, given
ǫ ∈ (0, 1), Algorithm 2.1 needs at most

⌊

κp(f(x0)− flow)
(

ǫ−
p+β

p−q+β

)⌋

+ 1

successful iterations (each involving one evaluation of f and its p first derivatives) and at
most

⌊

⌊

κp(f(x0)− flow)
(

ǫ−
p+β

p−q+β

)

+ 1
⌋

(

1 +
| log γ1|

log γ2

)

+
1

log γ2
log

(

σmax

σ0

)⌋

(3.8)

iterations in total to produce an iterate xǫ such that (2.12) holds, where σmax is given by
(3.2) and where

κp
def
=

(p+ β)!

η1σmin
max

{

̟−(p+β),

[

(L+ σmax + θ)

(p− q + β)!

]
p+β

p−q+β

}

.

Proof. At each successful iteration k before termination, we have the guaranteed decrease

f(xk)− f(xk+1) ≥ η1(Tp(xk, 0)− Tp(xk, sk)) ≥
η1σmin

(p+ β)!
‖sk‖

p+β (3.9)

where we used (2.21), (3.1) and (2.22). Moreover we deduce from (3.9), (3.3) and (3.2) that

f(xk)− f(xk+1) ≥ κ−1
p ǫ

p+β

p−q+β where κ−1
p

def
=

η1σminκ
p+β
s

(p+ β)!
. (3.10)

Thus, since {f(xk)} decreases monotonically,

f(x0)− f(xk+1) ≥ κ−1
p ǫ

p+β

p−q+β |Sk|.

Using that f is bounded below by flow, we conclude

|Sk| ≤
f(x0)− flow

κ−1
p

ǫ−
p+β

p−q+β (3.11)

until termination. The desired bound on the number of successful iterations follows from combining
(3.11). Lemma 2.3 is then invoked to compute the upper bound on the total number of iterations.
In particular, if the p-th derivative of f is assumed to be globally Lipschitz rather than merely
Hölder continuous (i.e. if β = 1), the bound (3.8) on the maximum number of evaluations becomes

⌊

⌊

κp(f(x0)− flow)
(

ǫ−
p+1

p−q+1

)

+ 1
⌋

(

1 +
| log γ1|

log γ2

)

+
1

log γ2
log

(

σmax

σ0

)⌋

(3.12)

where

κp
def
=

(p+ 1)!

η1σmin
max

{

̟p+β ,

[

q!(L+ σmax + θ)(e− 1)

(p− q + 1)!

]
p+1

p−q+1

}

.

This worst-case evaluation bound generalizes known bounds for q = 1 (see [2]) or q = 2 (see
[9]) and significantly improve upon the bounds in O(ǫ−(q+1)) given by [12] for a more stringent
termination rule. It also extends the results obtained in [7] for convexly-constrained problems
with q = 1 by allowing the significantly broader class of inexpensive constraints.

We also note that it is possible to weaken the assumption that ∇p
xf must satisfy the Hölder

inequality (2.2) for every x, y ∈ IRn (as required in the beginning of Section 2). The weakest
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possible smoothness assumption is to require that (2.2) holds only for points belonging to the same
segment of the “tree of iterates” ∪k≥0[xk, xk + sk] (this is necessary for the proof of Lemma 2.1).
As this path joining feasible iterates may be hard to predict a priori, one may instead require (2.2)
to hold in the whole of F , which must then be convex to ensure the desired Hölder property on
every segment [xk, xk + sk].

4. Seeking ǫ-approximate second-order-necessary minimizers. We now discuss the
particular and much-studied case where second-order minimizers are sought for unconstrained
problems with Lipschitz continuous Hessians (that is p ≥ q = 2, F = IRn and β = 1). As we now
show, a specialization of Algorithm 2.1 to this case is very close (but not identical) to well-known
methods. Let us consider Step 1 first. The computation of φδkf,2(xk) then reduce to

φδkf,2(xk) = max

[

0,− globmin
‖d‖≤δk

(

∇1
xf(xk)

T d+ 1
2
dT∇2

xf(xk)d
)

]

, (4.1)

which amounts to solving a standard trust-region subproblem with radius δk (see [14]). Hence
verifying (4.1) or testing the more usual approximate second-order criterion

‖∇1
xf(xk)‖ ≤ ǫ and λmin

(

∇2
xf(xk)

)

≥ −ǫ, (4.2)

have very similar numerical costs (remember that finding the leftmost eigenvalue of the Hessian
is the same as finding the global minimizer of the associated Rayleigh quotient). If we now turn
to the computation of sk in Step 2, Algorithm 2.1 then computes such a step by attempting to
minimize the model

Tp(xk, s) +
σk

(p+ 1)!
‖s‖p+1, (4.3)

as has already been proposed before for general p [2, 9]. Moreover, the failure of (2.12) in Step 1
is enough, when q ≤ 2, to guarantee the existence of nonzero global minimizers of Tp(xk, s) and
mk(s), and thus to ensure that a nonzero sk is possible. The approximate model minimization is
stopped as soon as (2.19) or (2.20) holds, the latter then reducing to checking that

φδsmk,2
(sk) = max

[

0,− globmin
‖d‖≤δs

(

∇1
smk(sk)

T d+ 1
2
dT∇2

smk(sk)d
)

]

≤
θ‖sk‖

p−1

(p− 1)!
χ2(δs) (4.4)

for some δs ∈ (0, 1]. For each potential sk, finding δs ∈ (0, 1] requires solving (possibly approxi-
mately)

− globmin
‖d‖≤δs

(

∇1
smk(sk)

T d+ 1
2
dT∇2

smk(sk)d
)

≤
θ‖sk‖

p−1

(p− 1)!
χ2(δs).

While this could be acceptable without affecting the overall evaluation complexity of the algorithm,
a simpler alternative is available for q = 2. We may consider terminating the model minimization
when either (2.19) holds, or

0 > globmin
‖d‖≤1

(

∇1
smk(sk)

T d+ 1
2
dT∇2

smk(sk)d
)

≥ −
θ‖sk‖

p−1

(p− 1)!
χ2(1) = −

3θ‖sk‖
p−1

2(p− 1)!
. (4.5)

The inequality is guaranteed to hold when sk is close enough to s∗k, a global minimizer of the
model mk(s), since then ∇1

smk(s
∗
k) = 0 and ∇2

smk(s
∗
k) is positive semi-definite, and then d = 0

provides the global minimizer of the second-order Taylor model ofmk(s) around sk. Verifying (4.5)
only requires at most one trust-region calculation for each potential step and ensures (4.4) with
δs = 1, making the choice δk+1 = 1 acceptable. The cost of this technique is comparable to that
proposed in [9] where an eigenvalue computation is required for each potential step. Combining
these observations, Algorithm 2.1 then becomes Algorithm 4.1.
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Algorithm 4.1: ARp for ǫ-approximate second-order-necessary minimizers

Step 0: Initialization. An initial point x0 ∈ F and an initial regularization parameter
σ0 > 0 are given, as well as an accuracy level ǫ ∈ (0, 1). The constants ̟, θ, η1, η2,
γ1, γ2, γ3 and σmin are also given and satisfy (2.17). Compute f(x0) and set k = 0.

Step 1: Test for termination. Evaluate {∇i
xf(xk)}

2
i=1. If φ1f,2(xk) ≤ ǫχ2(1), with

φ1f,2(xk) given by (4.1) and χ2(1) by (2.13), terminate with the approximate solution

xǫ = xk. Otherwise compute {∇i
xf(xk)}

p
i=3.

Step 2: Step calculation. Compute a step sk 6= 0 by approximately minimizing the
model (4.3) in the sense that (2.18) holds and

‖sk‖ ≥ ̟ǫ
1

p−2+β or (4.5) holds.

Step 3: Acceptance of the trial point. Compute f(xk + sk) and define ρk as in (2.21).
If ρk ≥ η1, then define xk+1 = xk + sk; otherwise define xk+1 = xk.

Step 4: Regularization parameter update. Compute σk+1 as in (2.22). Increment k
by one and go to Step 1 if ρk ≥ η1, or to Step 2 otherwise.

If p = q = 2, computing sk in Step 2 amounts to approximately minimizing the now well-known
cubic model of [17, 21, 24, 5]. In addition, if sk is the exact global minimizer of this model,
the above argument shows that (4.5) automatically holds at sk and checking this inequality by
solving a trust-region subproblem is thus unnecessary. The only difference between our proposed
algorithm and the more usual cubic regularization (ARC) method with exact global minimization
is that the latter would check (4.2) for termination, while the algorithm presented here would
instead check (4.1) with δk = 1 by solving a trust-region subproblem. As observed above, both
techniques have comparable numerical cost.

The bound (3.12) then ensures that Algorithm 4.1 terminates in at most O
(

ǫ−
p+1

p−1

)

evaluations

of f , its gradient and Hessian. This algorithm thus shares8 the upper complexity bounds stated
in [9] for general p with different values of ǫ for first- and second-order, and in [21, 5] for p = 2.

5. A matching lower bound on the evaluation complexity for the Lipschitz contin-
uous case. We now intend to show that the upper bound on evaluation complexity of Theorem 3.4
is tight in terms of the order given for unconstrained and a broad class of constrained problems
with Lipschitz continuous p-th derivative (i.e. β = 19). This objective is attained by defining
a variant of the high-degree Hermite interpolation technique developed in [12], and then using
this technique to build, for any number p of available derivatives of the objective function and
any optimality order q, an unconstrained univariate example of suitably slow convergence (i.e.
for which the order in ǫ given by (3.12) is achieved). This example is then embedded in higher
dimensions to provide general lower bounds.

5.1. High-degree univariate Hermite interpolation. We start by investigating some
useful properties of Hermite interpolation. Let us assume that we wish to construct a univariate
Hermite interpolant π of degree 2(p+ 1) of the form

π(τ) =

2p+1
∑

i=0

ci τ
i (5.1)

on the interval [0, s] satisfying the 2(p+ 1) conditions

π(i)(0) = f
(i)
0 , π(i)(s) = f

(i)
1 for i ∈ {0, . . . , p}, (5.2)

8For a marginally weaker (see footnote 7 and Theorem 2.2) but still necessary and, in our view, more sensible
approximate optimality condition.

9A example of slow convergence for general β and p > 1 + β is provided in [10].
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where f
(i)
0 and f

(i)
1 are given. The values of the coefficients c0, . . . , cp may then be obtained by

ci =
f
(i)
0

i!
for i ∈ {0, . . . , p}

while the remaining ones satisfy the linear system











a0,0s
p+1 a0,1s

p+2 · · · a0,p−1s
2p a1,ps

2p+1

a1,0s
p a2,2s

p+1 · · · a2,p−1s
2p−1 a2,ps

2p

...
...

. . .
...

...
ap,0s ap,1s

2 · · · ap,p−1s
p ap,ps

p+1





















cp+1

cp+2

...
c2p+1











=













f
(0)
1 − T

(0)
p (0, s)

f
(1)
1 − T

(1)
p (0, s)
...

f
(p)
1 − T

(p)
p (0, s))













(5.3)
where

Tp(0, s) =

p
∑

i=0

f
(i)
0

i!
si and ai,j =

(p+ j + 1)!

(p+ j + 1− i)!
(i, j = 0, . . . , p).

Observe that (5.3) can be rewritten as











sp

sp−1

. . .

1











Ap











s
s2

. . .

sp+1





















cp+1

cp+2

...
c2p+1











=













f
(0)
1 − T

(0)
p (0, s)

f
(1)
1 − T

(1)
p (0, s)
...

f
(p)
1 − T

(p)
p (0, s))













with Ap is the matrix whose (i, j)-th entry is ai,j , which only depends on p. It was show in [12,
Appendix] that Ap is nonsingular. Therefore











cp+1 s
cp+2 s

2

...
c2p+1 s

p+1











= A−1
p













1
sp [f

(0)
1 − T

(0)
p (0, s)]

1
sp−1 [f

(1)
1 − T

(1)
p (0, s)]

...

f
(p)
1 − T

(p)
p (0, s)













.

We therefore deduce that, for any τ ∈ [0, s] ,

|π(p+1)(τ)| =

∣

∣

∣

∣

∣

p
∑

i=0

(p+ 1 + i)!

i!
cp+1+i τ

i

∣

∣

∣

∣

∣

≤

p
∑

i=0

(p+ 1 + i)!

i!

(

|cp+1+i| s
i+1
)

s−1

≤
(p+ 1)(2p+ 1)!

p!
‖A−1

p ‖∞ max
j=0,...,p

∣

∣

∣

∣

∣

f
(j)
1 − T

(j)
p (0, s)

sp−j+1

∣

∣

∣

∣

∣

.

The mean-value theorem then implies that, for any 0 ≤ τ2 ≤ τ1 ≤ s and some ξ ∈ [τ2, τ1] ⊆ [0, s],

|π(p)(τ1)− π(p)(τ2)|

|τ1 − τ2|
= |π(p+1)(ξ)|

≤ max
τ∈[0,s]

|π(p+1)(τ)|

≤
(p+ 1)(2p+ 1)!

p!
‖A−1

p ‖∞ max
j=0,...,p

∣

∣

∣

∣

∣

f
(j)
1 − T

(j)
p (0, s)

sp−j+1

∣

∣

∣

∣

∣

.

(5.4)

This development thus leads us to the following conclusion.
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Theorem 5.1. Suppose that {f
(j)
ℓ } are given for ℓ ∈ {0, 1} and j ∈ {0, . . . , p}. Suppose also

that there exists a constant κf ≥ 0 such that, for all j ∈ {0, , . . . , p},

|f
(j)
1 − T (j)

p (0, s)| ≤ κf s
p−j+1. (5.5)

Then the Hermite interpolation polynomial π(τ) on [0, s] given by (5.1) and satisfying (5.2)
admits a Lipschitz continuous p-th derivative on [0, s], with Lipschitz constant given by

Lp
def
=

(p+ 1)(2p+ 1)!

p!
‖A−1

p ‖∞κf ,

which only depends on p and κf .

Proof. Directly results from (5.4) and (5.5).
Observe that (5.5) is identical to (2.5) when β = 1 and n = 1. This means that the conditions of

Theorem 5.1 automatically hold if the interpolation data {f
(j)
i } is itself extracted from a function

having a Lipschitz continuous p-th derivative.
Applying the above results to several interpolation intervals then yields the existence of a

smooth Hermite interpolant.

Theorem 5.2. Suppose that, for some integer ke > 0 and p > 0, the data {f
(j)
k } and {xk}

is given for k ∈ {0, . . . , ke} and j ∈ {0, . . . , p}. Suppose also that sk = xk+1 − xk ∈ (0, κs] for
k ∈ {0, . . . , ke} and some κs > 0, and that, for some constant κf ≥ 0 and k ∈ {0, . . . , ke− 1},

|f
(j)
k+1 − T

(j)
k,p(xk, sk)| ≤ κf s

p−j+1
k . (5.6)

where Tk,p(xk, s) =
∑p

i=0 f
(i)
k si/i!. Then there exists a p times continuously differen-

tiable function f from IR to IR with Lipschitz continuous p-th derivative such that, for
k ∈ {0, . . . , ke},

f (j)(xk) = f
(j)
k for j ∈ {0, . . . , p}.

Moreover, the range of f only depends on p, κf , maxk f
(0)
k and mink f

(0)
k .

Proof. We first use Theorem 5.1 to define a Hermite interpolant πk(s) of the form (5.1) on

each interval [xk, xk+1] = [xk, xk + sk] (k ∈ {0, . . . , ke}) using f
(j)
0 = f

(j)
k and f

(j)
1 = f

(j)
k+1 for

j ∈ {0, . . . , p}, and then set

f(xk + s) = πk(s)

for any s ∈ [0, sk]. We may then smoothly prolongate f for x ∈ IR by defining two additional
interpolation intervals [x−1, x0] = [−s−1, 0] and [xke

, xke
+ ske

] with end conditions

f−1 = f
(0)
0 , fke+1 = f

(0)
ke

and f
(j)
−1 = f

(j)
ke+1 = 0 for j ∈ {1, . . . , p},

and where s−1 and ske
are chosen sufficiently large to ensure that (5.6) also holds on intervals -1

and ke. We next set

f(x) =











f
(0)
0 for x ≤ x−1,
πk(x− xk) for x ∈ [xk, xk+1] and k ∈ {−1, . . . , n},

f
(0)
ke

for x ≥ xke
+ ske

.
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5.2. Slow convergence to (ǫ,δ)-approximate q-th-order-necessary minimizers. We
now consider an unconstrained univariate instance of problem (2.1). Our aim is first to show that,
for each choice of p ≥ 1 and q ∈ {1, . . . , p}, there exists an objective function f ∈ Cp,1(IR) (i.e.
β = 1) for problem (2.1) which is bounded below and such that obtaining an (ǫ, δ)-approximate
q-th-order-necessary minimizer may require at least

ǫ−
p+1

p−q+1

evaluations of the objective function and its derivatives using Algorithm 2.1, matching, in order of
ǫ ∈ (0, 1], the upper bound (3.12). Our development follows the broad outline of [13] but extends
it to approximate minimizers of arbitrary order. Given a model degree p ≥ 1 and an optimality

order q ∈ {1, . . . , p}, we first define the sequences {f
(j)
k } for j ∈ {0, . . . , p} and k ∈ {0, . . . , kǫ}

with

kǫ =
⌈

ǫ−
p+1

p−q+1

⌉

(5.7)

by

ωk = ǫ
kǫ − k

kǫ
. (5.8)

as well as

f
(j)
k = 0 for j ∈ {1, . . . , q − 1} ∪ {q + 1, . . . , p} (5.9)

and

f
(q)
k = −(ǫ+ ωk) q!χq(1) < 0. (5.10)

Thus

Tp(xk, s) =

p
∑

j=0

f
(j)
k

j!
sj = f

(0)
k − (ǫ+ ωk)χq(1)s

q (5.11)

and, assuming δk = 1 for all k (we verify below that this is acceptable),

φδkf,q(xk) = (ǫ+ ωk)χq(δk) (5.12)

We also set σk = p! for all k ∈ {0, . . . , kǫ} (we again verify below that is acceptable). Note that

ωk ∈ (0, ǫ] and φδkf,q(xk) > ǫχq(δk) for k ∈ {0, . . . , kǫ − 1}, (5.13)

(and (2.12) fails at xk), while

ωkǫ
= 0 and φδkf,q(xkǫ

) = ǫχq(δk) (5.14)

(and (2.12) holds at xkǫ
). It is easy to verify using (5.11) that the model (2.16) is then globally

minimized for

sk =

[

|f
(q)
k |

(q − 1)!

]
1

p−q+1

= [q(ǫ+ ωk)χq(1)]
1

p−q+1 > ǫ
1

p−q+1 (k ∈ {0, . . . , kǫ}). (5.15)

Hence this step satisfies (2.19) if we choose ̟ = 1. Because of this fact, we are free to choose δs
arbitrarily in (0, 1] and we choose δs = 1. The step (5.15) yields that

mk(sk) = f
(0)
k − (ǫ+ ωk)χq(1)[q(ǫ+ ωk)χq(1)]

q

p−q+1 + 1
p+1 [q(ǫ+ ωk)χq(1)]

p+1

p−q+1

= f
(0)
k − ζ(q, p)[q(ǫ+ ωk)χq(1)]

p+1

p−q+1

(5.16)
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where

ζ(q, p)
def
=

p− q + 1

q(p+ 1)
∈ (0, 1). (5.17)

Thus mk(sk) < mk(0) and (2.18) holds. We then define

f
(0)
0 = 2[2qχq(1)]

p+1

p−q+1 and f
(0)
k+1 = f

(0)
k − ζ(q, p)[q(ǫ+ ωk)χq(1)]

p+1

p−q+1 , (5.18)

which provides the identity

mk(sk) = f
(0)
k+1 (5.19)

(ensuring that iteration k is successful because ρk = 1 in (2.21) and thus that our choice of a
constant σk is acceptable and also that, provided we choose δ0 = 1 to ensure (5.12) for k = 0,
the value δk = 1 is admissible for all k). In addition, using (5.18), (5.13), (5.17), the inequality

kǫ ≤ 1 + ǫ−
p+1

p−q+1 from (5.7) gives that, for k ∈ {0, . . . , kǫ},

f
(0)
0 ≥ f

(0)
k ≥ f

(0)
0 − kζ(q, p)[2qǫχq(1)]

p+1

p−q+1

≥ f
(0)
0 − kǫǫ

p+1

p−q+1 [2qχq(1)]
p+1

p−q+1

≥ f
(0)
0 −

(

1 + ǫ
p+1

p−q+1

)

[2qχq(1)]
p+1

p−q+1

≥ f
(0)
0 − 2[2qχq(1)]

p+1

p−q+1 ,

and hence that

f
(0)
k ∈

[

0, 2[2qχq(1)]
p+1

p−q+1

]

for k ∈ {0, . . . , kǫ}. (5.20)

We also set

x0 = 0 and xk =

k−1
∑

i=0

si.

Then (5.19) and (2.16) give that

|f
(0)
k+1 − Tp(xk, sk)| =

1

p+ 1
|sk|

p+1. (5.21)

Now note that, using (5.11) and the first equality in (5.15),

T (j)
p (xk, sk) =

f
(q)
k

(q − j)!
sq−j
k I[j≤q] = −

(q − 1)!

(q − j)!
sp−j+1
k I[j≤q]

where I[·] is the standard indicator function. We may now verify that, for j ∈ {1, . . . , q − 1},

|f
(j)
k+1 − T (j)

p (xk, sk)| = |0− T (j)
p (xk, sk)| ≤

∣

∣

∣

∣

(q − 1)!

(q − j)!

∣

∣

∣

∣

|sk|
p−j+1 ≤ (q − 1)! |sk|

p−j+1, (5.22)

while, for j = q, we have that

|f
(q)
k+1 − T (q)

p (xk, sk)| = | − (q − 1)! sp−q+1
k + (q − 1)! sp−q+1

k | = 0 (5.23)

and, for j ∈ {q + 1, . . . , p},

|f
(j)
k+1 − T (j)

p (xk, sk)| = |0− 0| = 0. (5.24)
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Combining (5.21), (5.22), (5.23) and (5.24), we deduce that (5.6) holds with κf = (q − 1)!. We
may thus apply Theorem 5.2 with β = 1, κf = (q−1)! and κs = 1, and deduce the existence of a p
times continuously differentiable function f from IR to IR with Lipschitz continuous derivatives of

order 0 to p which interpolates the {f
(j)
k } at {xk} for k ∈ {0, . . . , kǫ} and j ∈ {0, . . . , p}. Moreover,

(5.20) and Theorem 5.2 imply that f is bounded below and that its range only depends on p and
q. In addition, (5.19) ensures that every iteration is successful and thus, because of (2.22), that
the value σk = p! may be used at all iterations.

This argument allows us to state the following lower bound on the complexity of the regular-
ization algorithm using a p-th degree model.

Lemma 5.3. Given any p ∈ IN0 and q ∈ {1, . . . , p}, there exists a p times continuously
differentiable function f from IR to IR with range only depending on p and q and Lipschitz
continuous p-th derivative such that, when the regularization algorithm with p-th degree
model (Algorithm 2.1) is applied to minimize f without constraints, it takes exactly

kǫ =
⌈

ǫ−
p+1

p−q+1

⌉

iterations (and evaluations of the objective function and its derivatives) to find an (ǫ,δ)-
approximate q-th-order-necessary minimizer.

This implies the following important consequence for higher dimensional problems.

Theorem 5.4. Given any n ∈ IN0, p ∈ IN0 and q ∈ {1, . . . , p}, there exists a p times
continuously differentiable function f from IRn to IR with range only depending on p and q
and Lipschitz continuous p-th derivative tensor such that, when the regularization algorithm
with p-th degree model (Algorithm 2.1) is applied to minimize f without constraints, it takes
exactly

kǫ =
⌈

ǫ−
p+1

p−q+1

⌉

(5.25)

iterations (and evaluations of the objective function and its derivatives) to find an (ǫ, δ)-
approximate q-th-order-necessary minimizer. Furthermore, the same conclusion holds if the
optimization problem under consideration involves constraints provided the feasible set F
contains a ray.

Proof. The first conclusion directly follows from Lemma 5.3 since it is always possible to
include the unimodal example as an independent component of a multivariate one.

The second conclusion follows from the observation that our univariate example of slow con-
vergence is only defined on IR+ (even if Theorem 5.2 provides an extension to the complete real
line). As a consequence, it may be used on any feasible ray.

We now make a few observations.

1. In the above example, we have restricted our attention to the Lipschitz continuous case
where β = 1. It is possible that it could be extended to cover a more general choice of
β ∈ (0, 1]: for example [6] develops precisely such examples for second-order methods and
Hölder continuous functions.

2. Theorem 5.4 generalizes to arbitrary values of q, the bound obtained in [3] for the case
q = 1 and also shows that, at variance with the result derived in this reference, the
generalized bound applies for arbitrary problem dimension, but depends on ǫ, p and q.

3. For simplicity, we have chosen, in the above example, to minimize the modelmk(s) globally
at every iteration, but we might consider other pairs (s, δs). A similar example of slow
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convergence may in fact be constructed along the lines used above10 for any sequence
of acceptable11 model reducing steps and associated optimality radii (in the sense of
Lemma 2.5), provided the optimality radii remain bounded away from zero. This means
that our example of slow convergence applies not only to Algorithm 2.1 but also to a
much broader class of minimization methods containing all known methods using Taylor

series that attempt to achieve approximate q-th order criticality as defined here; note that
much in the definition of the example’s function is independent of the algorithm and one
could for instance replace regularization with trust region or linesearch (of course, the
complexity would be worse for the latter two if one uses standard frameworks, see next
paragraph). Moreover, it is also possible to weaken the constraints on the step further by
relaxing (5.19) and only insisting on acceptable decrease of the objective function value
in Step 3 of the algorithm.
In [3], the authors derive their upper bound for q = 1 for the general class of “zero-
preserving” algorithms, which are algorithms that “never explore (from xk) coordinates
which appear not to affect the function”, that is directions d along which Tp(xk, ·) is
constant. This property is obviously shared by Algorithm 2.1 because it attempts to
reduce the Taylors’ expansion of f around the current iterate (the presence of the isotropic
regularization term is irrelevant for this).

4. Our example does apply, for instance, to a linesearch method using univariate minimiza-
tion along a descent search direction computed from the Taylor expansion of f , which
is another zero-preserving method. Note however that such a method, just as every
other linesearch method along descent directions (including possibly randomized coordi-
nate searches), is bound to fail when attempting to compute approximate minimizers of
order beyond three for problems whose dimension exceeds one12, because then, the Taylor
expansion at a non-optimal point need no longer decrease along straight lines. This is
demonstrated by the following old example [18, 22]. Let

f(x1, x2) = ( 1
2
x21 − x2)(x

2
1 − x2).

Then f(0, 0) = 0 and the origin is not a minimizer since f decreases along the arc x2 = 3
4
x21

(the origin is a saddle point in this case). Yet the origin is a strong local minimizer along
every straight line passing through the origin, preventing any linesearch method based on
descent directions from progressing from (0, 0).

Let us now consider an alternative unconstrained minimization method which would attempt to
reduce the unregularized model (that is (2.16) with σk = 0) in order to find an unconstrained
first-order minimizer. It is easy to see that if one chooses

f
(1)
k = −(ǫ+ ωk), f

(i)
k = 0 for i ∈ {2, . . . , p− 1} and f

(p)
k = p!,

the same reasoning as above yields that the largest obtainable decrease with this model occurs at

sk =

(

ǫ+ ωk

p

)
1

p−1

and is given by

f
(0)
k −mk(sk) = (p− 1)

(

ǫ+ ωk

p

)
p

p−1

.

This then implies that at least a multiple of ǫ−
p

p−1 evaluations may be needed to find approximate

first-order-necessary minimizers, which is worse than the bound in ǫ−
p+1

p holding for the regularized

10At the price of possibly larger constants.
11Remember that δ = 1 is always possible for q = 1. It thus unsurprising that no such condition appears in [3].
12Linesearch methods remain relevant for unidimensional problems, obviously, which is why we have mentioned

them in relation with our slow convergence example.



Complexity bounds for arbitrary-order nonconvex optimization 21

algorithm. This is consistent with the known lower O(ǫ−2) bound for first-order points that holds
for the (unregularized) Newton method (and hence the trust-region method), both of which use
p = 2. Adding the regularization term thus not only provides a mechanism to limit the stepsize
and make the step well-defined when Tp(xk, s) is unbounded below, but also amounts to increasing
the ’useful degree’ of the model by one, improving the worst-case complexity bound.

Summing up the above discussion, we conclude that an example of slow convergence requiring
at least (5.25) evaluations can be built for any method whose steps decrease the regularized
(σk ≥ σmin) or unregularized (σk = 0) model (2.16) and whose approximate local optimality
can be measured by (2.20) for some constant θ and δk = 1 (which we can always enforce by
adapting ̟ and (5.9)). For orders up to two, this includes most variants of steepest-descent and
Newton’s methods including those globalized with regularization, trust-region, a linesearch or a
mixture of these (see [13] for a discussion). General linesearch methods are excluded for high-order
optimization as they may fail to converge to approximate minimizers of order four and beyond.

Finally, one may wonder at what would happen if, for the interpolation data (5.9)-(5.10), the
model

mk(s) = Tp(xk, s) +
σk
m!

|s|m

were used for some m > p + 1, resulting in a shorter step. The global model minimizer would
then occur at s = [q(ǫ + ωk)χq(1)]

1/(m−1) and give an optimal model decrease equal to [q(ǫ +
ωk)χq(1)]

m/(m−1)(m − q)/m. However, (5.6) would then fail for j = 0 and the argument leading
to an example of slow convergence would break down.

6. Summary, further comments and open questions. For any optimality order q ≥ 1,
we have provided the concept of an (ǫ, δ)-approximate q-th-order-necessary minimizer for the
very general set-constrained problem (2.1). We have then proposed a conceptual regularization
algorithm to find such approximate minimizers and have shown that, if∇p

xf is β-Hölder continuous,

this algorithm requires at most O(ǫ−
p+β

p−q+β ) evaluations of the objective function and its first p
derivatives to terminate. When ∇p

xf is Lipschitz continuous, we have used an unconstrained
univariate version of the problem to show that this bound is sharp in terms of the order in ǫ for
any feasible set containing a ray and any problem dimension.

In view of the results in [8, 15], one may wonder at what would happen if the regularization
power (i.e. the power of ‖s‖ used in the last term of the model (2.16)) is allowed to differ from
p+ β. The theory presented above must then be re-examined and the crucial point is whether a
global upper bound σmax on the regularization parameter can still be ensured as in Lemma 3.2.
One easily verifies that this is the case for regularization powers r ∈ (p, p+β]. Arguments parallel
to those presented above then yield an upper bound of O(ǫ−

r
r−q ) evaluations13, recovering the

bound given in Section 3.3 of [8] for q = 1. The situation is however more complicated (and
beyond the scope of the present paper) for r > p+ β and the determination of a suitable general
complexity upper bound for this latter case has not been formalized at this stage, but the analysis
for q = 1 discussed in Section 3.2 of [8] suggests that an improvement of the bound for larger r is
unlikely.

Although the results presented essentially solve the question of determining the optimal eval-
uation complexity for unconstrained problems and problems with general inexpensive constraints,
some interesting issues remain open at this stage. A first such issue is whether an example of slow
convergence for all ǫ ∈ (0, 1) can be found for feasible domains not containing a ray. A second is
to extend the general complexity theory for problems whose constraints are not inexpensive: the
discussion in [11] indicates that this is a challenging research area.
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Appendix A.

A.1. Proof of Lemmas in Section 2.

Proof of Lemma 2.1. We first establish the identity

Ik−1,β
def
=

∫ 1

0

ξβ(1− ξ)k−1 dξ =
(k − 1)!

(k + β)!
, where (k + β)!

def
=

k
∏

i=1

(i+ β) and β! = 1. (A.1)
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If k = 1, the result directly follows from a simple integration. To see (A.1) for k > 1, integrating
by parts, we have that

Ik−1,β =

[

ξ1+β

1 + β
(1− ξ)k−1

]1

0

+
(k − 1)

(1 + β)

∫ 1

0

ξ1+β(1− ξ)k−2 dξ =
(k − 1)

(1 + β)
Ik−2,1+β

and thus, recursively, that

Ik−1,β =
(k − 1)!

(k − 1 + β)!
I0,k−1+β =

(k − 1)!

(k − 1 + β)!

∫ 1

0

ξk−1+β dξ =
(k − 1)!

(k + β)!
.

As in [12], consider the Taylor identity

ψ(1)− τk(1) =
1

(k − 1)!

∫ 1

0

(1− ξ)k−1[ψ(k)(ξ)− ψ(k)(0)] dξ (A.2)

involving a given univariate Ck function ψ(t) and its k-th order Taylor approximation

τk(t) =
k
∑

i=0

ψ(i)(0)
ti

i!

expressed in terms of the value ψ(0) = ψ and ith derivatives ψ(i), i = 1, . . . , k. Then, picking
ψ(t) = f(x + ts), for given x, s ∈ IRn, and k = p, the identity (A.2), and the relationships
ψ(p)(t) = ∇p

xf(x+ ts)[s]p and τp(1) = Tp(x, s) give that

f(x+ s)− Tp(x, s) =
1

(p− 1)!

∫ 1

0

(1− ξ)k−1 (∇p
xf(x+ ξs)−∇p

xf(x)) [s]
p dξ,

and thus from the definition of the tensor norm (1.1), the Hölder bound (2.2) and the identity
(A.1) when k = p that

f(x+ s)− Tp(x, s) ≤
1

(p− 1)!

∫ 1

0

(1− ξ)k−1

∣

∣

∣

∣

(∇p
xf(x+ ξs)−∇p

xf(x))

[

s

‖s‖

]p∣
∣

∣

∣

‖s‖p dξ

≤
1

(p− 1)!

∫ 1

0

(1− ξ)k−1 max
‖v‖=1

|(∇p
xf(x+ ξs)−∇p

xf(x)) [v]
p
| ‖s‖p dξ

=
1

(p− 1)!

∫ 1

0

(1− ξ)k−1‖∇p
xf(x+ ξs)−∇p

xf(x)‖[p]dξ · ‖s‖
p

≤
1

(p− 1)!

∫ 1

0

ξβ(1− ξ)p−1 dξ · L‖s‖p+β =
L

(p+ β)!
‖s‖p+β

for all x, s ∈ IRn, which is the required (2.4).

Likewise, for arbitrary unit vectors v1, . . . , vj , choosing ψ(t) = ∇j
xf(x + ts)[v1, . . . , vj ] and

k = p − j,it follows from (A.2), the relationships ψ(p−j)(t) = ∇p
xf(x + ts)[v1, . . . , vj ][s]

p−j and
τp−j(1) = ∇j

sTp(x, s) that

(∇j
x f(x+ s)−∇j

sTp(x, s))[v1, . . . , vj ]

=
1

(p− j − 1)!

∫ 1

0

(1− ξ)p−j−1 (∇p
xf(x+ ξs)−∇p

xf(x)) [v1, . . . , vj ][s]
p−j dξ.

(A.3)

Then picking v1, . . . , vj to maximize the absolute value of left-hand size of (A.3) and using the
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tensor norm (1.1), the Hölder bound (2.2) and the identity (A.1) when k = p− j, we find that

‖∇j
x f(x+ s)−∇j

sTp(x, s)‖[j]

≤
1

(p− j − 1)!

∫ 1

0

(1− ξ)p−j−1

∣

∣

∣

∣

∣

(∇p
xf(x+ ξs)−∇p

xf(x))[v1, . . . , vj ]

[

s

‖s‖

]p−j
∣

∣

∣

∣

∣

‖s‖p−j dξ

≤
1

(p− j − 1)!

∫ 1

0

(1− ξ)p−j−1 max
‖v1‖=···=‖vp‖=1

|(∇p
xf(x+ ξs)−∇p

xf(x)) [v1, . . . , vp]| ‖s‖
p−j dξ

=
1

(p− j − 1)!

∫ 1

0

(1− ξ)p−j−1‖∇p
xf(x+ ξs)−∇p

xf(x)‖[p] dξ · ‖s‖
p−j

≤
1

(p− j − 1)!

∫ 1

0

ξβ(1− ξ)p−j−1 dξ · L‖s‖p−j+β =
L

(p− j + β)!
‖s‖p−j+β

for all x, s ∈ IRn, which gives (2.5). ✷

Proof of Lemma 2.3. The regularization parameter update (2.22) gives that, for each k,

γ1σj ≤ max[γ1σj , σmin] ≤ σj+1, j ∈ Sk, and γ2σj ≤ σj+1, j ∈ Uk,

where Uk
def
= {0, . . . , k} \ Sk. Thus we deduce inductively that σ0γ

|Sk|
1 γ

|Uk|
2 ≤ σk. We therefore

obtain, using (2.23), that

|Sk| log γ1 + |Uk| log γ2 ≤ log

(

σmax

σ0

)

,

which then implies that

|Uk| ≤ −|Sk|
log γ1
log γ2

+
1

log γ2
log

(

σmax

σ0

)

,

since γ2 > 1. The desired result (2.24) then follows from the equality k + 1 = |Sk|+ |Uk| and the
inequality γ1 < 1 given by (2.17). ✷

Proof of Lemma 2.4. We first observe that ∇j
s

(

‖s‖p+β
)

is a j-th order tensor, whose norm is
defined using (1.1). Moreover, using the relationships

∇s

(

‖s‖τ
)

= τ ‖s‖τ−2s and ∇s

(

sτ⊗
)

= τ s(τ−1)⊗ ⊗ I, (τ ∈ IR), (A.4)

defining

ν0
def
= 1, and νi

def
=

i
∏

ℓ=1

(p+ 2− 2ℓ), (A.5)
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and proceeding by induction, we obtain that, for some µj,i ≥ 0 with µ1,1 = 1,

∇s

[

∇j−1
s

(

‖s‖p+β
)]

= ∇s

[

j
∑

i=2

µj−1,i−1νi−1‖s‖
p+β−2(i−1) s(2(i−1)−(j−1))⊗ ⊗ I((j−1)−(i−1))⊗

]

=

j
∑

i=2

µj−1,i−1νi−1

[

(p+ β − 2(i− 1))‖s‖p+β−2(i−1)−2 s(2(i−1)−(j−1)+1)⊗ ⊗ I(j−i)⊗

+((2(i− 1)− (j − 1))‖s‖p+β−2(i−1) s(2(i−1)−(j−1)−1)⊗ ⊗ I((j−1)−(i−1)+1)⊗
]

=

j
∑

i=2

µj−1,i−1νi−1

[

(p+ β + 2− 2i)‖s‖p+β−2i s(2i−j)⊗ ⊗ I(j−i)⊗

+(2(i− 1)− j + 1)‖s‖p+β−2(i−1) s(2(i−1)−j)⊗ ⊗ I(j−(i−1))⊗
]

=

j
∑

i=2

µj−1,i−1νi−1(p+ β + 2− 2i)‖s‖p+β−2i s(2i−j)⊗ ⊗ I(j−i)⊗

+

j−1
∑

i=1

(2i− j + 1)µj−1,iνi‖s‖
p+β−2i s(2i−j)⊗ ⊗ I(j−i)⊗

=

j
∑

i=1

(

(p+ β + 2− 2i)µj−1,i−1νi−1 + (2i− j + 1)µj−1,iνi
)

‖s‖p+β−2i s(2i−j)⊗ ⊗ I(j−i)⊗.

where the last equation uses the convention that µj,0 = 0 for all j. Thus we may write

∇j
s

(

‖s‖p+β
)

= ∇s

[

∇j−1
s

(

‖s‖p+β
)]

=

j
∑

i=1

µj,iνi ‖s‖
p+β−2i s(2i−j)⊗ ⊗ I(j−i)⊗ (A.6)

with

µj,iνi = (p+ β + 2− 2i)µj−1,i−1νi−1 + (2i− j + 1)µj−1,iνi

=
[

µj−1,i−1 + (2i− j + 1)µj−1,i

]

νi,
(A.7)

where we used the identity

νi = (p+ β + 2− 2i)νi−1 for i = 1, . . . , j (A.8)

to deduce the second equality. Now (A.6) gives that

∇j
s

(

‖s‖p+β
)

[v]j =

j
∑

i=1

µj,iνi‖s‖
p+β−j

(

sT v

‖s‖

)2i−j

(vT v)j−i.

It is then easy to see that the maximum in (1.1) is achieved for v = s/‖s‖, so that

‖∇j
s

(

‖s‖p+β
)

‖[j] =

(

j
∑

i=1

µj,iνi

)

‖s‖p+β−j = πj‖s‖
p+β−j . (A.9)

with

πj
def
=

j
∑

i=1

µj,i νi. (A.10)

Successively using this definition, (A.7), (A.8) (twice), the identity µj−1,j = 0 and (A.10) again,
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we then deduce that

πj =

j
∑

i=1

µj−1,i−1νi +

j
∑

i=1

(2i− j + 1)µj−1,iνi

=

j−1
∑

i=1

µj−1,iνi+1 +

j
∑

i=1

(2i− j + 1)µj−1,iνi

=

j−1
∑

i=1

µj−1,i

[

νi+1 + (2i− j + 1)νi
]

=

j−1
∑

i=1

µj−1,i

[

(p+ β + 2− 2(i+ 1))νi + (2i− j + 1)νi
]

= (p+ β + 1− j)

j−1
∑

i=1

µj−1,i νi

= (p+ β + 1− j)πj−1,

(A.11)

Since π1 = p + β from the first part of (A.4), we obtain that πj = (p + β)!/(p − j + β)!, which,
combined with (A.9) and (A.10), gives (2.25). We obtain (2.26) from (A.9) and (A.10), the
observation that πp = (p+ β)! and (A.11) for j = p+ 1. ✷

A.2. Proof of Lemmas in Section 3. Proof of Lemma 3.1. (See [2, Lemma 2.1])
Observe that, because of (2.18) and (2.16),

0 ≤ mk(0)−mk(sk) = Tp(xk, 0)− Tp(xk, sk)−
σk
p+ 1

‖sk‖
p+β

which implies the desired bound. Note that sk 6= 0 as long as we can satisfy condition (2.18), and
so (3.1) implies (2.21) is well defined. ✷

Proof of Lemma 3.2. (See [2, Lemma 2.2]) Assume that

σk ≥
L

1− η2
. (A.1)

Using (2.4) and (3.1), we may then deduce that

|ρk − 1| ≤
|f(xk + sk)− Tp(xk, sk)|

|Tp(xk, 0)− Tp(xk, sk)|
≤

L

σk
≤ 1− η2

and thus that ρk ≥ η2. Then iteration k is very successful in that ρk ≥ η2 and σk+1 ≤ σk. As a
consequence, the mechanism of the algorithm ensures that (3.2) holds. ✷
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