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ABSTRACT
Finding the stopping site of the muon in a muon-spin relaxation experiment is one of the main problems of muon spectroscopy, and com-
putational techniques that make use of quantum chemistry simulations can be of great help when looking for this stopping site. The most
thorough approach would require the use of simulations, such as Density Functional Theory (DFT), to test and optimize multiple possible
sites, accounting for the effect that the added muon has on its surroundings. However, this can be computationally expensive and some-
times unnecessary. Hence, in this work, we present a software implementation of the Unperturbed Electrostatic Potential (UEP) Method: an
approach used for finding the muon stopping site in crystalline materials. The UEP method requires only one DFT calculation, necessary
to compute the electronic density. This, in turn, is used to calculate the minima of the crystalline material’s electrostatic potential and the
estimates of the muon stopping site, relying on the approximation that the muon’s presence does not significantly affect its surroundings.
One of the main UEP’s assumptions is that the muon stopping site will be one of the crystalline material’s electrostatic potential minima. In
this regard, we also propose some symmetry-based considerations about the properties of this crystalline material’s electrostatic potential,
in particular, which sites are more likely to be its minima and why the unperturbed approximation may be sufficiently robust for them. We
introduce the Python software package pymuon-suite and the various utilities it provides to facilitate these calculations, and finally, we
demonstrate the effectiveness of the method with some chosen example systems.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0012381., s

I. INTRODUCTION

In a muon-spin spectroscopy experiment, spin-polarized pos-
itive muons are implanted in a sample and the pattern of positron
emission, caused by the muons’ decay, is used to measure the mag-
netic properties of the host material. Positrons are emitted in the
direction of the muon’s spin at the time of its decay, and the obser-
vation of the decay’s time evolution can be used to infer information
about the magnetic structure of the sample.

The muon has a half-life of 2.2 μs, and during this time,
it interacts with magnetic moments of either nuclear or elec-
tronic origin. These interactions can be used to obtain informa-
tion on, for instance, local magnetic fields on a small length scale.
Muons are used often as a microscopic probe to measure both
static and dynamic magnetic ordering. Due to the local nature of

these interactions, predicting where the muon would stop inside the
host material is one of the key problems of muon-spin spectroscopy,
and it has been the subject of many research works.1–4

In our previous work, we presented a set of computational
approaches for finding the muon stopping site that could be applied
to the case of finding the stopping site of muonium, the pseudo-atom
formed by a positive muon when it captures an electron. This set of
approaches requires the use of many randomly initialized calcula-
tions, based on either the Density Functional Theory (DFT) approx-
imation5 or the much faster, lower level approximation of Density
Functional Tight Binding (DFTB).6 The DFTB approach is by far the
faster of the two, but it depends on parameterizations fitted on more
fundamental theory calculations that are not available for all ele-
ments of the periodic table.7,8 Furthermore, both approaches require
a certain level of computational power and have a learning curve
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associated with knowing how to properly run a DFT or DFTB sim-
ulation. However, for diamagnetic muons—namely, positive muons
that have not formed a bound state with an electron and whose ener-
getics are thus dominated by their unshielded electrostatic interac-
tion with the surrounding environment—a much simpler alternative
to find the stopping site is available: the unperturbed electrostatic
potential method.

The Unperturbed Electrostatic Potential (UEP) method works
by assuming that the muon’s presence does not significantly affect
the crystal order. In this assumption, one can use the known dis-
tribution of positive charges (the ions) and the negative electronic
charge cloud as found, for example, via a single DFT calculation
on the unperturbed system, to compute the Coulomb electrostatic
potential felt by the muon at each point in the crystal. It is then
possible to compute the forces acting on the muon and which sites
constitute a local or absolute minimum of the potential, without
running any more expensive calculations.

The general consensus at the time of writing is that the UEP
method works better in metals,1,9 where the diffuse electronic charge
shields the muon effectively at very short ranges, thus preventing it
from having a significant effect on the atomic positions. Conversely,
if the host material is an insulator or a semiconductor, the stop-
ping sites for the muon can be in an off-center interstitial position
because of the formation of chemical bonding between the muon
and its neighboring atoms. In this case, the unperturbed electrostatic
potential is not a satisfying methodology for finding the muon stop-
ping site any more. This is observed, for example, in lithium fluoride,
where the muon forms a F-μ-F structure by distorting the lattice
locally.10

In addition to the UEP, we also consider the importance of
symmetry considerations for determining the muon stopping sites.
In general, it is considered a good rule of thumb in crystallography
that sites with high symmetry are often the preferred atomic sites.11

This holds true for muons as well, and in practice, very often, the
muon stopping site will be a high-symmetry site of the crystal that
has not already been occupied by another atom. For this reason, a
crystallographic analysis of the pure system that will be studied with
muons is a useful first step when looking for muon stopping sites
as such analysis is significantly faster than any computer simula-
tion. In this paper, we will outline some specific considerations about
the properties we can predict for the electrostatic potential at these
high-symmetry sites, and we will also introduce the software imple-
mentations of both the symmetry analysis and UEP in the Python
library pymuon-suite. Finally, in Sec. IV, we will show the results
of both approaches for some choice example systems.

II. THEORY
A. Symmetry analysis

A crystal structure is defined by its symmetry properties. Any
crystal, to be called such, must possess at least a translational sym-
metry since it is fundamentally the infinite repetition of a finite
unit cell. However, many crystals possess higher symmetry than
that, having a group G of symmetry operations (W,w) that connect
crystallographically equivalent points,11

Y = g(X) =WX + w, g ∈ G. (1)

In some cases, some points X can be identified for which there
exists a subset SX ⊆ G of operations such that g(X) = X ∀g ∈ SX ; these
points are called special Wyckoff positions. Wyckoff positions need
not be single points; for example, the rotation axis is the Wyckoff
position of a rotation operation as it is all left unchanged by it. In
this case, one can say that the Wyckoff position has one free coordi-
nate. However, we are here concerned with those Wyckoff positions
that have no free coordinates and the symmetry operations under
which they are unchanged. In particular, let X be a special Wyckoff
position such that g(X + ε) ≠ X + ε ∀g ∈ SX , with ε being an arbi-
trarily small vector, which is a rigorous formulation of the condition
that the position has no free coordinates. It then follows that, for
an arbitrary function f (X) that has the same symmetry properties as
the crystal, such as the electrostatic potential, X has to be a stationary
point, namely,∇f (X) = 0.

The proof of this is the following. Consider the transformation
properties of the gradient under a symmetry operation. In general,
we have that X′i = W ijXj + wi, and so,

∇f = ∂if = ∂′j f∂iX′j = ∂′j fWji = ∇′fW. (2)

In a special Wyckoff position, however, ∇f = ∇′f. Then, it
must be

∇f (X) = ∇f (X)W ∀(W,w) ∈ SX . (3)

For Eq. (3) to remain valid at the special Wyckoff position X,
while the value of the gradient at that same position is different from
zero, there should be at least one direction that is invariant under the
entire group of operations SX . However, we already established that
this is not the case as the Wyckoff position X has no free coordinates.
Therefore, the solution must be the trivial one, i.e., the value of the
gradient of an arbitrary function f (X) at position X is zero.

This already gives us a hint as to why special Wyckoff positions
with no free coordinates are good candidates for the muon stopping
site: because they are necessarily stationary points of the electro-
static potential. This is not even restricted only to the unperturbed
system; it may still hold even if the muon introduces some deforma-
tion, provided that said deformation does not break the symmetries
contained in SX . However, a stationary point of a function is not
guaranteed to be a minimum: it could still be a maximum or a saddle
point and, in general, is not possible to determine which one is just
from symmetry considerations. However, it is possible to perform a
stricter series of checks on SX to identify which Wyckoff positions
put further constraints not only on the gradient but also on the sec-
ond derivatives of the function, the so-called Hessian. In fact, with
a similar reasoning as the one here presented for the gradient, one
can find that in some points, the function is constrained to have
a Hessian that is either positive or negative definite (and thus, the
function has either a minimum or a maximum), and in even more
special cases, the Hessian is isotropic, and the function must have
locally radial symmetry. The details of this derivation are included
in Appendix A.

B. UEP
The core assumption of the unperturbed electrostatic potential

method is that the muon experiences a potential

V(x) = ∫
R3
[ρe(r) + ρI(r)]

1
∣r − x∣dr, (4)
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where the integral is carried out over all the (infinite) volume of the
crystal, and the charge density has been split in electronic (ρe) and
ionic (ρI) contributions. It can be seen easily that this integral is hard
to converge in real space as the Coulomb potential only falls off as
1/r, whereas the Jacobian12 in spherical coordinates goes like r2. In
fact, the integral would not converge at all if the net charge was not
guaranteed to be zero. In practice, this is always guaranteed as the
system without the muon is neutral and the total charge of each unit
cell is zero. However, it is far more practical to compute the integral
in Fourier space, where

V(x) = 4π
v ∫R3

[ρe(G) + ρI(G)]
eiGx

∣G∣2 dG (5)

and convergence is faster. Here, v is the volume of a single unit cell,
v = (a × b)c in terms of the lattice parameters.

The current implementation of the UEP method in pymuon-
suite is compatible only with CASTEP calculations, though support
for other codes will be developed in the future. CASTEP is a DFT
code using a plane wave basis set and pseudopotentials. The plane
wave basis means it is most suited to treat periodic solids, and here,
we can make use of that peculiarity by noting that the electronic den-
sity returned by it can be expressed as a truncated Fourier series, so
the electronic contribution to the potential Ve can be written as

Ve(x) =
4π
v ∑G>0

ρe(G)
eiGx

∣G∣2 , (6)

where the sum runs over a finite number of reciprocal vectors G
that depends on the cutoff used for the calculation. Ideally, when
preparing the calculation, one should have taken care that this
value is high enough to properly converge the energy of the sys-
tem, which means the truncation should not affect the final value
much as ρe(G) will go to zero for large G. Note that we ignore G = 0,
where Eq. (6) would diverge, because this term represents the total
charge, and while we know that independently it will not be zero
for both ρe and ρI , we also know it will eventually cancel out when
we sum them as that represents the fact that the system is overall
neutral.

The problem remains then of how to deal with ρI . This is the
charge density including both the positive charge Zi of each atomic
nucleus and the negative one of its N i core electrons that CASTEP
embeds in the pseudopotential. We choose here to simplify the prob-
lem by assuming that this charge can be treated as a purely Gaussian
charge distribution, centered on the atomic position and of width
σi that we base off some measure of the expected radius of the ion.
Currently, the software uses σi = rppot/s, where rppot is the smallest
core radius used in the construction of the pseudopotential and s is
a user-defined scaling parameter. This leads to the expression

VI(x) =
4π
v ∑i

(Zi −Ni) ∑
G>0

e−
1
2 σ

2
i G

2 eiG(x−xi)

∣G∣2 (7)

carrying a sum over the ions indexed with i at positions xi.
The use of this Gaussian approximation requires a little discus-

sion. First, it should be noted that the use of the sum over only the
discrete wave vectors G instead of an integral is perfectly legitimate:
it corresponds to the fact that we are not representing only a sin-
gle ion with each term but rather an infinite periodic array of them

arranged in a crystal lattice. This means that all terms of ρI that do
not lie on points of the reciprocal lattice go to zero. We can also
note that obviously the resulting charge distribution does not likely
resemble the real one. However, this charge distribution is positive,
as Zi > N i for all ions, and thus repulsive to the muons. Since we are
interested only in the minima of the potential for the muon, we can
be sure that they will be as far as possible from these lumps of posi-
tive charge. In fact, the details of the shape would matter much more
for the potential at short range—from afar, these will act mostly like
point charges as their size is still rather small compared to the overall
volume of the cell.

Finally, we consider the problem of the cutoff over reciprocal
space vectors. While for ρe, this is exact as the finite grid is the one
that CASTEP itself used to compute it in the first place, for ρI , it
is effectively a truncation of an infinite series. The crucial parame-
ter becomes then σi. If this is big enough, then the Gaussian term
in Eq. (7) falls off before the cutoff is even reached. If it is smaller,
then there is a risk of the truncation having a sensible effect on the
charge density and thus on the potential, producing spurious undu-
latory behavior. At the moment, it is up to the user to diagnose and
counteract these problems. The parameter s that controls the scale
of σi can be adjusted to fix any issues depending on the specifics of
the system of interest; in general, we found that a default value of
s = 5 tends to work well in most cases.

III. SOFTWARE IMPLEMENTATION
Both the symmetry analysis and the UEP implementation

described here can be found within a Python library we deployed
specifically to aid muon computational science, pymuon-suite. The
library can be found on Github13 and is released under a GNU v3.0
open source license. The library depends on a few other libraries to
work properly. The most important ones are Numpy,14 Scipy,15 the
Atomic Simulation Environment,16 Spglib,17 and Soprano.18 All of
these libraries are available on the Python Package Index and thus
can be installed automatically together with pymuon-suite without
any additional effort on the user’s part.

Once installed, pymuon-suite provides the user both with a
Python API to use for custom programs and with a series of pre-
packaged scripts that perform the most common operations. Four
of these scripts are relevant to the tools described in this work:

● pm-symmetry performs the analysis of special Wyckoff
positions described in Sec. II A;

● pm-uep-opt performs an optimization of the muon posi-
tion under the unperturbed electrostatic potential;

● pm-uep-plot produces 1D and 2D ASCII files describing
the UEP along paths or on specified planes useful to produce
plots; and

● pm-muairss produces batches of structure files with a muon
defect added following a Poisson random distribution and
analyses and clusters the results of their optimization.

The symmetry script is particularly simple as it does not need
any parameters, and it can be run simply by executing the command

pm-symmetry <structure file>
in which the structure file has to be any supported crystallographic
file format (such as .cif or .cell). For the UEP scripts, instead,
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TABLE I. Experimental and theoretical determination of the μ+ stopping site in the samples studied in this work. The cluster column describes the fraction of muonated structures
in the clusters representing the muon stopping site. The predicted site that agrees with the experimental result is the one with the largest fraction of structures.

Sample Experimental sites Theoretical sites (UEP) Clusters

Cu fcc Octahedrala Octahedral (O) and tetrahedral (T) O( 67
103), T( 36

103)
TiO2 rutile Close to Oapical and Oplanar

b Close to Oapical Oapical( 559
563)

MnSi 4a-I Wyckoffc S, A1, A2, A3 S( 230
423), A1( 104

423), A2( 67
423), A3( 22

423)
Fe3O4 magnetite Close to O in planes � to ⟨111⟩d O⟨111⟩ and cubic (C) O⟨111⟩( 139

152), C( 13
152)

LiF FμF statee Tetrahedral site (T) and vertex site (V) T( 1
42), V( 41

42)

aLevel-crossing measurements, M15 muon channel at TRIUMF (Canada). T = 40 K and 156 K, B = 0.012 T.20

bTransverse field μSR, MUSR instrument at ISIS (UK). T = [1.2 K–10 K], B = 0.02 T.22

cTransverse field μSR, GPS instrument at PSI (Switzerland). T = 50 K, B = 0.52 T.23

dTransverse field μSR, muon channel at LAMPF (US). T = 298 K, B = 0.4 T.24

eZero field μSR, M15 muon channel at TRIUMF (Canada). T = 80 K.25

input files in the YAML format19 containing parameters are neces-
sary. These scripts run with

pm-uep-plot <parameters file>
pm-uep-opt <parameters file>
Finally, pm-muairss operates similarly but has both a “write”

and a “read” mode, one to create structure files and the other to
interpret the results of their optimization. It also needs both a struc-
ture and a parameter file as inputs. To avoid mistakenly overwriting
important data, the default mode is read. The two modes are used as
follows:

pm-muairss -t w <structure file> <parameters file>
# To write

pm-muairss -t r <structure file> <parameters file>
# To read

The -t r argument is optional; if omitted, read mode is
assumed. For parameter files, each script has its own arguments that
can be set using them. The specific accepted parameters and their
meaning for each script are detailed in Appendix C.

An example of a possible work pipeline to use the UEP method
could then be as follows:

● run a CASTEP calculation on a bulk structure (non
muonated) to compute the electronic density to use as input
for the UEP method;

● generate a number of muonated structures with a random
distribution of starting positions with pm-muairss in the
write mode;

● relax each of these structures with pm-uep-opt; and
● perform a cluster analysis on the relaxed structures to iden-

tify the muon stopping sites with pm-muairss in the read
mode.

The clusters with the largest number of muons will then
roughly correspond to the minima of the electrostatic potential with
the largest attraction basin.

IV. EXAMPLE SYSTEMS
Table I compiles the muon stopping sites predicted by experi-

ments and the UEP method for all the materials studied in this work.
We chose examples of different nature: copper, which is a metal;
rutile TiO2, a semiconductor; MnSi manganese silicide, a material
that exhibits a homochiral spin spiral structure; Fe3O4 magnetite, a
ferrimagnetic oxide; and LiF, an insulator. In all of these materials,
the muon stopping site has been unequivocally determined by exper-
imental methods. Table II shows the main UEP parameters used for
determining the muon stopping site for all the examples simulated
in this work.

In copper, the muon stopping site was experimentally deter-
mined to be at the center of a copper octahedron in the copper fcc
crystalline lattice. Level-crossing measurements were performed at
the TRIUMF muon source (Canada) for samples at temperatures
of 40 K and 156 K and longitudinal magnetic fields ranging from
0 T to 0.012 T.20,21 The UEP method predicted two stopping sites

TABLE II. Unperturbed electrostatic potential technical details for all the samples simulated in this work.

Sample Poisson (Å) vdw_scale uep_gw_factor clustering_hier_t

Cu fcc 0.4 0.25 4.0 0.2
TiO2 rutile 0.4 0.25 5.0 0.2
MnSi 0.5 0.3 5.0 0.2
Fe3O4 mag. 0.8 0.5 6.0 0.2
LiF 0.6 0.25 4.0 0.2
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FIG. 1. Predicted (a) tetragonal (T) and (b) octahedral (O) μ stopping sites in Cu
bcc.

FIG. 2. Predicted μ stopping site in TiO2 rutile. μ close to Oapical with OH line in the
ab plane.

in fcc copper: one in a tetrahedral site and the other in an octahe-
dral site (Fig. 1). The cluster with the largest number of structures
and the lowest average energy is the one that places the muon in the
octahedral site.

In TiO2 rutile, transverse field μSR measurements performed
in the MUSR instrument at ISIS(UK)22 identified muon stopping
sites where the muon has a low temperature ground state and a high
temperature excited state, both corresponding to a muon bound to
one of the six O atoms that form an octahedron around the Ti3+

FIG. 4. Predicted O[111] and cubic (C) μ stopping sites in Fe3O4.

FIG. 5. Planar region for the predicted O⟨111⟩ μ stopping site in Fe3O4.

at the center of the TiO2 rutile unit cell. Each one of these stop-
ping sites has a different O–Ti3+ bonding configuration, with the
ground state formed by bonding the muon to the in-plane oxygen
atoms that lie in the same plane as Ti3+. These two sites are related
by symmetry and are only distinguished by the electronic structure
of the TiO2 rutile. The cluster with the largest number of struc-
tures and the lowest average energy predicted by the UEP method
is the one that places the muon at the ground state described above
(Fig. 2).

Regarding MnSi, transverse field μSR experiments carried out
at the GPS instrument in PSI (Switzerland)23 identified the stopping
site of the muon to be along the 4a-I Wyckoff axis of symmetry, in
the MnSi unit cell. The stopping site was identified to have the frac-
tional coordinates given by (0.532, 0.532, 0.532). The UEP method
predicted four potential stopping sites: a highly symmetric one (S)

FIG. 3. Predicted S, A1, A2, and A3 μ stopping sites in MnSi.
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FIG. 6. Predicted (T) tetragonal and vertex (V) μ stopping sites in LiF.

and three others, namely, A1, A2, and A3 (Fig. 3). The S site, which
originates from the cluster with the largest number of structures
predicted by the UEP, agrees with the experimentally observed site.

Potential muon stopping sites in Fe3O4 magnetite were found
using transverse field μSR experiments performed at LAMPF (US).24

The stopping sites are (a) located within a planar region that is per-
pendicular to the ⟨111⟩ direction and (b) situated within ≈1.5 Å of
one of the oxygen atoms defining the planar region. Figures (4) and
(5) show the O⟨111⟩ site predicted by the UEP method. An example
of a planar region perpendicular to the ⟨111⟩ direction is indicated in
yellow. The muon is located at ≈1.3 Å from its closest oxygen atom
in the planar region.

Finally, the behavior of μ in LiF has been studied using zero
field μSR experiments performed at the M15 muon channel at
TRIUMF in Canada.25 The stopping site is located between two F
atoms forming the distinctive FμF center. None of the predicted
stopping sites are, however, in the FμF center: they are contained
within a tetrahedron defined by four F atoms and are shown in
Fig. (6). Site (T) is at the center of the tetrahedron, while site (V)
is displaced from the tetrahedron’s center and closer to one of its
vertices. LiF is a case example of the strong influence that the muon
can have on the atomic positions of the host atoms in its vicinity.
In the FμF center, the F-μ bonds shorten the length between the
F atoms by ∼20%. The UEP method cannot account for that, and
consequently, the predicted stopping sites are not the experimental
ones.

TABLE III. Symmetry analysis results for all the samples simulated in this work.

Sample UEP Wyckoff positions

Cu fcc O and T 40 positions including O and T
TiO2 rutile Oapical and Oplanar 10 positions including Oapical and Oplanar
MnSi S, A1, A2, A3 No empty Wyckoff positiona

Fe3O4 mag. O⟨111⟩ and C 24 positions including C
LiF T and V 8 positions including T

aThe pm-symmetry software only identifies Wyckoff positions with zero degrees of freedom, i.e., points. MnSi has no Wyckoff
points: it has the 4a-I Wyckoff axis.

FIG. 7. UEP in the planar region perpen-
dicular to⟨111⟩ in Fe3O4. The black dots
indicate the three closest oxygen atoms
to the predicted muon stopping site.
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For all these example systems, we also performed a symme-
try analysis of all their Wyckoff positions using the pm-symmetry
library, which are shown in Table III.

As we can see, many of the muon stopping sites theoretically
predicted by the UEP method can be hinted at by performing a very
simple calculation using the pm-symmetry library. Similarly, we can
run the pm-uep-plot library and obtain graphic files that describe
the UEP in a specified region of the unit cell. An example of these
UEP plots is shown in Fig. (7), which corresponds to the planar
region in Fe3O4 that is perpendicular to the ⟨111⟩ direction and and
is indicated in yellow in Fig. (5).

V. CONCLUSIONS
In this work, we have presented, described, and tested our new

Python software package pymuon-suite and its various associated
utilities, which can be used to study the potential muon stopping
sites in crystalline materials. We have also shown that there is a
connection between the symmetry properties of the crystalline mate-
rial’s electrostatic potential and the potential muon stopping sites in
that material. Finally, the examples studied in this work show that
our version of the UEP method can reliably predict the muon stop-
ping sites in a variety of materials using purely theoretical means and
reasonably cheap computer simulations.

SUPPLEMENTARY MATERIAL

In the supplementary material, there are examples of input and
output files for the pm-symmetry, pm-muairss, and pm-uep-opt
libraries that correspond to the search of the muon stopping sites in
Fe3O4. These examples are organized so as to explain, with a prac-
tical example, how the search of the muon stopping sites could be
carried out.
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APPENDIX A: PROPERTIES OF THE HESSIAN AT
SPECIAL WYCKOFF POSITIONS

Let us consider the Hessian H of a generic function with space
group symmetry G at a special Wyckoff position X, invariant under
all symmetry operations g ∈ SX . From similar considerations as in
Eq. (2), we can find that, in general, the Hessian transforms as

H =WTH′W. (A1)

Again, at X, it must be that H = H′ for all the operations under
which X is fixed. We know that the Hessian must be a symmet-
ric matrix. We can then split it in an isotropic part and a traceless

symmetric tensor,

H = hisoWTW + WTH(symm)W

= hisoI + WTH(symm)W ∀(W,w) ∈ SX , (A2)

with hiso = Tr(H)/3 and where we made use of the fact that if X is a
special Wyckoff position, SX can only contain reflections, rotations,
inversions, and rotoinversions, all of which have orthogonal trans-
formation matrices (in general, this is not necessarily as given). This
leaves us with the following relation:

H(symm) =WTH(symm)W ∀(W,w) ∈ SX . (A3)

We can recast this problem in a way that is very similar to
Eq. (3). This is fundamentally a system of nine equations in nine
variables,

H(symm)
ij =WilWjkH

(symm)
kl . (A4)

However, since we know that H(symm) is both symmetric and
traceless, it only has five independent components we care about,
and four of the equations are just linear combinations of the other.
We can then write this as a system of five equations in five variables
in the matrix form,

(W(5) − I)H(5) = 0 ∀(W,w) ∈ SX , (A5)

where H(5) is a column vector containing the five independent com-
ponents in any order we like, and the precise form of W(5) depends
on the convention we chose. One can then check for each special
Wyckoff position whether there is any vector that satisfies all these
conditions. The principle is the same as in Eq. (3)—we seek whether
there is at least one axis that is invariant under all W(5). If there
is none, then H(5) must be necessarily zero, which means that the
Hessian will be isotropic at X, H(X) = hiso(X)I.

One here must pay attention. All of these considerations apply
toX expressed in fractional coordinates, the ones for which the oper-
ations in G are written. The Hessian, too, includes the derivatives of
the function with respect to the fractional coordinates. In the case
of a space group with a cubic lattice, all considerations immediately
apply to the Hessian in cartesian coordinates too, and one only has
to divide hiso by the square of the lattice parameter a. However, in
general, if we have a set of lattice vectors C such that the Cartesian
coordinates of the Wyckoff position are XC = CX, then the isotropic
Hessian transforms as

HC = (C−1)THC−1 = hiso(C−1)TC−1. (A6)

It then depends on the properties of the matrix (C−1)TC−1

what the Hessian is like in Cartesian coordinates. If the cell is cubic,
then it will remain isotropic, as said above. If it is orthorhombic,
then it will not be isotropic but still be positive or negative definite.
In general, if (C−1)TC−1 is definite, then so will be the Hessian. Con-
versely, if it is not, we can then guarantee that the Hessian will not
be either, which would make the special Wyckoff position a saddle
point of the function.

APPENDIX B: TECHNICAL DETAILS OF CALCULATIONS
The DFT-based computer simulations carried out in this work

were performed with the CASTEP26 code. The plane wave cutoff,
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TABLE IV. CASTEP technical details for all the samples simulated in this work.

Sample Ecutoff (eV) k-point grid XC funct.

Cu fcc 500.0 4 × 4 × 4 PBE
TiO2 rutile 700.0 2 × 2 × 2 PBE
MnSi 700.0 3 × 3 × 3 PBE
Fe3O4 mag. 800.0 3 × 3 × 3 PBE
LiF 700.0 3 × 3 × 3 PBE

Ecutoff, for these calculations was chosen by converging energy and
forces. This was done using the automated tool CASTEPconv6 to try
a range of possible values, with every other condition fixed. The final
choices were the values for which any successive refinement yielded
a difference in energy and forces lower than a fixed tolerance. This
was taken to be smaller than the tolerances used for self-consistent
field and geometry optimization calculations. As regards the k-point
grid size, Monkhorst–Pack27 k-point grids were used. This produced
forces accurate well within an error of 0.05 eV/Å, which was used as
the limit tolerance for geometry optimization.

Geometry optimization on these structures were performed
with a LBFGS algorithm, with fixed unit cell parameters, to a tol-
erance of 0.05 eV/Å for the forces. The PBE exchange-correlation
functional was used in combination with auto-generated ultrasoft
pseudopotentials.

Table IV shows the main parameters used in the CASTEP
calculations performed in this work.

APPENDIX C: PARAMETERS USED .yaml INPUT FILES
Here, we list the keywords for the input files of the pymuon-

suite scripts used in this work. The scripts are the ones listed in
Sec. III. The keywords are then used in a file written in the YAML
format, namely, a plain text file with rows written in the format
<keyword>: <value>

1. Unperturbed electrostatic potential optimization:
pm-uep-opt

Here are listed all the keywords used to run the pm-uep-opt
script, used for optimization of the muon position under the unper-
turbed electrostatic potential approximation.

● chden_path: path of the folder in which the charge density
file produced by a CASTEP calculation (extension.den_fmt)
to use for the UEP can be found. DEFAULT:. TYPE: string;

● chden_seed: seedname of the charge density file produced
by a CASTEP calculation (extension .den_fmt) to use for
the UEP. In combination with the previous keyword, the file
will be searched as <chden_path>/<chden_seed>.den_fmt.
DEFAULT: NONE TYPE: string;

● gw_factor: Gaussian width factor used to define the size
of the ionic charges by scaling the pseudopotential radius.
Corresponds to the s factor, as described in Sec. II B. DEFAULT:

5.0 TYPE: float;

● mu_pos: starting position of the muon in the unit cell,
expressed in absolute coordinates, in Å. DEFAULT: [0.0,
0.0, 0.0] TYPE: [float];

● geom_steps: maximum number of geometry optimization
steps. DEFAULT: 30 TYPE: int;

● opt_tol: force tolerance for each geometry optimization in
eV/Å. DEFAULT: 1E-5 TYPE: float;

● opt_method: method used for geometry optimization.
Corresponds to one of the methods used by Scipy’s
scipy.optimize.minimize function. See the documenta-
tion for the options. DEFAULT: trust-exact TYPE: string;

● particle_mass: mass of the particle, in kg. Important for
zero point energy estimation. By default, it is the mass of the
muon. DEFAULT: 1.884E-28 TYPE: float; and

● save_pickle: If True, save the output result in a pickled file
for further reading and reusing with other Python scripts.
DEFAULT: true TYPE: boolean.

2. Unperturbed electrostatic potential plotting:
pm-uep-plot

Here are listed all the keywords used to run the pm-uep-plot
script, used for plotting the unperturbed electrostatic potential along
directions and planes in the unit cell. We omit explaining the key-
words chden_path, chden_seed, and gw_factor, which are in
common with pm-uep-opt and work as explained in Subsection 1
of Appendix C.

● line_plots: specify one or more line segments along which
to plot the value of the UEP. Each line segment is specified by
a list, and there are a number of possible methods to specify
them:

– crystallographic direction, starting point, length, and
number of points, for example,

-[[1, 1, 0], [0, 0, 0], 10, 100]

will produce a plot along the [110] direction, starting from the
origin, continuing for 10 Å and with 100 points spaced 0.1 Å each;

– starting point, end point, and number of points, for example,
-[[0, 0, 0], [1, 1, 1], 100]
will produce a plot sampling the vector connecting the origin
with the position [1, 1, 1] Å in the cell (these are absolute
positions), with a grid of 100 points;

– starting atom, end atom, and number of points; for example,
- [1, 2, 20]

will produce a plot sampling the line connecting the atoms with
indices 1 and 2 in the structure file, split in 20 points.

● plane_plots: specify one or more planes along which to
plot the value of the UEP. Each plane is specified by a
list, and there are a number of possible methods to specify
them:

– three corners, points along width, and points along
height, for example,

- [[0, 0, 0], [3, 0, 0], [0, 0, 3], 20, 20]
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in a cubic lattice with a = 3 would produce a plot of the xz face of the
cell, split into a 20 × 20 grid,

– three atom indices to act as corners, points along width, and
points along height, for example,
- [0, 1, 2, 20, 20]

would produce a parallelogram having the vector connecting atoms
0 and 1 as base, the vector connecting atoms 0 and 2 as side, and 20
points along each side for a 20 × 20 overall grid.

3. Random structure generation: pm-muairss

Here are listed all the keywords used to run the pm-muairss
script. For completeness, words that are relevant to usage with
CASTEP or DFTB+ for structure optimization are included too,
though they are not relevant for the current work.

● name: name to call the folder for containing each struc-
ture. This name will be postfixed with a unique number, e.g.,
struct_001. DEFAULT: struct TYPE: string;

● calculator: calculator(s) used to optimize the muon posi-
tion. Must be a comma separated list of values. Currently
supported calculators are CASTEP, DFTB+, and UEP. Can
also pass ALL as an option to generate files for all calculators.
DEFAULT: dftb+ TYPE: string;

● poisson_r: radius in Å for generating muon sites with the
Poisson disk algorithm. This radius is the minimum distance
at which two muons can be placed from each other when
the muonated structures are generated. DEFAULT: 0.8 TYPE:

float;
● uep_chden: CASTEP charge density file. seed.den_fmt.

DEFAULT: NONE TYPE: string;
● uep_gw_factor: Gaussian width factor used to define the

size of the ionic charges by scaling the pseudopotential
radius. Corresponds to the s factor, as described in Sec. II
B. DEFAULT: 5.0 TYPE: float;

● vdw_scale: scale factor to multiply the standard van der
Waals radius of each atom in the system, used to determine
the minimum distance allowed between a muon and other
atoms. Bigger values will evacuate a larger sphere around the
existing atoms. DEFAULT: 0.5 TYPE: float;

● charged: determines whether the implanted muons will
be charged or neutral. Must be True to use UEP. DEFAULT:

false TYPE: boolean;
● supercell: supercell size and shape to use. This can either

be a single int, a list of three integers, or a 3 × 3 matrix of
integers. For a single number, a diagonal matrix will be gen-
erated with the integer repeated on the diagonals. For a list
of three numbers, a diagonal matrix will be generated where
the diagonal elements are set to the list. A matrix will be
used directly as is. Default is a 3 × 3 identity matrix. DEFAULT:

identity TYPE: matrix;
● out_folder: name for the output folder used to store the

structural input files generated. DEFAULT:./muon-airss-out
TYPE: string;

● geom_steps: maximum number of geometry optimization
steps. DEFAULT: 30 TYPE: int;

● geom_force_tol: force tolerance for each geometry opti-
mization in eV/Å. DEFAULT: 0.05 TYPE: float;

● clustering_method: clustering method to use to process
results. The options are HIER (for hierarchical clustering)
and KMEANS (for k-means clustering). DEFAULT: hier TYPE:

string;
● clustering_hier_t: normalized t parameter for hierar-

chical clustering. Higher t will produce a smaller number of
bigger clusters. DEFAULT: 0.3 TYPE: float;

● clustering_kmeans_k: expected number of clusters for k-
means clustering. DEFAULT: 4 TYPE: int;

● clustering_save_min: If True, save the minimum
energy structure for each cluster as a separate file. DEFAULT:

false TYPE: boolean;
● clustering_save_format: extension of file format in

which to save the minimum energy structures if clustering
_save_min is True. DEFAULT: cif TYPE: string;

● castep_command: command used to run the CASTEP
executable on the system. DEFAULT: castep.serial TYPE:

string;
● dftb_command: command used to run the DFTB+ exe-

cutable on the system. DEFAULT: dftb+ TYPE: string;
● script_file: path of a submission script template to copy

into each individual generated structure’s folder for use with
submission systems on HPC machines. Any literal instance
of the string {seedname} will be replaced with the name of
the structure in that folder, which allows us to create sub-
mission scripts for batches of CASTEP structures. DEFAULT:

NONE TYPE: string;
● castep_param: path to a CASTEP parameter file to use for

all calculations. DEFAULT: NONE TYPE: string;
● dftb_set: Slater–Koster parameterization to use with

DFTB+. It determines which elements can be treated; see
dftb.org for more details. Can currently be 3ob-3-1 or
pbc-0-3.DEFAULT: 3ob-3-1 TYPE: string;

● dftb_optionals: additional optional JSON files to acti-
vate for the DFTB+ parameterization. For example, includ-
ing spinpol.json for 3ob-3-1 turns spin polarization on.
Should be written like a list of strings (either in square brack-
ets and comma separated or as a list using a as bullet and an
entry on each line) DEFAULT: [] TYPE: [str];

● dftb_pbc: whether to turn on periodic boundary condi-
tions in a DFTB+ calculation. DEFAULT: true TYPE: boolean;

● k_points_grid: k-points grid for periodic system cal-
culations (CASTEP or DFTB+). DEFAULT: [1, 1, 1] TYPE:

[int]; and
● max_scc_steps: maximum number of self-consistent steps

when converging the electronic wavefunction in either
CASTEP or DFTB+. DEFAULT: 200 TYPE: int;

DATA AVAILABILITY

The data that support the findings of this study are available
within the article and its supplementary material.
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