This is the author’s final, peer-reviewed manuscript as accepted for publication (AAM). The version
presented here may differ from the published version, or version of record, available through the publisher’s

website. This version does not track changes, errata, or withdrawals on the publisher’s site.

Understanding the balance of entropy and enthalpy in
hydrogen—halide noncovalent bonding

David Bodesheim, Gregor Kieslich, Mike Johnson,
and Keith T. Butler

Published version information

Citation: D Bodesheim et al. “Understanding the balance of entropy and enthalpy in
hydrogen—halide noncovalent bonding.” Journal of Physical Chemistry Letters, vol. 11,
no. 9 (2020): 3495-3500.

DOI: 10.1021/acs.jpclett.0c00817

This document is the unedited author's version of a Submitted Work that was
subsequently accepted for publication in Journal of Physical Chemistry Letters
copyright ©2020 American Chemical Society, after peer review. To access the final
edited and published work see DOI above.

Please cite only the published version using the reference above. This is the citation
assigned by the publisher at the time of issuing the AAM. Please check the publisher’s
website for any updates.

This item was retrieved from ePubs, the Open Access archive of the Science and Technology
Facilities Council, UK. Please contact epubs@stfc.ac.uk or go to http://epubs.stfc.ac.uk/ for

further information and policies.



https://dx.doi.org/10.1021/acs.jpclett.0c00817
mailto:epubs@stfc.ac.uk
http://epubs.stfc.ac.uk/

Understanding the Balance of Entropy and Enthalpy in Hydrogen-Halide
Non-Covalent Bonding

David Bodesheim
Department of Chemistry, Technical University of Munich,
Lichtenbergstrasse 4, D-85748 Garching, Germany.

Gregor Kieslich
Department of Chemistry, Technical University of Munich,
Lichtenbergstrasse 4, D-85748 Garching, Germany

Mike Johnson
ISIS Facility, Rutherford Appleton Laboratory, Harwell Ozford, Didcot, Ozfordshire OX11 0QX, UK.

Keith T. Butler*
Scientific Computing Department, Rutherford Appleton Laboratory,
Harwell Oxford, Didcot, Ozfordshire OX11 0QX, UK.
(Dated: April 10, 2020)

ABSTRACT

Hydrogen bonds are of great scientific interest, de-
termining the free energy landscape and hence chemi-
cal and physical properties of many materials systems,
for example the hybrid organic inorganic perovskites.
Although these interactions are critical, understanding
them is difficult in complex, multi-component systems;
hydrogen halides are ideal as simple binary model com-
pounds to understand the role of hydrogen bonding in
physical properties like phase transitions. Here we inves-
tigate the orthorhombic low-temperature phase and the
cubic high-temperature phase in HX (X=F, Cl, Br, I) sys-
tems understanding how different hydrogen-halide bonds
influence free energy profiles. We show that hydrogen flu-
oride has a qualitatively different behaviour due to strong
hydrogen bonding and hence very different vibrational
entropy. Heavier halides are in contrast rather similar
in their physical properties, however, dispersion interac-
tions play a more crucial role in these. These results
have implications for rational design of materials with
hydrogen-halide bonds and tuning material properties in
systems like mixed anion CH3NH3PbX3 perovskites.

INTRODUCTION

The growing scientific interest in dense and porous co-
ordination polymers with tailored degrees of structural
flexibility has reminded us about the importance of sup-
posedly weak interactions such as hydrogen bonds and
dispersion forces. [1] Understanding their impact on the
free energy landscape of stimuli responsive materials is as
challenging as it is important, providing experimentalists
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with an entry door for tuning the responsive behaviour of
materials to external stimuli such as temperature, pres-
sure or guest molecules. [2] Examples in which the bal-
ance between these interactions accounts for the tem-
perature and pressure responsive properties span from
ferroelectrics and barocalorics to optoelectronics. For in-
stance, the ferroelectric phase transition in KHyPOy is
related to the formation and loss of hydrogen bonds [3]
and the rich phase evolution in the photovoltaic absorber
material [CH3NH3]PbBrs originates from an interplay
between hydrogen bonds, dispersion interactions and en-
tropic effects[4]. Likewise, the large network flexibility
of some MOF's as a response to an external stimulus in-
volves a complex free energy landscape where dispersion
interactions have found to play an important role.[5, 6]

Recent advances in terahertz spectroscopy and com-
putational materials science have combined to being to
highlight the critical role played by vibrations in the
structure and properties of all solids, but in particular
those with intermolecular interactions. [7] For example,
the evolution of mechanical properties of MOF-5 under
pressure can be tracked by combined theory and exper-
iment [8]. Critical insights into the balance between en-
tropy and enthalphy have also recently been provided by
the application of state-of-the-art desnity functional the-
ory (DFT) calculations on size dependent phase stability
is soft porous nanocrystals. And the study of dynami-
cal properties of MOF's using lattice[9] and molecular[10]
dynamics has provided insights into the structure and
chemistry of MOFs. Nonetheless, the complexity of pa-
rameters which includes periodic and dynamic aspects
such as hydrogen bonding interactions and contributions
from vibrational and configurational entropy challenges
experimentalists and computational scientists.[11-13]

Given this complexity, we decided to go one step
back and revisit the parameters that determine the
thermodynamics of one of the arguably simpler but yet
technologically relevant systems: the binary acids HX



with X = F, Cl, Br and I. In their solid forms these com-
pounds fulfill the definition of a hydrogen bonded system
with X-H- - - A moieties with A = X’.[14] These systems
also provide an unambiguous “toy model” in which to
understand how free energy in non-covalent hydrogen
halide bonds evolves with temperature; an important
factor in understanding composition-structure-property

relationships in hybrid organic inorganic perovskites
(HOIPs).

The binary hydrogen halides have been in the focus of
various crystallographic and spectroscopic studies since
the 1930s. HF crystallises in an orthorhombic Bmb2:b
structure (space group 36, standard notation: Cmc2)
and shows no evidence of a phase transitions until melt-
ing at T = 189.75 K. [15, 16] In solid HF, the dom-
inating structural feature are parallel zig-zag chains of
hydrogen halide units, see Figure 1la. When comparing
HCI and HBr to HF, it can be observed that both have
the same low-temperature groundstate structure as HF.
[17, 18] Interestingly, HBr and HCl both have a cubic
high-temperature phase with space group Fm3m (225),
which can be considered to be an average structure with
12-fold disorder of the H sites due to studies on both DCI
and DBr see Figure 1b. In HCI, the orthorhombic to cu-
bic phase transitions occurs at 98.4 K. [17, 19-23] More-
over, HBr exhibits two additional phase transitions to an
orthorhombic Bbem (64) and cubic phase Pa3 (205), with
transition temperatures of 116.9 K (225 to 205), 113.6 K
(205 to 64) and 89.7 K (64 to 36).[23, 24] In HI, three
crystallographically distinct phases have been observed
in the past. Neutron-experiments on DI and spectro-
scopic investigations of HI suggest a triclinic structure
ground low temperature structure(P1, 2) with stacked
layers of hydrogen-bonded HI squares.[25, 26] In turn,
HI exhibits two phase transitions at 125.7 K (225 to 64)
and at 70.1 K (64 to 2).[23, 24] Figure 1c) summarizes
the different phases in hydrogen halides that have been
reported until today.

In this paper we explore and rationalise the ther-
modynamic factors and microscopic origin of the ob-
served trends in phase transition temperatures of hy-
drogen halides using density functional theory (DFT)
calculations. We begin by considering the bonding en-
thalpy and understanding how the role of dispersion dif-
fers among the halides. By applying lattice dynamic
calculations, we provide an in-depth picture of the un-
derlying free energy landscape and the chemistry of the
different HX compounds with X = F, Cl, Br and I. For
the sake of clarity of comparison, we only consider the
orthorhombic low-temperature phase and the cubic high-
temperature phase as model system. We then discuss the
general trends which emerge from our analysis and briefly
discuss these findings in the context of HOIP design.
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FIG. 1. a) Chain structure of the 36 phase. Black depicts
the atoms in the front-plane and white the atoms in the back-
plane. Big atoms are halides, small are hydrogen. The dashed
line indicates hydrogen bonds. b) Crystal structure of the 225
phase. Black depicts halide and white hydrogen atoms. The
hydrogen in this system is seen as 12-fold disordered which
is demonstrated as an example for the central chlorine atoms
by the grey hydrogen atoms situated along the lines to the
12 nearest neighbours. ¢) Summary of the different phases in
solid hydrogen halides. Numbers indicate space groups.

RESULTS AND DISCUSSION

In a first step, we calculated the hydrogen bonding
energy Eponding for the orthorhombic low-temperature
structure (36) and the cubic high-temperature structure
(225) for all compounds. For obtaining Egending, an HX
unit was removed from the relaxed unit cell of the or-
thorhombic and cubic structures which were taken from
the literature, see Table S2. In a next step, single-point
calculations for the unit-cell with one removed HX unit
and the unit-cell with one single HX unit were performed.
Subsequently, Eponding Was calculated by:

EBonding = EN - (EHX—remm)ed + EHX—single) (1)

where E is the calculated energy of the pristine system,
FEH X —removed 1S the energy of that system with one HX
unit removed and Efx—singie is the energy of the lone
HX unit. This methodology was recently developed by
a few of us to calculate the hydrogen bonding energy for
hybrid inorganic-organic perovskites.[27] To quantify the
influence of dispersion interactions, the same single-point
calculations were performed with the previously used
optimised structure, but without using a van-der-Waals
(vdW) correction and without re-optimising the struc-
ture.  The resulting hydrogen bonding energies are
shown in Figure 2, revealing an increasing importance
of dispersive interactions when going along the series
HF, HCIL, HBr to HI. Interestingly, HF seems to behave
significantly different when compared to the heavier
homologues. In HF, the contribution from dispersion
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FIG. 2. a) Hydrogen-bonding energies in the different HX-
systems and their phases with and without vdW-correction.
Black is the energy without vdW-correction, black+white
is the energy with vdW-correction. b) Melting and boiling
points of the hydrogen halide systems (data from [28]).

interactions is only a small component to the total
energy, whilst in all other HX system it constitutes at
least 50%. The contribution from dispersion increases
as the halide becomes more polarisable, reflecting the
chemists intuition in estimating the character of a chem-
ical bond. Additionally, the general trend in hydrogen
bonding energies is correlated with the trends of melting
and boiling points of the HX systems, see Figure 2b,
nicely highlighting the importance of hydrogen bonding
interactions.

In the bigger picture, a different behaviour of HF com-
pared to the other homologues can be observed. The
different nature of dispersion interactions in HF is a first
clue to the origins of this, but as we will see, a dynamic
will reveal additional insight. Therefore, we now move
beyond a static lattice picture and study the vibrational
properties of the HX systems to rationalise the thermo-
dynamic factors that determine the free energy landscape
of these systems and in turn the phase transitions ener-
getics. We will begin by calculating the phonon density
of states (pDoS) and the resulting quantities such as the
vibrational entropy (Syi) and the Gibbs free energy (G).
The calculated G follows the same trend as observed ex-
perimentally, i.e. HF has no phase transition, and the
transition temperature from orthorhombic to cubic in-
creases in the order Cl < Br < L.

From the pDoS we can calculate the vibrational en-
ergy (Eyip) and Sy;p.[29] By including a configurational
entropy term, Scony = RIn), with Q as the number
of microstates,[30] which corresponds to the number of
different configurations of the HX moiety in the cubic
structure, and the ideal gas constant R, we can obtain
the Gibbs free energy G of both phases and predict phase
transition temperatures:

G= EN + Em’b - T(Sm'b + Sconf) (2)

The term E is the potential energy of the crystal when
atoms are at equillibrium positions. S, is calculated
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FIG. 3. Calculated difference in Gibbs free energy and dif-
ference in —T - S for a number of configurations of Q2 = 12
for the high-temperature phase 225 with AG = Gs6 — G225
shown as black solid line and AS = Sz — S225 shown as
blue dashed line. The stability region of the low-temperature
phase is highlighted in green and the stability region of the
high-temperature phase in red. For transition temperatures
for different values of €2, see Figure S1.

from the pDoS of all phonon modes according to

Suin(T) = 3 / " 9@ {[n() + 1 Infn() + 1]
—n(e)n[n(e)]}de

(3)

where kp is the Boltzmann constant, g(¢) is the normal-
ized pDoS with energy e, n(e) = [exp(e/kgT) — 1]71,
which is the Bose-Einstein population of an energy ¢ at
temperature T, and € = hw being the energy at mode
frequency w. Figure 3 shows the difference in G, the
difference in —7" - .S and the resulting stability regions of
the different phases. In agreement with the experiments,
no stable cubic phase is observed for HF. In the other
halides, there is a phase transition from orthorhombic
to cubic. HCI has the lowest transition temperature,
followed by HBr and HI, which is also in agreement
with the experimental observations. In all the halide
systems —TAS (with AS = S3g — Sa95) is positive and
hence AS < 0, meaning that greater entropy in the 225
phase drives the phase transition (S3g < Sa25). AS has
two contributions ASconr and ASyip; AScons is always
negative, and is the same for all of the systems. There
is a noticeable difference in the AG and AS of HF,
where there is no predicted phase transition and the
entropy difference between phases is significantly smaller
than in the other hydrogen halides. This means that
the ASy;, term in HF must differ significantly from the
other halides, as all other factors are constant. We now
examine the vibrational modes to gain deeper insight to
the origins of this difference.

The 9 lowest energy vibrational modes are classified by
motion type in Figure 4 (also Table S1). Figure 5 clearly
demonstrates that these modes account for almost all of
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FIG. 4. Outline of the assigned modes. Black shows the atoms
in the front-plane and white the atoms in the back-plane.
Big atoms are halides, small are hydrogen. The dashed line
indicates hydrogen bonds. Motions to the back are indicated
with a cross, motions to the front with a circle. Size indicates
approximate amplitude.

the vibrational entropy in the materials due to the inverse
exponential dependence of entropy on the frequency. The
pDoS and S, at different temperatures are given in Fig-
ure 5 with insets of the assigned modes. All other high-
frequency modes are solely hydrogen motions and were
not further assigned due to their negligable contribution
to the vibrational entropy.

The modes in HF are more significantly more spread

out than in the other hydrogen halides, especially at
higher energies. For the orthorhombic phase of HCI two
peaks in the pDoS can be observed (Figure 5) below
5 THz which merge together when going to HBr and
HI. This can be explained by an increase of the reduced
mass of the harmonic springs, pulling the energies (fre-
quencies) towards lower values. This trend is also seen
for the modes F', G, H and I. In HCl and HBr, these
modes can be clearly distinguished as separate peak in
the pDoS, whilst in HI, they are energetically very close
to the other modes. A similar but less pronounced trend
can be seen in the high-temperature phase, see Figure
S3.
HF has a significantly different pDoS with modes F,
G, H and I at notably higher energies compared to
the heavier HXs. These modes involve stretching or
compression of intermolecular hydrogen bonds, see
Figure 4. As pointed out earlier, the hydrogen bonds are
very strong in HF compared to the other halides, or in
other words, the bonds have greater force constants. In
combination with a lighter reduced mass this results in
the significantly higher frequency of these modes. This
qualitative difference in the vibratrional frequencies of
the hydrogen-halide bond is a first clue to the origin of
the different phase-transition behaviour in HF; however,
as the phase-transition depends on the difference AG
between the phases, we need to look into the difference
in vibrational entropy AS,;, and hence ApDoS.

ApDoS, AS,;, and the respective integrated quantity

AS,;, with respect to the frequency are shown in Figure
6. It can be seen that in the HX systems other than
HF the differences in the low frequency contributions
(below 8 THz) of the vibrational entropy more-or-less
cancel out. Comparing AS,;, with the assumed con-
figurational entropy of the high-temperature phase
(Seonf = RIn(12) =~ 20.7 JK 'mol™!), shows that
in HCI, HBr and HI the influence of the vibrational
entropy is indeed very small. This means, that the main
phase-transition behaviour for heavier halides arises
from Scong, which supports the idea of the disorder
representation of the 225 phase.
The vibrational entropy difference in HF has to be large
to counteract the configurational entropy in order to
give rise for the difference —T'AS behaviour in Figure
3. In Figure 6 it can be seen that S, is positive (at
300 K), meaning that the low-temperature phase has a
greater vibrational entropy than the high-temperature
phase. Because modes F, G, H and I are of such high
energy in HF that they do not contribute strongly to
Syip- In the other halide systems, these modes are due
to the weaker HX bond of lower energy and contribute
to a balanced difference in vibrational entropy between
phases.

These results can be used as a basis for understanding
how halide exchange can be used as a handle to tune the
bonding enthalpy and entropy in hydrogen-halide bonded
materials. The HF bond is quantitatively and qualita-
tively extremely different to the other hydrogen halides.
In HF the hydrogen bond is very strong and stiff and
hence its high-frequency modes do not contribute heav-
ily to the vibrational entropy. The strength of hydrogen
bonds in HF also means it affects the balance in vibra-
tional entropy between orthorhombic and cubic struc-
tures in HF, revealing that the vibrational entropy is
greater in the orthorhombic phase of HF than in the cu-
bic phase, and helping to explain the lack of a solid-solid
phase transition with increase temperature in this mate-
rial. The heavier halides (Cl, Br, I) all have hydrogen
bond modes that are low enough in frequency to have
a significant contribution to vibrational entropy at room
temperature and below. The vibrational entropy contri-
bution in the heavier halides is relatively similar across
the series and it has also been shown that the hydrogen
bond strength does not vary significantly with the heavier
halides. These have a greater influence from dispersive
forces and less from their weaker hydrogen bonds.

In the context of materials with hydrogen-halide
bonds like HOIPs, where the balance of hydrogen bond
strength to vibrational entropy has been shown to have
profound effects on phase transitions,[4] these findings
are important for targeted materials design. These
results indicate that substitution of heavier halides can
be executed with little effect on the energies of phase
transitions in HOIPs to achieve other property changes,
for example band gap tuning.[31, 32] On the contrary
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modes depicted in Figure 4 are indicated on the plots.
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F substitution can be used to tune phase stabilities
significantly.

In conclusion we have presented a series of first princi-
ples calculations to probe the entropy/enthalpy relation-

ship in hydrogen-halide bonds. We calculated vibrational
entropy and analysed this in terms of the normal modes
of the systems. This analysis of simple binary systems al-
lows us to draw inferences which can be hidden in more
complex multi-component systems. The principles un-
covered, however have implications for materials design
in these more complex systems, and tuning of phase tran-
sition temperatures and other physical properties (e.g.
optical absorption or emission) can be decoupled by ju-
dicious choice of halide anions.

METHODS
Generating structures

As discussed earlier, there are or might be several
phases associated with different hydrogen halides. The
low-temperatures structure (space group number 36) is
well defined and X-ray diffraction (XRD) data is often
available. However, the other phases might have disor-
der and hence have no simple way to represent them.
The cubic high-temperature phase with the space group
number 225 has for example in the XRD-data a rocksalt
structure. The crystallographic structure is most prob-
ably a dynamic average of disorderd H positions. To
achieve a static representations the hydrogen atoms were
displaced so that they recreate the chain-structure in the
low-temperature phase, but with the halide atoms are
still on fcc positions, see Figure 7. Table S2 summarises
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FIG. 7. Displacement of the hydrogen atoms from a rocksalt-
structure to a cubic pseudo 36 structure (color code: black -
halide, white - hydrogen).

the sources and the methods with which each of the struc-
tures was generated.

DFT calculations

All DFT calculations were performed with the Vienna
Ab Initio Simulation Package (vASP) [33] with the Gener-
alized Gradient Approximation (GGA) level with a PBE
functional.[34] An energy-cutoff of 650 eV, k-spacing of
0.15 and an energy-difference as stopping condition for
the SCF cycle of 1.00e-6 was chosen. Additionally, the
force-difference stopping criterion for the relaxation was

set to 1.00e-2 and a DFT-D3 method with Becke-Jonson
damping was used as vdW correction.[35] First, ions were
relaxed, then the ions and the cell shape and finally the
ions, the cell shape and the cell volume. In order to sus-
tain the cubic symmetry, the procedure for the cubic 225
phase was changed. Here, ions were relaxed first and
then only the cell volume.

For the phonon calculations, 2 x 2 x 2 super-

cells were used. Displacements were generated with
PHONOPY (version 1.40) with a displacement amplitude
of 0.01 A.[36] The single displaced structures were calcu-
lated with vAspwith one ionic relaxation step.
The calculation of the pDoS, vibrational entropy and
free energy were performed by using a 8 x 8 x 8 mesh
in PHONOPY. We would like to note that with GGA level
calculations in the closely related systems Bro and Iy er-
roneous dynamic instable ground state structures were
found due to high delocalization.[37] However, as HX
systems are rather localized, dispersion corrected GGA
calculations are sufficient, also indicated by the absence
of imaginary modes.
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