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Multipole orders and Bragg diffraction patterns for the chain ferrate Na2FeSe2
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Fundamental block and staggered orders of magnetic Fe multipoles in Na2FeSe2 are classified by their symme-
try and magnetoelectric properties. Our minimal structure models incorporate ferromagnetic or antiferromagnetic
coupling between chains, and they are not compatible with axial ferromagnetism. The ferrate salt is valued in
studies of highly correlated electrons as the only iron selenide known to possess chainlike structural units hosting
ferrous cations. Axial and polar (Dirac) multipoles are compulsory in the electronic structure since Fe ions
exhibit enantiomorphic symmetry in the parent K2ZnO2-type compound. Calculated Bragg diffraction patterns
for neutrons and x rays prove that the techniques can unlock individual contributions from both multipole types.

DOI: 10.1103/PhysRevB.103.134425

I. INTRODUCTION

This paper is a contribution to an ongoing quest for
a deeper understanding of electronic properties of mag-
netic materials with captivating properties. We make use of
symmetry-based techniques capable of unveiling fundamental
aspects of a material without approximations that are in-
evitable in specific calculations, e.g., application of one of
the many band structure methods. In our case, magnetic prop-
erties are formulated in terms of axial and polar multipoles
that encapsulate electronic spin, orbital, and spatial degrees
of freedom in the ground state. Motifs of multipoles are fully
defined by magnetic space groups.

Axial multipole types represent conventional magnetism in
the sense of its appearance in ichorlike hematite (α-Fe2O3)
and famed lodestone worried and written about in Greek texts
in 315 BC to Gilbert of Colchester, the father of magnetism, in
the 16th century, to Dzyaloshinskii, in 1958 who gave a phe-
nomenological theory of weak ferromagnetism. Polar (parity
odd) magnetism is a relatively new discovery and intimately
related to the property of electrically induced magnetization
[magnetoelectric effect (ME)] measured for the first time in
1960 using a sample of Cr2O3. In this paper, we classify axial
and polar multipole orders by their magnetic symmetry and
ME response and predict their contribution to Bragg diffrac-
tion patterns available from illumination by beams of neutrons
or x rays. Our results confirm that diffraction techniques can
unlock many aspects of the magnetic properties of Na2FeSe2.
For the moment, there is scant knowledge about the chalco-
genide apart from its crystal structure because large samples
are not yet available [1].

The chain ferrate salt Na2FeSe2 has aroused interest
because it hosts ferrous cations and presents chainlike
structural units [1,2]. These properties are not shared by
iron-based superconductors that have been shown to possess

*stephen.lovesey@stfc.ac.uk

unusual magnetic orders [3,4], or TlFeS2 [5] and selenide
semiconductor TlFeSe2 [6], which appear to contain quasi-
one-dimensional units. The two-leg ladder selenide BaFe2Se3

hosts ferrous ions, however, and it supports a complicated
magnetic order that remains to be fully resolved [7,8]. The va-
riety of unusual magnetic phases presented by iron selenides is
attributed to the interplay of spin, orbital, and lattice degrees
of freedom, and orbital-lattice mechanisms are effective for
the atomic configuration d6 with its single electron outside a
closed shell.

Electrical and magnetic properties of hematite and
chromium sesquioxide (Cr2O3) serve as orientation to prop-
erties of block and staggered states of Na2FeSe2 delineated
in Sec. III. Hematite and Cr2O3 have the centrosymmetric
corundum structure with Fe and Cr ions in enantiomorphic
sites (3, C3), and likewise, the parent crystal structure of
Na2FeSe2 is centrosymmetric with Fe ions in enantiomorphic
sites. Furthermore, signatures of axial dipole moments along
the trigonal axis are block and staggered for hematite and
Cr2O3, respectively. The former is nonmagnetoelectric (high-
temperature modification, 260–950 K, magnetic crystal class
2/m), whereas Cr2O3 is a paradigm for the linear ME effect
(magnetic crystal class 3̄′m′). The ME effect allows a mag-
netic field to control electric polarization and an electric field
to control magnetization by engaging magnetic degrees of
freedom that violate both space-inversion and time-inversion
symmetries.

Fundamental block and staggered states in Na2FeSe2, with
ferromagnetic or antiferromagnetic couplings between chains,
are here classified by a magnetic crystal class and a ME
property. The compound is immediately interesting in the
family of iron superconductors on account of a chainlike
chemical structure, rather than ladderlike structure, and an
atomic configuration that is not ferric. Two of 12 possible
motifs in Na2FeSe2 are illustrated in Figs. 1 and 2, and all
our classifications are listed in Table I. Axial dipoles are used
in the labeling of motifs. Stabilization of a block motif, as
in Fig. 1, is robust in a simulation of electronic structure [2].
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FIG. 1. Block state (I) in Na2FeSe2 with antiferromagnetic cou-
pling between chains and axial dipole moments parallel to the b
axis (shorthand bβ ). Magnetic space group PCna21 (No. 33.151, BNS
setting [29]), basis (b, −a, 2c) and propagation vector k = (0, 0, 1

2 ).

While a block-type motif is well established in iron ladder
compounds, it has yet to be observed in a chain compound. A
staggered state of dipoles is depicted in Fig. 2. Alongside axial
dipoles, one must consider anapoles. A toroidal anapole, more
generally a Dirac dipole, is depicted in Fig. 3. Beyond dipoles
(multipole rank 1) are axial and polar multipoles that are
likely invisible in laboratory-based measurements. Our Bragg
diffraction patterns for neutrons and x rays calculated for 12
possible motifs prove that contributions from the multipole
types—axial and polar of rank 2 and higher—are open to
observation and uniquely defined.

Neutron and x-ray Bragg diffraction methods are tried and
tested mainstays in studies of magnetism since conciliation
of crystal symmetry and magnetic phenomena strongly in-
fluences properties of a material. Neutrons are established as
the first choice for the configuration of magnetic dipoles and
distribution of magnetization, from Bragg diffraction patterns,
and spectra of magnetic excitations, from inelastic scattering.
For processes involving x-ray absorption and scattering, the
content of the measured signal attributable to the magnetic

FIG. 2. Staggered state (II) with antiferromagnetic coupling be-
tween chains and axial dipole moments parallel to the b axis
(shorthand bβ ). Space group Ib′am (No. 72.541 [29]), magnetic
crystal class mmm′, basis (−b, a, c) and propagation vector k =
(0, 0, 0). A net anapole moment along the b axis is allowed.

TABLE I. Magnetic crystal classes are not compatible with fer-
romagnetism. Category (I) is polar (mm21′) and categories (II) and
(III) are centrosymmetric (mmm′ and mmm1′). Ferromagnetic and
antiferromagnetic couplings between chains are labeled α and β,
respectively. Magnetic space groups are specified in BNS setting
[29]. All staggered states use site symmetry 22′2′ for Fe ions with
the dyad rotation operation 2 on the axis to which dipoles are aligned.
Block states use site symmetry 2′

c for dipoles aligned along the a and
b axes, and 2c for alignment with the c axis. Shorthand bβ represents
dipoles aligned along the b axis with antiferromagnetic coupling
between chains, etc. Base vectors for each multipole order are listed.

(I) Block states: PCnn2 (No. 34.161) cα (a, b, 2c): PCba2 (No.
32.139) cβ (a, b, 2c):

PCna21 (No. 33.151) aα and bβ (b, −a, 2c); aβ and bα (a, b, 2c)

(II) Staggered states: Ib′am (No. 72.541) aβ (a, b, c); bβ (−b, a, c):
Ibam′ (No. 72.542) cβ (a, −b, −c)

(III) Staggered states: PI bcm (No. 57.392) aα (a, b, c); bα (b, a,
−c):

PI ccn (No. 56.376) cα (a, b, c)

properties of the sample, altogether, is pale and insignificant
in its intensity compared to the intensity of contributions
to the signal arising from electrical charge. At least for the
moment, success in studying magnetic properties with x-ray
beam techniques hinges on adopting a scheme to enhance
the magnetic signal with respect to the charge signal. In
absorption experiments, one exploits the sensitivity of the
attenuation coefficient to the condition of the polarization
in the primary beam, a so-called dichroic effect. A scheme
for enhancing scattering signals is to tune the energy of the
primary photon beam to the energy of a resonance in the
magnetic ion of interest. Resonance-enhanced scattering, as
it is sometimes called, has proved useful in a raft of studies of
magnetic materials.

Development of a theory of magnetic neutron scattering
has been an uneven ride. Prior to the Second World War,
two Nobel Laureates created two different versions of the
interaction operator, denoted here by Q. Results by Bloch
[9] and Schwinger [10] were eventually found in favor of

FIG. 3. Depiction of a toroidal (Dirac) dipole. Axial dipoles are
used in Figs. 1 and 2.
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Schwinger by Migdal [11]. The next big step came in 1953
when Trammell [12] reported the expectation value 〈Q〉 suit-
able for the interpretation of Bragg diffraction patterns by rare
earth and actinide materials with significant amounts of orbital
magnetism. A calculation by Johnston [13] and Johnston and
Rimmer [14] in 1966 turned in a seemingly different result for
the same entity. Shortly thereafter, it was shown that the two
results for 〈Q〉 are indeed identical when Trammell’s result for
its orbital contribution is made gauge invariant [15]. In this
communication, our method of working follows in the steps
of Johnston’s analysis [13,14,16].

Work by Hannon et al. and Luo et al. [17] on resonance-
enhanced x-ray diffraction laid the foundation for studies of
magnetic materials. Two papers provide the correct photon-
electron mechanism and a theoretical development of the
scattering amplitude in terms of axial magnetic multipoles.

Long-range magnetic order in a material is conventionally
characterized by a motif of axial dipole moments. The dipoles
in question are expectation values of the magnetic moment
μ = (2S + L), where S and L are electronic spin and orbital
operators, respectively. If dipole moments are zero, the motif
is often labeled a hidden magnetic order or perhaps symmetry
protected simply because it is not detected in observations
conducted in the laboratory. While dipole moments might be
forbidden by symmetry, the same ruling need not apply to
expectation values of magnetic multipoles of higher rank, e.g.,
magnetic quadrupoles and octupoles might be different from
zero. Fortunately, higher-rank axial and polar multipoles can
be observed with beams of neutrons and x rays.

Properties of multipoles are ruled by 1 of the 122 magnetic
point groups that delineate symmetry of a site in a magnetic
ion. Multipoles mentioned in the previous paragraph are parity
even (axial). Bulk properties of a magnetic crystal, e.g., the
Kerr effect, are prescribed by the magnetic crystal class that
is formed by the union of site symmetry (a point group) and
translation symmetry in the motif. The Kerr effect can occur in
the absence of a ferromagnetic motif of axial dipoles revealed
by magnetic Bragg spots indexed on the chemical structure.
If so, it arises from polar magnetism composed of Dirac mul-
tipoles. Such multipoles are products of time-odd electronic
operators, S or L, and the time-even electric dipole operator R,
with final products magnetoelectric (time odd and parity odd).
Expectation values of the spin anapole �S = S × R or orbital
anapole �L = (L × R − R × L) may exist in this second sce-
nario for magnetism, and a primary order parameter includes
both axial and polar multipoles in the general case. Axial
magnetism can be entirely forbidden, however, with allowed
magnetism solely due to Dirac multipoles. A state of pure
magnetic charge in a material is the assured outcome when
magnetic ions occupy sites that possess inversions of space
and time as conjugate symmetry operations. In such cases,
anti-inversion 1′ is an element of site symmetry, and axial
multipoles of any rank are forbidden. Of the 122 magnetic
point groups, 21 contain anti-inversion 1′, and conventional,
axial magnetism is absent. Magnetic charge, epitomized by a
magnetic monopole, is notable by its absence in Maxwell’s
equations that unite electricity and magnetism. Artificially
inserted in the equations, with symmetries of the electric and
the magnetic field unchanged, magnetic charge is both time
odd and parity odd, like Dirac’s magnetic monopole. A Dirac

monopole (S · R) can contribute to x-ray scattering, but it is
forbidden by symmetry from contributing to neutron scatter-
ing. A monopole using L does not exist because L and R are
orthogonal operators and (L · R) = 0.

II. MATERIAL PROPERTIES

Na2FeSe2 is composed of chainlike structural units in
an I-centered orthorhombic K2ZnO2-type structure, with
symmetry mmm (D2h) [1]. Edge-sharing (FeSe4) tetrahedra
occupy the chemical structure Ibam (No. 72) with Fe (4a)
at {(0, 0, 1

4 ), (0, 0, 3
4 )}. Cations Fe2+

are likely to have the
high-spin 5D, J = 4, 3d6 atomic configuration. Atomic 3d
states of a ferrous ion and the K2ZnO2-type crystal structure
are nicely illustrated in fig. 8 of Ref. [1].

There is growing conviction that Na2FeSe2 possesses mag-
netic states with signatures ↓↓↑↑↓↓ and ↓↑↓↑ for dipoles
situated on a chain [1,2]. Yet no mention to date of the in-
escapable fact that magnetic dipoles are axial moments and
anapoles. For ferrous ions (Fe2+) in the parent compound
occupy enantiomorphic sites (222 (D2) point symmetry), and
both axial and Dirac magnetic multipoles are present with the
onset of magnetic order.

III. MODEL STRUCTURES

Multipole orders in Na2FeSe2 are derived from dipole mo-
ments parallel to crystal axes. Bulk axial ferromagnetism is
absent. Twelve orders in the minimal model are classified by a
magnetic crystal class and a ME property, which is a principal
result of our study. (I) Polar mm21′ with time reversal 1′
permits a spontaneous dielectric polarization and a nonlinear
ME effect; (II) centrosymmetric mmm′ with anti-inversion 1̄′
and a linear ME effect akin to the magnetic state of Cr2O3;
(III) centrosymmetric mmm1′ with all three inversions 1̄, 1′, 1̄′,
and any kind of ME is prohibited. Categories (I) and (III) are
antiferromagnetic motifs with nontrivial Bravais lattices de-
fined by propagation vectors k = (0, 0, 1

2 ) and k = (1, 1, 1),
respectively. A ferroelectric state allowed in (I) is realized in
boracites, for example. Category (II) possesses a trivial anti-
ferromagnetic motif with k = (0, 0, 0). All six block states
↓↓↑↑↓↓ under consideration belong to (I), while staggered
states ↓↑↓↑ are divided between (II) or (III), the difference
being antiferromagnetic (II) or ferromagnetic (III) coupling
between chains. Magnetic space groups for the multipole or-
ders are gathered in Table I.

IV. BRAGG DIFFRACTION PATTERNS

A structure factor for diffraction is �K
Q =

[exp(iκ · d)〈OK
Q〉

d
], where the Bragg wave vector κ is

defined by integer Miller indices (h, k, l), and the implied
sum in �K

Q is over all Fe sites d in a magnetic unit cell.
An electronic multipole 〈OK

Q〉 of rank K with projections
−K � Q � K possesses discrete symmetries [Cartesian and
spherical components of a dipole R = (x, y, z) are related
by x = (R−1 − R+1)/

√
2, y = i(R−1 + R+1)/

√
2, z = R0].

In the case of magnetic diffraction, a multipole is time odd
(σθ = −1) and parity even (σπ = +1, axial) or parity odd
(σπ = −1, Dirac multipole). Bulk signals are proportional to
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�K
Q evaluated for κ = 0, and examples include net electric

dipole and anapole motifs allowed in categories (I) and (II),
respectively. Structure factors for magnetic multipoles in
category (I) are zero for Miller index l even irrespective of
their parity.

First, we consider diffraction by six multipole orders in
category (I). Following notation used in Table I, ferromagnetic
(antiferromagnetic) coupling between chains is labeled α(β ).
Corresponding dipoles along the a and b axes are denoted by
shorthand aα (aβ ) and bα (bβ ). Four block states conforming
to these dipole motifs all belong to space group PCna21 (No.
33.151 BNS), and bβ is depicted in Fig. 1. The corresponding
structure factor is

�K
Q(33.151) ∝ [1 + (−1)lσθ ][〈OK

Q〉 + (−1)h+k (−1)Kσθ

× σπ 〈OK −Q〉]. (1)

Projections Q are odd, and 〈OK
−Q〉 = (−1)Q〈OK

Q〉∗ = −〈OK
Q〉∗.

Base vectors (a, b, 2c) and (b, −a, 2c), with site symmetry 2′
c,

apply to block states using aβ , bα and aα , bβ , respectively.
Symmetry constraints mentioned apply to axial and Dirac
multipoles, e.g., Eq. (1) applies to axial moments and anapoles
on taking K = 1 and the appropriate values of time and parity
signatures. The time signature is included in Eq. (1) since our
electronic structure factors describe both Thomson scattering
and resonance enhanced diffraction of x rays [22], in addition
to magnetic neutron diffraction (σθ = −1). The selection rule
l odd applies for magnetic diffraction, and it corresponds to a
propagation vector k = (0, 0, 1

2 ). Referred to Miller indices
for the parent structure (Ho, Ko, Lo) and base vectors (a, b,
2c), it follows that h = Ho, k = Ko, l = 2Lo with Lo half-
integer. Diffraction amplitudes for axial dipoles and anapoles
in the basal plane are 90◦ out of phase, and corresponding
intensities add. Moreover, the two dipoles are orthogonal, and
relative contributions are changed by the choice of Miller
indices h and k.

The structure factor Eq. (1) applies to the block state cα

described by PCnn2 (No. 34.161) with base vectors (a, b, 2c)
and site symmetry 2c. Thus, projections Q are even integers.
In consequence, dipoles (K = 1, Q = 0) obey strict selection
rules h + k even (axial) or h + k odd (anapole). Selection
rules for diffraction by the block state using cβ are derived
from PCba2 (No. 32.139). Base vectors and site symmetry
for cα and cβ are the same. However, σθ does not occur as
a coefficient of 〈OK −Q〉 in �K

Q (32.139), which is otherwise
the same as Eq. (1), and dipole selection rules are the reverse
of those already mentioned for �K

Q (34.161).
Turning to staggered multipole orders (II) and (III), the

electronic structure factor

�K
Q(57.392) ∝ 〈OK

Q〉[1 + (−1)lσθσπ ][1 + (−1)h+k+lσθ ],
(2)

with Q odd is appropriate for the staggered state using dipoles
aα and bα . Site symmetry 22′2′ applies with base vectors (a,
b, c) and (b, a, −c) for aα and bα , respectively. I-centering
is violated by multipole order (III) with propagation vector
k = (1, 1, 1), and the selection rule on l distinguishes be-
tween diffraction by axial (σθσπ = −1) and Dirac (σθσπ =
+1) types. The latter feature is common to all staggered
states under consideration. I-centering is restored in category

FIG. 4. Radial integrals for neutron diffraction by magnetic
dipoles calculated using Cowan’s atomic code [20]. 〈 j0(κ )〉 in black
for equivalent electrons 3d6 accompanies the magnetic moment.
Atomic configuration Fe(3d6)-Fe(4p1) is used for anapole radial
integrals: (red) [w(g1)]; (green) (h1); (blue) [w( j0)], where the di-
mensionless wave vector w = 3aoκ and ao is the Bohr radius. κ =
[(4π/λ) sin(θ )], where λ and θ are the neutron wavelength and Bragg
angle, respectively, cf. Fig. 5. Both (g1) and ( j0) diverge in the limit
w → 0, and values displayed are multiplied by w. Integrals (g1),
(h1), ( j0) accompany dipoles iR, �S , �L , respectively, in the Dirac
dipole D.

(II) using aβ and bβ described by �K
Q (72.541), which is the

same as Eq. (2) apart from replacement of the antitranslation
selection rule by I-centering. Base vectors are (a, b, c) and
(−b, a, c) with site symmetry 22′2′ for aβ and bβ , respectively,
and a motif is depicted in Fig. 2. A net anapole moment is
allowed, i.e., �K

Q evaluated for κ = 0 and σθσπ = +1 can be
different from zero. Staggered states using dipoles aligned
with the c axis have even projections Q from site symmetry
2′2′2. Implementing this site symmetry, we find �K

Q (56.376)=
�K

Q (57.392) for cα and base vectors (a, b, c). Finally, the stag-
gered state using cβ belongs to multipole order (II) described
by �K

Q (72.542) with base vectors (a, −b, −c).
Necessary conditions on Miller indices for diffraction

to occur include: (I) (−1)l = σθ ; (II) (−1)l = σθσπ ; (III)
(−1)l = σθσπ with (−1)h+k = σπ . The individual conditions
are consistent with an absence of bulk axial ferromagnetism.

V. NEUTRON DIFFRACTION

Interaction between neutrons and unpaired electrons is
simple to formulate for small values of the scattering wave
vector κ [18]. Most authors analyze experimental data for
elastic (Bragg) and inelastic scattering with an approxima-
tion to the interaction operator Q proportional to {μ〈 j0(κ )〉},
where the radial integral 〈 j0(κ )〉 is displayed in Fig. 4 [19].
An improved approximation {〈J〉[g〈 j0(κ )〉 + (2−g)〈 j2(κ )〉]},
where g is the Landé splitting factor, and the two radial
integrals satisfy 〈 j0(0)〉 = 1 and 〈 j2(0)〉 = 0, is more appro-
priate for the analysis of Bragg diffraction patterns composed
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of many spots extending to large κ . Beyond dipoles, the
quadrupole (K = 2) proportional to 〈 j2(κ )〉 is zero for states
in a J manifold, while the octupole (K = 3) has a form factor
that includes 〈 j4(κ )〉. It is compulsory to add Dirac multi-
poles to the foregoing axial multipoles when magnetic ions
occupy acentric sites. The Dirac dipole D contributes a term
{i(κ × D)/κ} to Q. The dipole is a sum of a spin anapole
�S , orbital (toroidal) anapole �L and iR. Radial integrals that
accompany each dipole are displayed in Fig. 4 [20]. Figure 3
depicts a toroidal (Dirac) dipole. Dirac quadrupoles account
for magnetic neutron diffraction by the pseudogap phases of
ceramic superconductors YBCO and Hg1201 [21].

Let us consider an antiferromagnetic state with axial
dipoles and anapoles aligned along the crystal c axis. Our
notation for the multipole order is cβ and staggered (II). In
this case, ferrous ions occupy sites 4a in magnetic space group
Ibam′ (No. 72.542) with base vectors (a, −b, −c). Projections
Q of multipoles 〈OK

Q〉, both axial and polar, are restricted to
even values by virtue of a rotation element 2c in site symmetry
2′2′2. Dyads parallel to the a and b axes are therefore equiv-
alent, and symmetry 2′

a demands 〈OK
Q〉 = (−1)Kσθ 〈OK

−Q〉 =
(−1)K+1〈OK

Q〉∗. The appropriate electronic structure factor is
derived from Eq. (2) by installing I-centering, i.e., Miller
indices h + k + l even. Index l is even (odd) for parity-odd
(even) multipoles, meaning �K

Q evaluated for h = k = l = 0
can be different from zero for σθσπ = +1. Specifically, a net
anapole moment parallel to the c axis is allowed by symmetry.

Assuming atomic states are drawn from a J manifold,
parity-even multipoles 〈T K

Q 〉 have an odd rank [18]. Restrict-
ing attention to dipoles and octupoles,

〈
Q(+)〉

a ≈
√

210pa pc

[
〈T 3+2〉 −

√(
3

10

)〈
T 3

0
〉]

,

〈Q(+)〉b ≈ −
√

210pb pc

[
〈T 3+2〉 +

√(
3

10

)〈
T 3

0
〉]

,

〈
Q(+)〉

c ≈ 6
〈
T 1

c
〉
, (3)

where the superscript denotes σπ = +1. The amplitude for
magnetic diffraction 〈Q⊥〉 = {p × (〈Q〉 × p)} with a unit vec-
tor p = κ/κ , and pa ∝ h, pb ∝ −k, pc ∝ −l in the present
case. Results in Eq. (3) can be derived from published uni-
versal expressions [18]. A useful approximation for the dipole

〈
T1

〉 ≈
(

1

3

)
{2〈S〉〈 j0(κ )〉 + 〈L〉[〈 j0(κ )〉 + 〈 j2(κ )〉]}, (4)

is consistent with a previously quoted estimate. Octupoles
in Eq. (3) are purely real and proportional to [〈 j2(κ )〉 −
( 4

3 )〈 j4(κ )〉] for 3d6. Powder diffraction intensity is derived
from the general result(

1

4
π

) ∫
d




κ
{〈

Q⊥(+)〉 · 〈
Q⊥(+)〉}

=
∑
K,Q

[
3

(2K + 1)

]∣∣〈T K
Q
〉∣∣2 +

∑
K ′,Q′

[
3

(K ′ + 1)

]∣∣〈T K ′
Q′

〉∣∣2
,

(5)

with K even (= 2, . . . , 2lo) and K ′ odd (= 1, 3, . . . , 2lo +
1), where lo is the orbital angular momentum of the atomic
shell.

A leading-order approximation to the parity-odd amplitude
with Miller index l even is〈

Q⊥(−)〉
a ≈ 4ipb〈D〉c,

〈
Q⊥(−)〉

b ≈ −4ipa〈D〉c,〈
Q⊥(−)〉

c ≈ −
(

24√
5

)
pa pb pc

〈
H2+2

〉
. (6)

The orbital-spin quadrupole 〈H2+2〉 is purely imaginary and
proportional to the radial integral (h1) displayed in Fig. 4,
which also accompanies the spin anapole in the Dirac dipole.

We choose the electronic structure factor Eq. (1) to illus-
trate diffraction by a block state in category (I). Site symmetry
2′

c demands that projections Q are odd. Miller index l is odd,
and h + k is taken to be even. Restricting attention to dipoles,
we find

〈Q⊥〉a ≈ −pa pb
〈
Q(+)〉

b,

〈Q⊥〉b ≈ −[
1 − pb

2
]〈

Q(+)〉
b + 4ipc〈D〉a,

〈Q⊥〉c ≈ −pb pc
〈
Q(+)〉

b
− 4ipb〈D〉a, with〈

Q(+)〉
b ≈ −6

〈
T1

〉
b. (7)

Components of axial and polar dipoles are here parallel to the
b and a axes, respectively. The situation is the reverse for h +
k odd.

VI. X-RAY DIFFRACTION

Studies of various materials using resonant x-ray Bragg
diffraction, accompanied by supporting calculations, are re-
ported in Refs. [22,23]. The photon scattering amplitude
derived from quantum electrodynamics is developed in the
small quantity E/mc2, where E is the primary energy (mc2 ≈
0.511 MeV). At the second level of smallness in this quantity,
the amplitude contains resonant processes that may dominate
all other contributions should E match an atomic resonance �.
Assuming also that virtual intermediate states are spherically
symmetric, the scattering amplitude ≈ {Fμν/(E−� + i
/2)}
in the region of the resonance, where 
 is the total width of
the resonance. The numerator Fμν is a unit-cell structure factor
for Bragg diffraction in the scattering channel with primary
(secondary) polarization ν(μ). In keeping with convention, σ

denotes polarization normal to the plane of scattering, and π

denotes polarization within the plane of scattering. The Bragg
angle is denoted by θ , and the primary beam is deflected
through an angle 2θ . Figure 5 depicts polarization states,
wave vectors, and the Bragg condition. Our unit-cell structure
factors include a dependence on the rotation of the crystal
through an angle ψ around the Bragg wave vector κ.

Parity-even and parity-odd x-ray absorption events oc-
cur at different energies. Axial multipoles 〈tK

Q 〉 are observed
in Bragg diffraction enhanced by an electric dipole-electric
dipole (E1-E1) event, for example, while Dirac multipoles
〈GK

Q〉 contribute to diffraction enhanced by an electric dipole-
electric quadrupole event (E1-E2) [22,23]. Valence states 3d
and 4p are engaged by absorption at 2p states (L edges).
In so far as hydrogenic forms of radial wave functions are
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FIG. 5. X-ray diffraction. Primary (σ, π ) and secondary (σ ′, π ′)
states of polarization. Corresponding wave vectors q and q′ subtend
an angle 2θ , and the Bragg condition is met when κ = q − q′ coin-
cides with a reciprocal lattice vector τ(hkl ). Cell edges of a crystal
and depicted Cartesian coordinates (x, y, z) coincide in the nominal
setting of the crystal.

appropriate for the photo-ejected 2p electron and empty 3d
and 4p valence states, radial integrals for E1-E2 and E1-E1
events are in a ratio 〈2p|R2|4p〉/〈2p|R|3d〉 = −1.66a0/Zo,
where Zo is the effective core charge seen by the jumping elec-
tron and a0 is the Bohr radius. Sum rules for L2 and L3 edges
〈t1〉L3 + 〈t1〉L2 = −〈L〉3d/(10

√
2) [24], and 〈t2〉L3 + 〈t2〉L2 =

〈{L ⊗ L}2〉3d/60, with {L ⊗ L}2
0 = [3(Lz )2 − L(L + 1)] for

the diagonal element of the tensor product, demonstrate that
contributions by 3d spin degrees of freedom are equal and
opposite at the two edges (energies of iron L3, L2, and K edges
≈ 0.708, 0.721, and 7.112 keV, respectively). The sum rule for
anapoles is 〈G1〉L3 + 〈G1〉L2 = −〈R × μ〉3d/(2

√
2).

The polar property of magnetic crystal class mm21′ for
category (I) is manifest in the result �1

0 (κ = 0) = 4〈U 1
0 〉,

where 〈U1〉 is a time-even polar dipole akin to the displace-
ment 〈R〉. Also, �2

0 (κ = 0) = 0 indicates a null value of the
natural circular dichroic signal. Bragg diffraction patterns that
violate I-centering are of some interest, for they are created
by angular anisotropy in the charge density as in Templeton-
Templeton scattering [25]. Consider nonmagnetic diffraction

using h + k odd, with l even, for block states as in Eq. (1). En-
hancement by an E1-E2 event reveals polar quadrupoles and
octupoles, 〈U 2

0〉, 〈U 2+2〉′, 〈U 3+2〉′′, where real and imaginary
parts obey the phase in 〈UK 〉′ + i〈UK〉′′. The unit-cell structure
factor for Bragg reflections (h, 0, 0) with h odd in the σ ′ − σ

channel is found to be

Fσ ′−σ = −2

√(
2

15

)
� sin (θ ) sin (2� )

⎡
⎣

√(
3

2

)
〈U 2

0〉 + 〈
U 2

+2

〉′

+ 2
√

2
〈
U 3+2

〉′′⎤⎦, (8)

where the dimensionless quantity

� =
{

αE

2a0R∞

}[ 〈2p|R2|4p〉
〈2p|R|3d〉

]
,

values an E1-E2 structure factor relative to E1-E1 (R∞ ≈
13.6 eV, and α is the fine structure constant). The origin of
the azimuthal angle places the crystal c axis normal to the
plane of scattering depicted in Fig. 5. In the rotated channel of
polarization, the ψ dependence of Fπ ′−σ is cos(2ψ ), while its
dependence on θ is different for each of the three multipoles.

After this diversion on diffraction by time-even multipoles,
we return to magnetic scattering and explore the electronic
structure factor Eq. (1). Equation (7) with axial and polar
multipoles is a corresponding neutron diffraction amplitude.
Bulk signals are zero, including magnetochiral and nonre-
ciprocal linear dichroic signals, because l is required odd.
Axial magnetic dipoles contribute to x-ray diffraction in the
π ′σ channel. For a Bragg wave vector (0, 0, l) with l odd
and diffraction enhanced by an E1-E1 event, Fπ ′−σ is pro-
portional to {〈t1〉b cos(θ ) cos(ψ )}. By comparison, diffraction
enhanced by an E1-E2 event reveals the a component of the
anapole, as we will see. Unit-cell structure factors for Bragg
spots indexed by (0, 0, l) with l odd using axial multipoles
described by space group No. 33.151 are

Fσ ′−σ = −
(

4

5

)√(
2

3

)
� cos (θ )

{
sin (� )

[
3
〈
G1+1

〉′ + √
5
〈
G2+1

〉′′ − 〈
G3+1

〉′] +
√

15 sin (3� )
〈
G3+3

〉′}
,

Fπ ′−σ = −
(

2

5

)√(
2

3

)
� sin (2θ )

{
cos (� )

[−3
〈
G1+1

〉′ + 2
√

5
〈
G2+1

〉′′ + 〈
G3+1

〉′] +
√

15 cos (3� )
〈
G3+3

〉′}
.

(9)

Note the identity 〈G1〉a = −√
2〈G1+1〉′. A magnetic

monopole 〈G0
0〉 allowed in block states cα and cβ (space

groups Nos. 34.161 and 32.139 in Table I) can contribute to
diffraction enhanced by an electric dipole-magnetic dipole
(E1-M1) event. By its very nature, the monopole contribution
is independent of the azimuthal angle, which makes for
challenging identification [26].

VII. DISCUSSION

We enumerated motifs of magnetic multipoles in the ferrate
salt Na2FeSe2. With chainlike structural units and ferrous
cations, it is a unique iron selenide material [1]. In terms of

a standard cartoon using dipoles, our fundamental magnetic
motifs are block states ↓↓↑↑↓↓ or staggered states ↓↑↓↑,
with ferromagnetic (α) or antiferromagnetic (β ) coupling be-
tween chains. Dipoles are conventional (axial) moments or
anapoles (Dirac dipole). Likely, Rakhecha et al. [30] recorded
the first observation by neutron Bragg diffraction of anapoles
by way of their contribution to magnetic field-induced patterns
gathered on a C15 cubic Laves compound UAl2. It is well
known that the reflection indexed (2, 2, 2) is basis forbidden
in such diamondlike structures, and any intensity must arise
from a distribution of electrons that violates spatial inversion.
Rakhecha et al. [30] reported weak basis-forbidden intensities
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and confirmed their origin as magnetic by use of neu-
tron polarization analysis. A successful interpretation of the
entire diffraction pattern with a correct magnetic space group
followed almost four decades later, and it showed that (2,
2, 2)-type reflections are due to anapoles beyond reasonable
doubt [31].

Candidates for magnetic motifs in Na2FeSe2 studied here
belong to 1 of 3 categories defined by a magnetic crystal class
and a magnetoelectric property. Magnetic space groups are
cataloged in Table I. Our electronic structure factors apply
to multipoles of arbitrary rank, moreover, and they are used
to predict Bragg diffraction patterns for beams of neutrons
or x rays that reveal multipole orders. An inelastic neutron
scattering study of ferrous fluoride showed unmissable hy-
bridization of magnons and phonons [27,28]. Vibrations in the
electric crystal field modulate the orbital state of the single
electron outside the half-filled 3d shell, and the mechanism
might feature in magnetic excitations in Na2FeSe2.

Likewise, BaFe2Se3 with two ladders of dipole moments,
space group Pnm21 (#31) has been used as a makeshift device

to describe local structure in this material [7]. However, if bulk
polarization in BaFe2Se3 is zero, the parent structure is de-
scribed by space group Pnma (not Pnm21), even if somewhere
locally in the crystal there are some polar displacements.
In fact, magnetic space group Cac(No. 9.41, polar crystal
class m1′) used by the authors of Ref. [8] follows if Pnm21

is substituted for the correct parent structure. The magnetic
motif in BaFe2Se3 possesses a propagation vector ( 1

2 , 1
2 , 1

2 )
in the parent structure that is equivalent to (1, 1, −1)m in
the monoclinic cell. The first magnetic Bragg spot (1, 1, 0)m

equates to a reflection vector of magnitude ≈ 0.71 Å−1, or
w ≈ 1.14 in Fig. 4, and all radial integrals in the anapole have
significant values.
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