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We demonstrate that spin-orbit coupling (SOC) strength for electrons near the conduction band edge in
few-layer γ -InSe films can be tuned over a wide range. This tunability is the result of a competition between
film-thickness-dependent intrinsic and electric-field-induced SOC, potentially, allowing for electrically switch-
able spintronic devices. Using a hybrid k · p tight-binding model, fully parametrized with the help of density
functional theory computations, we quantify SOC strength for various geometries of InSe-based field-effect
transistors. The theoretically computed SOC strengths are compared with the results of weak antilocalization
measurements on dual-gated multilayer InSe films, interpreted in terms of Dyakonov-Perel spin relaxation due
to SOC, showing a good agreement between theory and experiment.

DOI: 10.1103/PhysRevB.104.125432

I. INTRODUCTION

Indium selenide (InSe) is a layered semiconductor with
already demonstrated high mobility and versatile optical prop-
erties [1–8]. Atomically thin InSe films (exfoliated from bulk
crystals [9] or produced by chemical vapor deposition [10])
have already been used to fabricate field-effect transistors
(FET devices). Moreover, the persistence of high mobility
[11–13] of electrons in n-type doped γ -InSe to only few
atomic layers [3,4,9] in thickness makes it feasible to im-
plement InSe in spintronic devices [14]. In contrast to the
conventional InAs [15] or HgTe [16,17] quantum wells, in γ -
InSe it is possible to completely suppress the conduction band
spin-orbit coupling (SOC) using applied displacement field,
allowing for exceptionally tunable spintronic devices. One of
the methods to control the electron spin in semiconductors is
to manipulate its SOC [18–24] and, in this paper, we study
the dependence of SOC for two-dimensional (2D) electrons
near the conduction band edge of InSe films on the number
of layers and on the gate-controlled electrostatic doping in the
films implemented in the FET geometry [25–33].

Below, we use the earlier developed hybrid k · p tight-
binding (HkpTB) model for InSe [35,36], taking into account
the s and pz orbital composition of the lowest conduction sub-
band and self-consistent analysis of the electrostatic potential
on each layer [37], and show that the dominant term in the
SOC in γ -stacked InSe multilayer thin film (any number of

*adrian.ceferino@postgrad.manchester.ac.uk

layers) has the generic form, introduced by Thomas [38]

ĤSOC = α(s × k)·ẑ. (1)

This is the only linear in wave vector k = (kx, ky) of electron
(in the vicinity of the �-point) term allowed by C3v point-
group symmetry of the lattice of γ -stacked multilayer (the
next term in the k · p theory expansion would be of the third
order [39] in k, hence, much weaker for a feasible doping of
the film) [40–42]. In Eq. (1), s = (σx, σy) is a vector composed
of Pauli matrices, and α is a layer-number-dependent factor

α(Ez, N ) ≈ α∞

(
1 − χ

(N + 2.84)2

)
± Ezℵ. (2)

Here, α∞ ≈ 34.5 meV Å is the value of SOC at the conduc-
tion band edge of three-dimensional (3D) bulk γ -InSe, N is
the number of layers in a thin film, χ ≈ 14.9 accounts for
the nonlinear dependence of bulk SOC on the out-of-plane
momentum kz counted from the bulk A-point band edge, at
kA = π

az
. Also, Ez is the electric field piercing the film, and

parameter ℵ quantifies the Fig. 1 dependence on the electric
field, as shown in the inset of Fig. 1.

The overall strength of SOC in Eq. (2) is determined
by the interplay between the intrinsic lattice asymmetry of
the crystal (known as Dresselhaus contribution [44,45]) and
the electric-field-induced symmetry breaking (the so-called
Bychkov-Rashba term [46,47]). This interplay allows for the
tunability of the SOC value, both by choosing the film
thickness (Nd) and by applying a displacement field in the
double-gated (both top- and bottom-gated) devices. The re-
sults of our analysis are exemplified in Fig. 1, indicating
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FIG. 1. SOC strength dependence on displacement field and
number of layers N at ne = 0 in a dual-gated FET geometry. InSe
dielectric constant [34] used here is εz = 9.9. The inset shows the
layer-number dependence of parameter ℵ used to take into account
the influence of an electric field Ez in Eq. (2). The solid and dotted
lines indicate, respectively, when the applied displacement field sup-
presses or enhances the Dresselhaus SOC.

that a vertically applied electric field Ez ∼ 0.15–0.20 V nm−1

would be enough to switch SOC off and on, opening new
avenues towards the design of spintronic devices. This form
of SOC in a film is the result of k · p and tight-binding model
analysis [48], parametrized using density functional theory
(DFT) computations of the band structure. The theoretically
calculated SOC size was compared with the values of SOC
strength extracted from weak antilocalization magnetoresis-
tance, measured in a FET based on a six-layer InSe device.
We find a good agreement between theory and experiment in
the available range of device parameters.

Below, the paper is organized as follows. In Sec. II, we
compute the SOC coefficient in the lowest conduction sub-
band of InSe using DFT ab initio calculations; in Sec. III,
we perform simple perturbative calculations of SOC strength
in the lowest conduction subband of bilayer InSe; and, in
Sec. IV, we generalize the bilayer formalism for an arbitrary
number of layers. Finally, in Sec. V, we compare the theoreti-
cally obtained SOC coefficient with the values experimentally
measured in an available InSe-based FET device.

II. FIRST-PRINCIPLES CALCULATIONS OF InSe
PARAMETERS

As a background to the hybrid k · p tight-binding (HkpTB)
model presented in this paper, we overview the density func-

FIG. 2. Plane-averaged electrostatic potential accounting for
ionic and Hartree contributions in a double-bilayer InSe supercell
(supercell structure shown as inset).

tional theory band structure of monolayer and few-layer InSe.
Monolayer InSe has pairs of vertically aligned metal atoms in
the middle sublayers and chalcogens in the outer sublayers,
arranged on a plane into a honeycomb structure. Such a lattice
has a D3h point-group symmetry which includes mirror plane
symmetry, rotations by 120◦, but not inversion symmetry. In
any few-layer γ -InSe film, the z → −z mirror symmetry is
broken. This opens a possibility for a weak “ferroelectric”
charge transfer between the layers due to layer-asymmetric
hybridization between the conduction and valence bands and
the resulting built-in electric field in the film which may be
relevant for the self-consistent analysis of the on-layer po-
tential in a film with a finite thickness. To find out whether
this is of relevance for InSe, or not, we carry out DFT cal-
culations on a supercell with a large vacuum separating two
mirror-reflected images of a γ -InSe bilayer, to satisfy periodic
boundary conditions without affecting the mismatch between
vacuum potentials, produced by the double-charge layer due
to the charge transfer (see Fig. 2 and inset). For the DFT
calculations, we used the generalized gradient approxima-
tion (GGA) of Perdew, Burke, and Ernzerhof [49], with a
12 × 12 × 1 k-point grid and a plane-wave cutoff energy of
600 eV, implemented in the VASP code [50]. Monolayer atomic
structure parameters, and interlayer distances, are taken from
an experimental reference for the bulk crystal [43]. We find
that the charge transfer between the layers is small, yielding
a ≈2 meV vacuum potential difference across the bilayer in
Fig. 2, which is so small that it will be neglected for the rest
of the paper.

Due to its mirror symmetry, the monolayer Hamiltonian
cannot include sx and sy operators, that is, it does not display
a 2D SOC. However, its symmetry allows for spin-orbit split-
ting in the form of [44,51]

ĤSO = γ k3 sin(3φ)ŝz, (3)

where φ is the polar angle with respect to the �-M direction
and ŝz is the third Pauli matrix. This is reflected by the re-
sults of DFT computations of conduction band dispersion in
monolayers, bilayers, and trilayers shown in Fig. 3.
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FIG. 3. DFT-calculated conduction band spin-orbit splitting for
monolayer, bilayer, and trilayer InSe in for small kx near the �-point.
The finite thickness of the film discretizes kz while kx and ky remain
continuous variables. While the cubic Dresselhaus SOC splitting is
expected to be zero in the �-M direction, in the (kx, 0) orientation
a finite contribution is expected. In contrast to the orientation-
dependent cubic SOC, the expected form of the linear SOC splitting
[see Eq. (1)] makes this contribution isotropic in k. The shaded
region labels the range in kx below the Fermi level of a device
doped with a carrier density of ne ≈ 2 × 1012 cm−2. The clear linear
spin splitting with kx indicates the dominance of the linear SOC
terms near the Brillouin zone (BZ) center. Also plotted using stars
connected by dashed lines are values of splitting for a monolayer
InSe/monolayer hBN heterostructure for three different in-plane
stacking configurations. (Inset) Hexagonal BZ of monolayer InSe.
The red circle indicates the region in the BZ with wave vector
magnitude in the range presented.

Note that the spin polarization of the computed states is
in the z direction only for monolayers, whereas for bilayers
and trilayers, where it has a linear dependence announced
in Eq. (1), it reflects in-plane spin splitting. In fact, for
the range of in-plane wave numbers corresponding to fea-
sible doping densities, the spin splitting in the monolayer
is negligibly small [52]. We also carried out DFT calcula-
tions for a heterobilayer consisting of monolayer of InSe,
and monolayer of hBN (the latter was strained to give com-
mensurability with a lattice constant ahBN = aInSe/

√
3 and

rotated to align the armchair direction of hBN with the
zigzag direction of the InSe). We take the interlayer dis-
tance as 0.333 nm between the middle of hBN and the
nearest plane of Se atoms. A dipole correction was ap-
plied, and we considered three in-plane configurations: (1)
boron directly above indium, (2) nitrogen above indium (the
hBN is inverted in-plane), and (3) configuration (1) with
the hBN shifted in plane by half the B-N vector. The spin-
orbit splitting near � in the (InSe-dominated) conduction
band edge is plotted for all three configurations in Fig. 3.
For the monolayer InSe/monolayer hBN heterostructure, we
obtain a SOC which depends very weakly on the configu-
ration, with a strength similar to that of the isolated InSe
bilayer.

III. SPIN-ORBIT COUPLING IN InSe BILAYER

InSe belongs to the family of group-III metal-
monochalcogenides with the s and p orbitals of In and
Se dominating the low-energy dispersion in the vicinity of the
�-point [35,48,51]. In the bottommost conduction band c and
in the topmost valence band v, the atomic orbital composition
is mainly dominated by the s and pz orbitals of both In and
Se. The deeper valence bands v1 and v2 are prominently Se px

and py orbitals which are naturally split by the atomic SOC
of the Se atoms.

In going from monolayer to bilayer γ -stacked InSe (see
Fig. 4), the mirror plane symmetry is broken, reducing
the symmetry from the point group D3h to C3v . This al-
lows for a linear in momentum SOC splitting in the form
presented in Eq. (1) prescribed by the third-order rotation
symmetry axis [53]. Consequently, the interlayer hoppings
need to account for the reduction of the global symmetries
of the bilayer, leading to a finite Dresselhaus SOC. This
appears via the interlayer mixing of the opposite z-parity
bands.

We construct a bilayer Hamiltonian using monolayer
Hamiltonians described in Ref. [35] taking into account in-
terlayer hopping [35] and the intralayer interband spin-orbit
coupling [54]:

Ĥ = Ĥ (0) + δĤ =
(

Ĥ (0)
11 + δĤ11 Ĥ (0)

12 + δĤ12

Ĥ (0)
21 + δĤ21 Ĥ (0)

22 + δĤ22

)
. (4)

For the analysis of SOC in the bilayer, band edge states in the
constituent monolayers,

�T ≡ [c↑, c↓; c↑
1 , c↓

1 ; v↑, v↓; v↑,px
1 , v

↓,px
1 ; v↑,py

1 , v
↓,py

1 ;

v
↑,px
2 , v

↓,px
2 ; v↑,py

2 , v
↓,py

2 ],

for the bands described in Sec. II, will be characterized by
their respective band energies, neglecting an almost parabolic

FIG. 4. Profile and top view of bilayer γ -stacked InSe. The Se
atom of the top layer is shown to sit above the In atom of the
bottom layer but not the other way around. This crystallographic
z-asymmetry is responsible for an effective “electric field” at the
origin of the Dresselhaus SOC in bilayer InSe.
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band dispersion:

Ĥ (0)
11(22) =

⎛
⎜⎜⎜⎜⎝

−U1(2) 0 0 0 0
0 Ec1 − U1(2) 0 0 0
0 0 Ev − U1(2) 0 0
0 0 0

(
Ev1 − U1(2)

)
Îν 0

0 0 0 0
(
Ev2 − U1(2)

)
Îν

⎞
⎟⎟⎟⎟⎠. (5)

Here Îν is the identity operator in the 2 × 2 space of atomic px, py orbital components of v1 and v2. Ec1 , Ev, Ev1 , and Ev2 are the
energy differences between the lowest conduction band and the c1, v, v1, and v2 bands, respectively (see Fig. 5). In addition, we
take into account linear in momentum interband terms in the monolayer Hamiltonian, discussed earlier in relation to the optical
selection rules for the interband transitions [54]:

δĤ11(22) =

⎛
⎜⎜⎜⎜⎝

0 0 0 ib54k · � iλ46(s × �)

0 0 0 0 ibc1v2
16 (k · �)

0 0 0 iλ15(s × �) ib16(k · �)
−ib54(k · �)T 0 −iλ15(s × �)† 0 0
−iλ46(s × �)† −ibc1v2

16 (k · �)T −ib16(k · �)T 0 0

⎞
⎟⎟⎟⎟⎠. (6)

Here 1 × 2 matrices �y = [0, 1] and �x = [1, 0] operate in
the px, py orbital components of v1 and v2 valence bands
and the coefficients b54, b16, and bc1v2

16 characterize the c − v1,
v − v2, and c1 − v2 intralayer couplings (associated with in-
terband optical transitions excited by the in-plane polarized
photons). Spin Pauli matrices sx,y produce spin flips upon
the interband mixing which can be rooted to atomic S · L
coupling (between px/y and pz orbitals which contribute to
c, v, v1, v2 bands captured by parameters λ15 and λ46). Note
that k · � ≡ kx�x + ky�y and s × � ≡ sx�y − sy�x.

Hopping between neighboring layers is accounted for by
the following two terms:

Ĥ (0)
12 =

⎛
⎜⎜⎜⎝

t�
cc 0 0 0 0
0 0 0 0 0
0 0 t�

vv 0 0
0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎠, (7)

δĤ12 =

⎛
⎜⎜⎜⎜⎝

0
(
tcc1 + δc1c

) (
t�
cv + δcv

)
0 0( − tcc1 + δc1c

)
0 0 0 0( − t�

cv + δcv
)

0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠.

(8)

The first of them describes the resonant interlayer hybridiza-
tion of separately lower conduction and the top valence band
edges, which was identified [35] as the strongest hybridiza-
tion effect, determined by the substantial weight of s and
pz chalcogen orbitals in the sublattice composition of the
band edge states. The second term takes into account inter-
band interlayer hybridization, which produces a much weaker
effect on the band edge energies, but is sensitive to the mir-
ror symmetry breaking set by stacking of the layers (see
Fig. 5).

According to the table in Fig. 5, the on-layer states in
bands c are odd under z → −z reflection while bands v

and c1 are even under the same transformation. Because
of this, for a mirror-symmetric arrangement of the lay-
ers, the corresponding interband interlayer couplings would

obey the relation t�
cv = −t�

vc and tc1c = −tcc1 . To capture the
mirror plane symmetry breaking for γ -stacking, we intro-

FIG. 5. (Top) Character table of the point group D3h which cap-
tures the symmetries of monolayer InSe. In parentheses, the Bethe
notation for each irrep is shown. Both the basis function of each
irreducible representation as well as the orbital composition of any
band relevant for our analysis are displayed in the final columns. The
σh conjugacy class in the character table labels the z → −z symmetry
of each irreducible representation. This crucially determines which
bands are mixed due to an applied electric field. The superscripts on
top of the orbitals indicate the parity with respect to the z → −z sym-
metry calculated in Ref. [51]. (Bottom) Band structure of monolayer
InSe without SOC.
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duce parameters δαβ such that t�
cv → t�

cv + δcv , t�
vc → −t�

cv +
δcv , tv1v2 → tv1v2 + δv1v2 , tv2v1 → −tv1v2 + δv1v2 , tcc1 → tcc1 +
δc1c, and tc1c → −tcc1 + δc1c. Overall, the z → −z symmetry
breaking in the bilayer (which gives rise to the 2D SOC in
the lowest conduction subband of the bilayer) is produced by
the interplay between δĤ11 and the contributions from δαβ in
Eq. (9). For this we use third-order perturbation theory with
respect to parameters δc1c, δcv, b54, b16, bc1v2

16 , λ15, and λ46,
and this results in the spin-orbit coupling constant

α0 = 2

(
b54λ15δcv

�Ecv1�Eg1
+ b16λ46δcv

�Ecv2�Eg1
+ bc1v2

16 λ46δc1c

�Ecc1�Ecv2

)
. (9)

Here we also account for asymmetry induced by an external
electric field so its effect on the on-layer energy of the or-
bitals in Eq. (5), captured by �Ecv1 ≡ −(t�

cc + Ev1 ), �Ecv2 ≡
−(t�

cc + Ev2 ), and �Ecc1 ≡ −(t�
cc + Ec1 ), are the energy dif-

ferences between the lowest conduction subband and v1, v2,
and c1 bands while �Eg1(2) = −(t�

cc + Ev ) ± t�
vv is the energy

difference between the lowest conduction subband and the
first or second topmost valence subband, respectively.

In the absence of external electric field, U1 = U2 = 0, and
using parameters in Table III, we estimate that Ez(α0 = 0) =
0.35 V nm−1. The dependence on a perpendicularly applied
electric field Ez is approximated by

ℵ ≡ dα

dEz

∣∣∣∣
U1=U2=0

= (b54λ15 + b16λ46)azt�
cv

�Ecv1

×
(

2t�
vv

�Eg1�Eg2

)(
1

2t�
cc

− 1

2t�
vv

)
. (10)

Here, az = 8.32 Å is the interlayer distance between the
central planes of two neighboring InSe monolayers. Using
parameters in Table I we estimate that for a bilayer ℵ =
38 meVÅ/V nm−1, this also means that an electric field Ez =
0.35 V nm−1 would reduce the 2D SOC coupling strength to
zero.

In addition to the above-discussed effects, mirror symme-
try breaking may be caused by the encapsulation environment
[55] coupling on the Se orbitals in the outer top and bottom
sublayers of the crystal. This asymmetry may be due to the
difference between the encapsulating materials, or even due

TABLE I. (Top) Two-band hybrid k · p tight-binding parameters
extracted from the 14-band model in the bottom table. (Bottom)
Hybrid k · p tight-binding model parameters used in the perturba-
tion theory analysis. Numerical indices in the b and λ terms label
the symmetry group shown in the character table in Fig. 5. The
magnitude of the out-of-plane dipole moments dcv , dv1v2 , and dc1c

were obtained from the tight-binding model developed in Ref. [35].
The SOC parameter λ46 was calculated from the fits performed in
Appendix A and the interlayer distance az = 8.32 Å was obtained
from the experimental measurements shown in Ref. [43].

Ev −2.79 eV t�
cc 0.34 eV mc 0.266 m0

t�
vv −0.41 eV tcc2 −3.43 eV Å2 Ev1 −3.4 eV

Ev2 −3.5 eV t�
cv 0.25 eV tcv2 −3.29 eV Å2

Ecv 2.79 eV
Ec1c 1.09 eV
Evv1 0.54 eV
Evv2 0.683 eV
b54 10.54 eV Å
λ15 0.119 eV
b16 −2.77 eV Å

bc1v2
16 8.51 eV Å

dcv −1.68 eÅ
dv1v2 −2.56 eÅ
dc1c 0.86 eÅ

t�
cc 0.34 eV

t�
vv −0.41 eV

t�
cv 0.25 eV

tcc1 0.019 eV
tv1v2 0.048 eV
δcv 0.014 eV
δc1c 0.022 eV
δv1v2 −0.001 eV
λ46 −0.09 eV
az 8.32 Å

to a different orientation of the top and bottom encapsulating
layers of the same compound, e.g., hexagonal boron nitride
(hBN). To describe this effect, we introduce an additional term
in the bilayer Hamiltonian responsible for c − v, v1 − v2 band
mixing with randomly different strength in the top and bottom
layers

δĤ (I )
11(22) =

⎛
⎜⎜⎜⎝

�Ec1(2) 0 ±ϒ
t/b
cv 0 0

0 0 0 0 0
±ϒ

t/b
cv 0 �Ev1(2) 0 0

0 0 0 �Ev11(2)Îν ±ϒ
t/b
v1v2 Îν

0 0 0 ±ϒ
t/b
v1v2 Îν �Ev21(2)Îν

⎞
⎟⎟⎟⎠. (11)

Here, �Ec1(2) and �Ev1(2) are the energy shifts of the c and
the v bands in the first and second layer, respectively; �Ev11(2)

and �Ev21(2) are the energy shifts of the bands v1 and v2, and
Îν is the identity operator in the 2 × 2 space of atomic px, py

orbital components of the v1 and v2 bands. The terms ϒ t
cv

and ϒ t
v1v2

are responsible for c − v and v1 − v2 band mixing
in the top layer: the interfacial z → −z symmetry breaking

couples states of opposite parities. In the bottom surface,
the interfacial effect is inverted, which is the reason for the
inverted signs −ϒb

cv and −ϒb
v1v2

of the corresponding terms in

δĤ (I )
11(22).
In Table II, we quote values of all those parameters ob-

tained using DFT modeling described in Sec. II. In order to
extract those parameters, the wave functions of bands c and

125432-5
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TABLE II. DFT-estimated parameters describing the effect of
hBN substrate or overlay on an InSe monolayer in Eq. (11).

InSe/hBN stacking �Ec �Ev |ϒcv|
∣∣ϒv1v2

∣∣
1 140 meV 141 meV 35.6 meV 36.98 meV
2 155 meV 95 meV 20.5 meV 32.77 meV
3 146 meV 141 meV 35.6 meV 39.37 meV

v1 were obtained for the three different atomic arrangements
described in Sec. II. By comparing their wave-function distri-
bution with the DFT-computed wave functions of suspended
monolayer InSe, the mixing terms between opposite z-parity
bands ϒcv and ϒv1v2 were extracted for each configuration.
Finally, from the DFT energy eigenvalues, the shifts in energy
of bands c and v were obtained for each of the three different
configurations; the energy shifts of bands v1 and v2 were
neglected due to the very weak interlayer hybridization of
those bands which results in a negligible contribution to the
conduction band SOC strength. Using perturbation theory, we
calculate the contribution of these additional terms towards
bilayer SOC and find that the dominant effect comes from the
c − v band mixing, resulting in

α(I ) =
[

b54λ15

�Eg1�Ecv1

+ b16λ46

�Eg1�Ecv2

](
ϒ t

cv − ϒb
cv

)
. (12)

The above equation suggests that encapsulation of InSe with
the same material in the top and bottom would result in the
cancellation of the main part of such an additional contribu-
tion. Due to misalignment or an offset of the encapsulating
crystals, this cancellation would never be exact leaving a
residual effect due to the variation of InSe and, e.g., hBN
stacking. Taking into account the random nature of such a
variation, in the mechanically assembled structures, we esti-
mate characteristic size of the residual SOC contribution using
the characteristic difference of the ϒcv parameters for two
InSe/hBN stackings analyzed in Sec. II (configurations 1 and
2 in Table II and Fig. 3). This gives |α(I )| ∼ 3.5 meV Å, which
is an order of magnitude smaller than α0 = 13 meV Å. As a
result, for InSe bilayer encapsulated with hBN on both sides,
the value and displacement field dependence of SOC can be
well described using Eqs. (9) and (10).

IV. SPIN-ORBIT COUPLING IN MULTILAYER InSe

Here, we combine the analysis of two factors that deter-
mine the strength of SOC in multilayer γ -InSe: the asymmetry
embedded into the interlayer hybridization and the effect of an
externally controllable electric field.

A. Self-consistent analysis of subband electrostatics in doped
multilayer InSe films

In this section, the effect of an externally applied electro-
static potential (gating) for electrons in the lowest conduction
subband is calculated self-consistently, and its effect on the
charge distribution and on the band gap is discussed for the
dual and single-gated FET geometry as sketched in insets
of Figs. 11 and 13, respectively. To quantify the SOC in
the lowest conduction subband of few-layer InSe films, we

describe the subband structure of the latter (both dispersion
and wave functions) taking into account the electrostatic po-
tential profile induced by doping and gating. Our “workhorse”
is a two-band hybrid k · p tight-binding (HkpTB) model
previously discussed in Ref. [37], formulated in the basis
of conduction c and valence v band states in each layer
[c1, v1, c2, v2, . . .]. The HkpTB Hamiltonian has the form

ĤN
k·p ≈

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

h̄2k2

2mc
+ U1 0 tcc tcv · · ·
0 Ev + U1 −tcv tvv · · ·

tcc −tcv
h̄2k2

2mc
+ U2 0 · · ·

tcv tvv 0 Ev + U2 · · ·
0 0 tcc 0 · · ·
...

...
...

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

(13)

Here, tcc(vv) parametrize the interlayer conduction-conduction
(valence-valence) hops (tcc ≡ t�

cc + tcc2 k2), while tcv (tcv ≡
t�
cv + tcv2 k2) is the conduction to valence band hop. The zero

of energy is set to the monolayer conduction band edge, so
that Ev ≈ −2.8 eV is the energy of the monolayer’s topmost
valence band at the �-point. We neglect the valence band
dispersion in InSe monolayers, as earlier studies [1,56–58]
have shown that it is approximately flat over a large central
part of the Brillouin zone. We also neglect any k-dependence
in tvv for the same reason. The terms Uη account for the
electrostatic potential in layer η, and they are calculated
as [37]

Uη>1 = U1 + eaz

κ=η∑
κ=2

E(κ−1)κ , (14)

where az = 8.32 Å is the distance between adjacent layers and
E(κ−1)κ is the electric field between layers κ − 1 and κ . E(κ−1)κ

is obtained from the electron density on each InSe layer nη as

E(κ−1)κ = e

εzε0

η=N∑
η=κ

nη, (15)

where N is the total number of InSe layers in the device, nη is
the carrier concentration at the ηth layer, and εz is the dielectric
constant of InSe in the z direction. We then approximate the
electric field across a single layer as the mean of the fields
either side of it,

Eκ � (E(κ−1)κ + Eκ (κ+1))/2. (16)

Values of the parameters in the above Hamiltonian are listed
in Table III. They are obtained by fitting the results of
the numerical analysis of the 14-band model described in
Refs. [35,37,60,61]. It is also common, in order to obtain
more flexibility in gating, to have both a back gate and a
top gate applied to the device as shown in the dual-gated
geometry in the inset of Fig. 11. To demonstrate the behavior
of the SOC coefficient in the dual-gated case, we reproduce
the gating configuration used for transport experiments on a
six-layer device studied in Ref. [11]. In that work, a fixed
positive top gate voltage was applied to dope the system. At
Vbg = 0, the carrier density in the InSe films was measured
to be ne ∼ 4 × 1012 cm−2 indicating that the charge density
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TABLE III. Dependence of the energy gap and of the effective
mass of the lowest conduction subband as a function of the number
of layers L; m0 is the free-electron mass.

L Band gap (eV) mc/m0

1 2.87 0.266
2 2.14 0.220
3 1.83 0.204
4 1.67 0.197
5 1.58 0.192
6 1.52 0.189
7 1.48 0.187
8 1.46 0.186
9 1.44 0.185
10 1.42 0.184

in the top plate was that same amount. To include a fixed top
gate in our electrostatic calculations, we amend Eq. (15) to
read as

E(κ−1)κ = e

εzε0

[
η=N∑
η=κ

nη − ntg

]
, (17)

where ntg is the fixed top gate carrier density and nη the carrier
density in layer η. In considering the single-gated FET geom-
etry, a band gap modulation in the range of 10–20 meV is
obtained for carrier densities in the range of 0–3 × 1012 cm−2

for 6–9 layers as shown in Fig. 6(a). Such band gap tunability
[11] is a lot more efficient in the dual-gated configuration,
due to a reduced electrostatic screening, with the band gap
increasing up to 50 meV for an eight-layer device with a dop-
ing density of 2 × 1012 cm−2 and an applied top gate carrier
density of ntg = 4 × 1012 cm−2. This reduction in screening

also makes the charge redistribution more efficient in the
dual-gated FET device compared with the single-gated con-
figuration [see Figs. 6(b) and 6(c)].

B. SOC in multilayer films from few-layer HkpTB

In analyzing the SOC in multilayer InSe, two main mech-
anisms are found to determine the SOC strength. First, there
are the intralayer dipole moments which mix wave functions
of opposite parities within each layer under an applied elec-
tric field. Second, there is an interplay between the intrinsic
inversion asymmetry of the lattice structure of γ -InSe, and
the overall wave function z → −z symmetry breaking due to
the applied electrostatic potential. For the analysis of SOC
in multilayer InSe it is necessary to include deeper valence
bands v1 and v2 dominated by the px, py orbitals necessary
for atomic SOC mixing with the pz orbitals in c and v (see the
orbital composition of each band in the character table on top
of Fig. 5). On including the deeper valence bands, the hybrid
k · p tight-binding Hamiltonian Ĥ of an N-layer InSe [48] in
the vicinity of the �-point (kx, ky → 0) previously discussed
in Sec. III is rewritten as the sum of an unperturbed Ĥ (0) and
a perturbative part δĤ ,

Ĥ = Ĥ (0) + δĤ . (18)

Writing the wave function eigenstates of the mul-
tilayer Hamiltonian Ĥ in a 14 × N band basis as
� = [�1,�2,�3,�4, . . . , �N ], where �w is the 14-band

FIG. 6. (a) Band gap dependence on carrier density for a single (solid) and dual-gated (dashed) device with a fixed top gate carrier density
ntg = 4 × 1012 cm−2. A reduction in the band gap with increasing electric field is expected from the displacement of electrons towards lower
energies along with an increase in electrostatic energy of the holes (quantum-confined Stark effect) [8,59]. (b) Fraction of the total carrier
density at each layer η in a single-gated six-layer InSe device. The first layer is defined as the one closest to the metallic gate. (c) Fraction of
the total carrier density at each layer η against displacement field in a six-layer InSe device in a dual-gated configuration at two fixed carrier
concentrations of ne = 2.5 × 1012 cm−2 for the solid line and ne = 7.5 × 1012 cm−2 for the dotted line. The same color to layer correspondence
applies as in Fig. 2(b).
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monolayer basis in layer w defined as

�w ≡ [
c↑(w), c↓(w), c↑(w)

1 , c↓(w)
1 , v↑(w), v↓(w), v

↑,px (w)
1 , v

↓,px (w)
1 , v

↑,py (w)
1 , v

↓,py (w)
1 , v

↑,px (w)
2 , v

↓,px (w)
2 , v

↑,py (w)
2 , v

↓,py (w)
2

]
, (19)

yields the following expression for Ĥ , Ĥ0, and δĤ :

Ĥ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ĥ (0)
11 + δĤ11 Ĥ (0)

12 + δĤ12 0 0 · · ·(
Ĥ (0)

12 + δĤ12
)T

Ĥ (0)
22 + δĤ22

(
Ĥ (0)

23 + δĤ23
) · · · · · ·

0
(
Ĥ (0)

23 + δĤ23
)T . . .

(
Ĥ (0)

(η−1)η + δĤ(η−1)η
) · · ·

0
...

(
Ĥ (0)

(η−1)η + δĤ(η−1)η
)T

Ĥ (0)
ηη + δĤηη · · ·

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (20a)

Ĥ (0)
ηη =

⎛
⎜⎜⎜⎜⎝

−Uη 0 0 0 0
0 (Ec1 − Uη ) 0 0 0
0 0 (Ev − Uη ) 0 0
0 0 0 (Ev1 − Uη )Îν 0
0 0 0 0 (Ev2 − Uη )Îν

⎞
⎟⎟⎟⎟⎠, (20b)

δĤηη =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 Eηdc1c Eηdcv ib54k · � iλ46(s × �)

Eηdc1c 0 0 0 ibc1v2
16 (k · �)

Eηdcv 0 0 iλ15(s × �) ib16(k · �)

−ib54(k · �)T 0 −iλ15(s × �)† 0 Eηdv1v2 Îν

−iλ46(s × �)† −ibc1v2
16 (k · �)T −ib16(k · �)T Eηdv1v2 Îν 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (20c)

Ĥ (0)
(η−1)η =

⎛
⎜⎜⎜⎝

t�
cc 0 0 0 0
0 0 0 0 0
0 0 t�

vv 0 0
0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎠,

δĤ(η−1)η =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
(
tcc1 + δc1c

) (
t�
cv + δcv

)
0 0( − tcc1 + δc1c

)
0 0 0 0( − t�

cv + δcv
)

0 0 0 0

0 0 0 0
(
tv1v2 + δv1v2

)
Îv

0 0 0
( − tv1v2 + δv1v2

)
Îv 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (20d)

Here, indices η and κ label layers. The basis of each ma-
trix Ĥ (0)

ηκ and δĤηκ is the 14-band monolayer InSe basis. In
Ĥ (0)

ηη , Uη is the electrostatic potential in the ηth layer, Ev is the
monolayer topmost valence band energy as previously defined
in the two-band model, Ev1 , Ev2 , and Ec1 are the energies
of the v1, v2, and c1 bands, and Îν is the identity operator
in the space of atomic px, py orbitals. In Ĥ (0)

(η−1)η, parame-
ters t�

cc and t�
vv are the neighboring conduction-conduction

(valence-valence) interlayer hoppings; no spin index has been
included in Eq. (20d) and in Eq. (20b) as all nonzero matrix
elements are spin independent. In δĤ(η−1)η, t�

cv and δcv are
the z-symmetric and z-antisymmetric c − v mixing interlayer
hoppings, respectively (see Appendix A). In δĤηη, dcv , dv1v2 ,
and dc1c are the out-of-plane dipole moments (see Fig. 5).
Coefficients b54, b16, and bc1v2

16 are k · p mixing terms between
c − v1, v − v2, and c1 − v2, respectively, while λ46 and λ15
are the atomic orbital SOC strengths for c − v2 and v − v1
spin-flip mixing, with values given in Table I. The latter is
included using spin matrices sx and sy. Matrices �y and �x
are 1 × 2 matrices [0, 1] and [1, 0], respectively, operating in

the px, py orbital component of the v1 and v2 valence bands
and k · � ≡ kx�x + ky�y and s × � ≡ sx�y − sy�x.

In the absence of interband hoppings, and having neglected
the interlayer hoppings between the deeper valence bands
v1 and v2 and between band c and the upper conduction
band c1, the subband eigenstates formed by Ĥ0 define the
orthogonal basis used in the Löwdin projection. The eigen-
states of the jth conduction and valence subband states in
this unperturbed Hamiltonian therefore have the form |c j〉 =∑η=N

η=1 α
j
η|cη〉, |v j〉 = ∑η=N

η=1 β
j
η |vη〉, |v j

1(2)〉 = |v1(2)η〉, |c j
1〉 =

|c1η〉 where |cη〉, |vη〉, |v1(2)η〉, and |c1〉 are the c, v, v1(2),
and c1 monolayer eigenstates in layer η, respectively. In the
following analysis we will only focus on the lowest con-
duction subband α1

η ≡ αη. For the purpose of calculating the
SOC coefficient as a function of carrier density, the v1, v2,
and c1 subbands are approximated as all being located at
E ′

v1
≡ Ev1 − Uav , E ′

v2
≡ Ev2 − Uav , and E ′

c1
≡ Ec1 − Uav , re-

spectively, where Uav is the average electrostatic potential per
layer. This is due to a small change in the onsite electrostatic
potential �U(η−1)η = Uη−1 − Uη, as compared with the Ev1 ,
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Ev2 , and Ec1 energy denominators (0.1–0.3 eV, as compared
to about 3.5 eV for c to v1(2) energy denominator terms and
to about 1.4 eV for the c to c1 terms). When applying the
Löwdin partitioning method [62,63] (see Appendix D), the A
block is chosen to act on the ↑ and ↓ spin states of the lowest
conduction subband and the B block on every other subband
in the InSe multiband structure.

In order to obtain the SOC term perturbatively, we account
for three effects: an inversion symmetry breaking (such as an
electric field or the interlayer pseudopotentials); SOC inter-
band mixing; and k · p mixing elements. Consequently, the
lowest-order nonzero terms in the perturbation theory have to
be third order in the expansion. Defining

H ′
ρω ≡ 〈ρ|δĤ |ω〉, (21)

where |ρ〉 and |ω〉 are two eigenstates of Ĥ0, the corresponding
third-order terms in quasidegenerate perturbation theory have
the form

�H (3)
mm′ = −1

2

∑
l,m′′

H ′
ml H

′
lm′′H ′

m′′m′

(Em′ − El )(Em′′ − El )

− 1

2

∑
l,m′′′

H ′
mm′′H ′

m′′lH
′
lm′

(Em − El )(Em′′ − El )

+ 1

2

∑
l,l ′

H ′
ml H

′
ll ′H

′
l ′m′

(Em − El )(Em − El ′ )

+ 1

2

∑
l,l ′

H ′
ml H

′
ll ′H

′
l ′m′

(Em′ − El )(Em′ − El ′ )
, (22)

where the m, m′ indices correspond to Ĥ0 subband eigenstates
in block A and the l, l ′ index to any subband eigenstate in
block B (see Appendix D).

Energies Em(l ) correspond to the energy of the mth or l th

eigenstate. Contributions to SOC originate from the three-step
loop Feynman diagrams in Figs. 7–10, with spin-reversed
initial and final states c↑(↓) and c↓(↑).

The Feynman diagrams, originating from the inversion
asymmetric parameters δcv and δc1c in combination with the
mixing with deeper valence bands and SOC as shown in
Figs. 7 and 8, give a term

�H ′′′
11 = 2

[
j=N∑
j=1

κ=N∑
κ=1

(
b54λ15δcv

�Ecv1�Ecv j

+ b16λ46δcv

�Ecv2�Ecv j

)

× ακ

(
β

j
κ+1 + β

j
κ−1

) ξ=N∑
ξ=1

αξβ
j
ξ +

η=N∑
η=1

(
bc1v2

16 λ46δc1c

�Ecc1�Ecv1

)

× αη(αη+1 + αη−1)

)]
(s × k), (23)

FIG. 7. (Left) Feynman diagram of the interlayer spin-flip loops
due to the γ -stacking involving the upper conduction band c1.
(Right) Feynman diagram of the interlayer spin-flip loops due to
the γ -stacking involving the deeper valence bands v1 and v2. Such
contribution is only relevant for the Dresselhaus SOC in the valence
band v as shown in Appendix A. Dotted lines (· · · ) label the terms
in δĤ responsible for inversion symmetry breaking. Dashed lines
(− − −) label the intra-atomic SOC mixing between different bands.
Solid lines label the k · p interband mixing terms in δĤ . Different
colors label pairs of loops that produce competing contributions in
the same order of perturbation theory.

where δcv and δc1c are the z-asymmetric parameters between c
and v and between c1 and c defined in Eq. (20d) and further
discussed in Appendix A. In the presence of an external elec-
trostatic potential, the signs of δcv and δc1c become important,
as they can be related to placing a single electrostatic gate

FIG. 8. Feynman diagram of the interlayer spin-flip loops due to
the γ -stacking responsible for breaking the z → −z symmetry in the
c to v hopping parameters tcv and tvc. Dotted, dashed, and solid lines
follow the same convention as in Fig. 7.
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FIG. 9. Feynman diagram of the SOC originated from the asym-
metry induced by the electrostatic potential distribution Ui combined
with the z → −z symmetric interband hopping parameter tcv . Dotted,
dashed, and solid lines follow the same convention as in Fig. 7.

on one of the surfaces and the orientation (up or down) of
externally controlled electric field Ez.

The two diagrams in Fig. 9 give a SOC term in the form of

�H ′
11 = 2

[
j=N∑
j=1

κ=N∑
κ=1

(
b54λ15t�

cv

�Ecv1�Ecv j

+ b16λ46t�
cv

�Ecv2�Ecv j

)

× ακ

(
β

j
κ+1 − β

j
κ−1

)( ξ=N∑
ξ=1

αξβ
j
ξ

)]
(s × k), (24)

FIG. 10. Feynman diagram of the SOC from the dipolar mixing
terms. Dotted, dashed, and solid lines follow the same convention as
in Fig. 7. Different colors label the different three-step loops included
in Eq. (22) in the same order of perturbation theory.

FIG. 11. SOC strength dependence on displacement field and
carrier density for a six-layer InSe dual-gated FET device as shown in
the inset. The solid and dotted lines indicate, respectively, when the
applied displacement field suppresses or enhances the Dresselhaus
SOC.

where ακ and β
j
κ are the components of the lowest conduction

subband and the jth valence subband, respectively; κ labels
the layer index. �Ecv j ≡ Ec − Ev j is the energy difference
between the lowest conduction subband and the jth valence
subband and �Ecv1(2) ≡ Ec − E ′

v1(2)
is the energy gap between

the lowest conduction subband and the v1 and v2 subbands
located at Ev1(2) − Uav . The loops shown in Fig. 10 for the
dipolar mixing terms give a SOC term in the form of

�H ′′
11 = 2

[
j=N∑
j=1

κ=N∑
κ=1

(
dcvλ15b54

�Ecv j �Ecv1

+ dcvλ46b16

�Ecv j �Ecv2

)

× (
Eκακβ

j
κ

)(ξ=N∑
ξ=1

αξβ
j
ξ

)
+

η=N∑
η=1

α2
ηEη×

(
dv1v2 b54λ46

�Ecv1�Ecv2

+ dc1cbc1v2
16 λ46

�Ecc1�Ecv2

)]
(s × k), (25)

where dcv is the matrix element of the out-of-plane dipole op-
erator between the monolayer conduction and valence bands,
dv1v2 is the out-of-plane dipole moment between v1 and v2 and
dc1c the out-of-plane dipole between c1 and c. Eη is defined
as the electric field in layer η and �Ecc1 ≡ Ec − E ′

c1
is the

energy difference between the lowest conduction subband and
the set of c1 subbands located at Ec1 − Uav . In accounting for
the dipolar terms, some care must be taken in choosing its sign
in the few-layer case, as is further explained in Appendix B.

Combining all these contributions enables us to describe
the dependence of SOC strength α on the number of lay-
ers, electric field, and doping in the film as shown in
Figs. 11–13. For example, as illustrated in Fig. 12, in multi-
layer InSe in a single-gated FET, doping the device to carrier
densities >1013 cm−2 can lead to the compensation of the
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FIG. 12. 2D SOC coefficient α in the lowest conduction subband
of N-layer InSe film against carrier density for different number
layers in a single-gated FET geometry. Inset: shift in momentum
of the minimum of the lowest conduction subband as a function of
the number of layers when no electrostatic doping is present. The
dielectric constant, used for this calculation, was εz = 9.9. The solid
and dotted lines indicate, respectively, when the applied displace-
ment field suppresses or enhances the Dresselhaus SOC.

intrinsic SOC by the contribution of the gate-induced electric
field.

C. SOC analysis in InSe films using a quantum well model

To describe thicker films, it is more practical to use a quan-
tum well model for InSe films [8,37]. For this, we describe the
dispersion of electrons in the k · p theory expansion near the
A-point conduction band edge of bulk InSe as

Ec(p, pz ) =
(

h̄2

2mA
+ ξ p2

za2
z

)
p2 + h̄2 p2

z

2mAz

+ α∞

(
1 − χa2

z p2
z

π2

)
(s × p), (26)

where mA and mAz are the in-plane and out-of-plane effective
mass at the A-point and the parameters ξ and χ take into
account the anisotropic nonparabollicity of the electron’s dis-
persion characteristic for layered systems. In Fig. 13(b) we
show the pz dependence (around the A-point) of the linear
in kx, ky spin-orbit coupling computed by DFT for bulk InSe
using the quasiparticle self-consistent GW (QSGW) approach
[60,61], to compare with the SOC form in Eq. (26). This has
to be complemented with the generalized Dirichlet-Neumann
boundary conditions for the quantum well wave function �(z)

FIG. 13. (a) SOC coefficient α computed for InSe films with
various thicknesses and carrier densities in a single-gated FET ge-
ometry (inset), calculated assuming εz = 9.9 for the InSe. The data
shown in circles (©) were obtained by exact diagonalization of the
14-band Hamiltonian in Ref. [60] and compared with the perturba-
tion theory results obtained by Löwdin partitioning (�) (note that
for N = 1, α = 0 for ne = 0 × 1012 cm−2). Inset shows the usual
configuration of a single-gated FET device. The solid and dashed
lines indicate the fitted dependence of the Dresselhaus term as a
function of the number of layers when the quantum well approx-
imation holds (N � 4) and when it does not, respectively. (b) In
red, the QSGW-calculated SOC strength as a function of kz in bulk
γ -InSe for the conduction band [61]. As kz approaches the band edge
located at kz = π

az
= 0.378 Å−1, the SOC strength increases follow-

ing a quadratic dependence on wave vector pz defined relative to

the A-point as shown in green [α(pz ) = α∞(1 − χa2
z p2

z
π2 ), where α∞ =

34.5 meV Å and χ = 14.9]. This increasing trend indicates that for
greater confinement under a decreasing number of layers, a weaker
linear Dresselhaus SOC is expected.

at the encapsulating interfaces

� ± νaz∂z� = 0, ν ≈ 1.42. (27)

The latter determines the values for the wave numbers of the
electron’s standing waves

pz = nπ

(N + 2ν)az
, (28)
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FIG. 14. (a) Optical photograph of an encapsulated InSe flake
(light blue) equipped with few-layer graphene (FLG) contacts (red).
Yellow polygons illustrate gold leads contacting FLG. Green color
corresponds to the bottom hBN flake deposited on top of an oxidized
Si wafer (dark blue). (b) Calculated charge density distribution along
the different layers in the dual-gated device under study. At a carrier
concentration of ne = 8 × 1012 cm−2, the distribution of charges be-
comes z → −z symmetric as the top plate carrier density is fixed at
ntg = 4 × 1012 cm−2.

which determines the subband and layer-number dependence
of the subband mass [37] and SOC parameter,

1

mn
≈ 1

mA

(
1 − 6.2n2

(N + 2ν)2

)
,

αn|N (n � N ) ≈ α∞

(
1 − χn2

(N + 2ν)2

)
. (29)

By fitting α1|N described in Eq. (2) to the values of the lowest
subband SOC strength in Fig. 13 we find that α∞ = 34.5
meV Å and χ = 14.9, respectively. Additionally, the results
of the calculations, performed in the same films subjected
to an electric field Ez perpendicular to the layers shown in
Figs. 1 and 11 show an approximately linear SOC strength
dependence on Ez. We describe the latter as

α(N, Ez ) = α(N ) ± Ezℵ(N ), (30)

with the vales of ℵ(N ) for N � 2 shown in the inset of Fig. 1.
Further to the DFT calculations for the few-layer case, in
Fig. 3 we use previous QSGW calculations for bulk γ -InSe
[60,61] to extract the kz dependence of the coefficient of the
linear component of SOC for small in-plane momentum near

kx = ky = 0, for both the conduction and valence bands. This
shows that as kz approaches the bulk band edge (located at
kz = π/az) the SOC strength increases, implying that as kz

is restricted by confinement in thin films of InSe, the SOC
strength can be expected to decrease from its bulk value, with
smaller strengths for thinner films.

V. MAGNETOTRANSPORT STUDIES OF InSe FILMS IN
THE FET GEOMETRY AND THEIR COMPARISON

WITH THEORY

In order to probe the nature of SOC in InSe, we fab-
ricated a dual-gated multiterminal six-layer γ -InSe device
using mechanical exfoliation and hexagonal boron nitride
(hBN) encapsulation, which were carried out in an inert at-

FIG. 15. Weak antilocalization feature in conductivity measured
in a six-layer dual-gated InSe device with corresponding optimal
fits (black). Carrier densities were measured in the range from
1.7 − 2.2 × 1012 cm−2 in steps of 0.1 × 1012 cm−2. Blue indicates
the upper and lower bound fits of the corrections to magnetoconduc-
tivity. Top inset shows the carrier density at each back gate voltage
obtained from Hall-effect measurements. The finite carrier density
at Vbg = 0 is due to the applied top gate voltage corresponding to
Vtg = 8 V. The linear relation between the carrier density and the
back gate voltage for a fixed top gate of Vtg = 8 V was found to
be ne = ϒ(Vbg − V ′

bg(Vtg=8 V)) where V ′
bg(Vtg=8 V) = −67.6 V and ϒ =

5.71 × 1010 V−1 cm−2.
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mosphere of a glove box [64]. Such encapsulation was needed
to protect air-sensitive InSe flakes from the environment [see
Fig. 14(a)]. In addition, electrical contact to InSe was pro-
vided by few-layer graphene (FLG) flakes which in turn were
connected to metal leads by standard nanofabrication tech-
niques as illustrated in Fig. 14(a) (see Ref. [11] for further
details). The gate-tunable work function of graphene ensured
Ohmic contacts between FLG and 2D InSe [65] and thus
enabled us to explore InSe properties using conventional four-
terminal measurements. To characterize the fabricated device,
we first measured its longitudinal resistivity ρxx as a function
of gate-induced carrier density ne. The latter was obtained via
Hall-effect measurements that provided full ne(Vbg) depen-
dence presented in Fig. 15. In contrast to earlier studies of
the quantum Hall effect in InSe/graphene interfaces [66], the
perfectly linear ne vs Vbg trend shown in the inset of Fig. 15
does not indicate any substantial charge transfer from the InSe
to the gating surface. Using Drude formula we determined
the mean-free path of charge carriers λ and respective scatter-
ing time τ , important parameters critical for further analysis.
The effective mass for the lowest conduction subband used
to extract τ was mc = 0.12me, obtained from an accurate
calculation of the bulk effective mass accounting both for
electron-electron and electron-phonon interaction effects in
the bulk conduction band [67].

An experimental manifestation of the SOC strength can
be found in the weak antilocalization (WAL) corrections to
magnetoconductance [68–71] produced by the interference
of electron waves propagating along closed loops of random
walks [72,73]. Such behavior has been observed in recent
studies of few-layer single-gated GaSe [74] and InSe [75,76].

In Ref. [76], the fitting procedure used to extract the SOC
strength from the corrections to magnetoconductance was the
formalism developed by Hikami, Larkin, and Nagaoka [70]
for systems where the spin relaxation mechanism is domi-
nated by scattering with magnetic impurities [77,78]. As the
γ -stacked phase in InSe is noncentrosymmetric and therefore
the spin relaxation mechanism is expected to be Dyakonov-
Perel, their extracted spin relaxation parameters from WAL
fits were overestimated.

In Ref. [75] the enhancement of the SOC as compared
to our estimated bulk SOC strength value at the band edge
(α∞ ≈ 34 meV Å) is a result of an impurity deposition layer
formed at the interface of the suspended device; this forms a
sharp potential barrier at the interface and therefore increases
the SOC strength.

From our weak antilocalization measurements, the spin
and phase relaxation times can be obtained by fitting the
corrections to conductivity with respect to these two param-
eters in the range of magnetic fields where the minimum in
magnetoconductance appears.

The WAL corrections to the conductivity of the six-layer
device with the same characteristics as reported in Ref. [11]
were measured as a function of the magnetic field with 1 mT
magnetic field step. As shown in Fig. 15, at magnetic fields
10–30 mT, a clear minimum in the magnetoconductance is ob-
served. The corrections to conductivity �σ (B) − �σ (0) were
measured in the range of 0–90 mT, and both the spin and phase
relaxation time were fitted with the formalism developed by
Iordanskii, Larkin, and Pitaevskii [79,80] (ILP) for systems
where the lack of inversion symmetry leads to the elec-
tron’s spin precessing and to relaxation by Dyakonov-Perel
mechanism. Such formalism was used for carrier densities
<2 × 1012 cm−2; above that carrier densities, the assumption
of the ILP formalism that the precession angle φ = �τ � 1
(� being the spin precession frequency and τ the momentum
relaxation time), and that the magnetic field B � Btr (where
Btr ≡ h̄

2eλ2 and λ is the mean-free path) breaks down. The spin
precession frequency � is then related to the spin-orbit cou-
pling strength α through the simple relation � = αkF where
kF is the Fermi momentum. In these cases, we employ the
approach developed by Golub [81,82], which goes beyond the
diffusion approximation for arbitrarily large precession an-
gles and for magnetic fields comparable to the transport field
Btr .

For the magnetoconductance fits performed at carrier
densities ne � 2 × 1012 cm−2, the nonbackscattering
corrections to conductivity were found to be negligible,
and therefore corrections to conductivity only came from the
backscattering loops

σback = − e2

2π2h̄

(
λ

lB

)2 ∞∑
N ′=0

Tr

[
Â3

N ′ (Î − ÂN ′ )−1 − P3
N ′

1 − PN ′

]
,

ÂN ′ ≡

⎛
⎜⎜⎝

PN ′−2 − S(0)
N ′−2 R(1)

N ′−2 S(2)
N ′−2

R(1)
N ′−2 PN ′−1 − 2S(0)

N ′−1 R(1)
N ′−1

S(2)
N ′−2 R(1)

N ′−1 PN ′ − S(0)
N ′

⎞
⎟⎟⎠,

PN ′ ≡ lB
λ

∫ ∞

0
exp

(
− lB

l̃
x − x2

2

)
LN ′ (x2)dx,

S(μ)
N ′ ≡ lB

λ

√
N ′!

(N ′ + μ)!

∫ ∞

0
exp

(
− lB

λ
x − x2

2

)
xμLμ

N ′ (x2) sin2

(
�τ

lB
λ

x

)
dx,

R(μ)
N ′ ≡ lB√

2λ

√
N ′!

(N ′ + μ)!

∫ ∞

0
exp

(
− lB

λ
x − x2

2

)
xμLμ

N ′ (x2) sin

(
2�τ

lB
λ

x

)
dx. (31)
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FIG. 16. Inverse spin relaxation time and phase relaxation length
vs diffusion coefficient. The proportionality relation between the
diffusion coefficient obtained by varying the carrier density ne and
the inverse of the spin relaxation time indicates Dyakonov-Perel
mechanism of spin relaxation.

Here, lB ≡
√

h̄
eB is the magnetic length, and in Eq. (31), l̃

is defined as l̃ ≡ λ
1+ τ

τφ

where τφ is the phase relaxation time.

The precession frequency is related to the spin relaxation time
τSO through 1

τSO
= 2�2τ . As done previously with the ILP for-

malism, both the phase and spin relaxation times were taken
as fitting parameters. In Fig. 16, the inverse proportionality
between the spin relaxation time and the diffusion coefficient
D confirms that the spin relaxation mechanism is Dyakonov-
Perel [83,84]. From τSO, the SOC coefficient is extracted and
compared with our theoretical calculation in Fig. 17. In Fig. 17
the SOC coefficient at different carrier densities was cal-
culated at the experimentally established dielectric constant
εz = 9.9 for InSe [34]. Very good agreement was found be-
tween the calculated SOC coefficient and the experimentally
extracted SOC strength. Furthermore, by looking at the two
different branches originated from the orientation of the crys-
tal being parallel or antiparallel to the applied electric field,
it was found that at a carrier density of ne = 8 × 1012 cm−2

the two branches converged at a single point. This indicates
no dependence either on crystal orientation or on electrostatic
profile. As shown in Fig. 14, at that exact carrier density, the
electrostatic profile is expected to be z → −z symmetric and,
therefore, the only contribution to the SOC must originate
from the intrinsic z → −z asymmetry of the crystal (see com-
parison in Fig. 17 with SOC strength at zero electric field).

VI. CONCLUSION

Overall, the description of SOC strength (as a function of
the number of layers and the applied electric field piercing the
multilayer film) obtained using the few-layer HkpTB study
and a quantum well model give the matching results, and the
theoretically computed SOC strengths are compared with the
results of weak antilocalization measurements on dual-gated

FIG. 17. SOC coefficient α as experimentally extracted from
weak antilocalization measurements of the dual-gated six-layer de-
vice [11], compared to the value obtained in the self-consistent
calculation. The blue dashed line indicates the value of α in the
absence of any electrostatic gating and doping. The same notation
for the solid and dotted lines is used as in Figs. 1, 12, and 11.

multilayer InSe films showing a good agreement between
theory and experiment.

The size of SOC constant we compute for InSe films with
2–10 layers thickness is comparable to the SOC strength
in quantum wells of conventional semiconductors, such as
GaAs, InAs, HgTe. What makes 2D InSe different from those
spintronic systems is that the SOC strength in it can be tuned
over a wide range. Additionally, contribution originating from
the asymmetry of an hBN/InSe interface was analyzed and
shown to be negligible (as compared with the intrinsic SOC in
the film) for InSe encapsulated in hBN both on top and in the
bottom, and also to decay as N−3. Moreover, we demonstrate
that spin-orbit coupling strength for electrons near the conduc-
tion band edge in few-layer γ -InSe films can be tuned over
a wide range, from α = 0 to α ≈ 70 meV Å. This tunability
illustrated in Fig. 18 for the films of various thicknesses is
the result of a competition between film-thickness-dependent
intrinsic and electric-field-induced SOC, potentially, allowing
for electrically switchable spintronic devices. As shown in
Figs. 18 and 1, displacement fields in the range of 1–2 V nm−1

can turn the SOC on and off.
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lines indicate the disappearance of SOC due to the application of a displacement field which compensates the SOC from the intrinsic lack of
inversion symmetry in the different multilayers.
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APPENDIX A: DETERMINATION OF PARAMETERS δcv ,
δc1c, AND δv1v2 FROM BULK SOC

For the calculation of subband energies and dispersions,
it was sufficient to approximate the interlayer hops as being
entirely between the inversion symmetric sublattices of se-
lenium atoms on the outside of each layer. This causes the
hops to be inversion symmetric, which when combined with
the opposite z-symmetries of the monolayer conduction and
valence under σh reflection (i.e., z → −z symmetry) gives
tcv = −tvc, tc1c = −tcc1 , and tv2v1 = −tv1v2 . It is transparent
from Eq. (1) that inversion symmetry would prohibit the
existence of extrinsic SOC. Consequently, we require terms
in our model which break inversion symmetry (such as an
applied electric field or the interlayer pseudopotentials arising
from the γ -stacking [85]). The indium atoms provide such
an asymmetry; in the γ -stacking there is a vertically oppo-
site interlayer In/Se pair heading in one direction along the
z-direction, while in the other direction the indium atom is
opposite an empty space in the adjacent layer. In the k · p
model, the effect of this symmetry breaking is to give tcv ,
tc1c, and tv1v2 slightly different magnitudes as compared with
−tcv , −tc1c, and −tv1v2 , so we define three new parameters:
2δcv ≡ tcv + tvc, 2δc1c ≡ tc1c + tcc1 , and 2δv1v2 ≡ tv1v2 + tv2v1 .
In order to obtain the parameters δcv and δc1c relevant for
the analysis of the Dresselhaus SOC in the conduction band,
the linear SOC splittings at each individual kz are obtained
from the QUESTAAL package by linearly fitting the energy
differences between the two spin-split bands (see Fig. 19).
First, the parameters δcv and δc1c were fitted for the α vs kz

dependence of band c (red curve in Fig. 19), and then the
δv1v2 parameter was fitted from the α vs kz dependence of
band v (green curve in Fig. 19). Using the same perturbative
analysis as in Sec. IV in the bulk limit, the Dresselhaus SOC
at each kz is obtained both for the c and v bands, respectively,
namely,

αc(pz ) = 4 cos (pzaz )

(
δcvb54λ15

(Ec − Ev )
(
Ec − Ev1

)
+ δcvb16λ46

(Ec − Ev )
(
Ec − Ev2

) + δc1cbc1v2
16 λ46(

Ec − Ec1

)(
Ec − Ev2

)
)

(A1)

FIG. 19. (Solid) Bulk SOC as a function of kz for c and v bands.
(Dots) SOC strength at different kz obtained from the perturbative
analysis in Eqs. (A1) and (A2).
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and

αv (pz ) = 4 cos (pzaz )

(
δcvb54λ15

(Ev − Ec)
(
Ev − Ev1

)
+ δcvb16λ46

(Ev − Ec)
(
Ev − Ev2

) + δv1v2 b16λ15(
Ev − Ev1

)(
Ev − Ev2

)
)

,

(A2)

where pz = π
az

− kz. The fitting parameters considered are
the terms δcv , δc1c, δv1v2 , and λ46 as the 14-band fit ap-
plied to the InSe bulk dispersion did not account for any
them. The optimal parameters found in order to fit the
spin splitting vs kz dependence in the vicinity of the band
edge where perturbation theory is best applicable were
δcv = 0.014 eV, δc1c = 0.022 eV, δv1v2 = −0.001 eV, and
λ46 = −0.09 eV.

APPENDIX B: DETERMINATION OF THE SIGNS OF dcv ,
dv1v2 , AND dc1c

While on their own the signs of dcv and tcv may be cho-
sen arbitrarily through an appropriate choice of basis in the
monolayer Hamiltonian, the product of dcv and tcv does not
have such degree of freedom. In order to determine the relative
signs of the different dipole moments, it is necessary to look
at their k-dependence as we move away from the �-point. In
considering the conduction to valence band interlayer hopping
(both the z-symmetric and z-antisymmetric) as a perturbation
to our conduction or valence subband wave functions, the
k-dependence of the bilayer valence band dipole moment
follows easily as

〈v2L|ez|v2L〉 = 2δcv

[
dcv

Eg2L
+ tcveaz

2Eg2LE ′
g2L

]
(B1)

for the valence band, and

〈c2L|ez|c2L〉 = −2δcv

[
dcv

Eg2L
+ tcveaz

2Eg2LE ′′
g2L

]
(B2)

for the bilayer conduction band. In the above equation, dcv =
|〈c|ez|v〉| = 1.68 eÅ is the matrix element of the out-of-plane
dipole operator between the monolayer conduction and va-
lence bands and v2L and c2L are the topmost valence subband
and lowest conduction subband wave functions in a bilayer
system at the �-point. Eg2L = Ec − Ev − (tcc − tvv ), E ′

g2L =
Ec − Ev + tcc + tvv , and E ′′

g2L = Ec − Ev − (tcc + tvv ) are the
energy differences between the bilayer bands in the absence of
the interband hoppings. Comparison of these expressions with
the signs of the quantities calculated using DFT gives, for a
choice of positive tcv and negative dcv , a positive δcv when the
+z direction is chosen such that the vertical In-Se interlayer
pair in the interface between two layers the Se atom lies
above the In atom in the γ -stacking. Conversely, a negative
δcv is obtained for the opposite orientation. On calculating
perturbatively the value of dcv at a finite k, the following result
is obtained:

dcv (k) ≡ 〈v|ez|c〉 = 〈v0|ez|c0〉 + b54b16k2dv1v2

�Ev1c�Ev2v

. (B3)

FIG. 20. Dipole moments between monolayer bands c and v

(dcv) and between monolayer bands v1 and v2 (dv1v2 ) computed using
the tight-binding model in Ref. [35].

By looking at the negative trend of |dcv| and the hybrid k · p
tight-binding values quoted in Table III, it is transparent that
if dcv is positive, dv1v1 is as well positive. Furthermore, if dcv

is negative, the value of dv1v2 should be negative as well. In
order to find the sign of the dipole moment dc1c a similar
perturbative analysis is applied for dv1v2 :

dv1v2 (k) ≡ 〈v1|ez|v2〉 = 〈v1,0|ez|v2,0〉 + b54b16k2dcv

�Ev1c�Ev2v

+ b54bc1v2
16 k2dc1c

�Ev1c�Ev2c1

. (B4)

In comparing the red and the green curves in Fig. 20, the much
more pronounced steepness of the red curve as compared to
the green curve at low values of k indicates that dc1c must be
negative for a positive dv1v2 and vice versa.

APPENDIX C: INTERFACIAL CONTRIBUTION TO
MULTILAYER INSE SOC

In addition to the crystalline and the electrostatically
induced z → −z asymmetry, few-layer InSe is a material
sensitive to interfacial effects due to its limited thickness.
Such effects may have an impact in the SOC strength of
multilayer InSe and must therefore be taken into considera-
tion [55,86,87]. The same two InSe-hBN configurations used
for the analysis of interfacial effects in bilayer InSe shown
in Table II (configurations 1 and 2) were also used for the
calculation of the interface-induced SOC in multilayer InSe
as their contribution in the absence of an external electrostatic
potential is only dependent on the encapsulating substrates
and on the film thickness. Interface effects are taken into
account by adding into the multilayer Hamiltonian two ad-
ditional contributions identical to Eq. (11). First, bands c and
v with a relevant Se pz orbital composition experience in the
outer layers a shift in energy due to the interaction with the
pz orbitals of the encapsulating hBN. Therefore, an additional
energy shift is added to the c, v, v1, and v2 bands of the first
and the N th layers.
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Additionally, the hBN interfaces break z → −z symme-
try in the outer layers mixing bands with opposite z-parity
but identical in-plane symmetries. The following perturbative

term accounting for all these effect is introduced in the multi-
layer Hamiltonian

δĤ (I )
11(NN ) =

⎛
⎜⎜⎜⎜⎜⎝

�Ec1(N ) 0 ±ϒ
t/b
cv 0 0

0 0 0 0 0
±ϒ

t/b
cv 0 �Ev1(N ) 0 0

0 0 0 �Ev11(N )Îν ±ϒ
t/b
v1v2 Îν

0 0 0 ±ϒ
t/b
v1v2 Îν �Ev21(N )Îν

⎞
⎟⎟⎟⎟⎟⎠,

(C1)

where ϒ t
cv and ϒ t

v1v2
are the mixing terms between bands c − v and v1 − v2 in the top interface and −ϒb

cv , −ϒb
v1v2

are ones
mixing bands c − v and v1 − v2 at the bottom interface. Note that such mixing terms require an opposite sign due to the opposite
sign due to the opposite direction of the interfacial effective electric fields at the two InSe/hBN interfaces. Given the very small
interfacial energy shift of bands c and v and the very weak hybridization between bands v1 and v2, the dominant contribution to
the conduction band SOC strength originates from the interfacial terms mixing bands of opposite parity (see Fig. 21).

Among them, the most relevant contribution originates from the term ϒcv mixing bands c and v, which, in the absence of an
applied electric field, yield to the following contribution to the SOC strength:

�H (I )
11 = 2

([
b54λ15

�Eg1�Ecv1

+ b16λ46

�Eg1�Ecv2

](
ϒ t

cvα1β1 − ϒb
cvαNβN

))
(s × k), (C2)

where �Eg1 is the energy between the lowest conduc-
tion subband and the topmost valence band (i.e., the energy
gap) and �Ecv1(2) is the energy difference between the low-
est conduction subband and the v1(2) subbands. The number
of layers dependence of the interfacial SOC strength can
be extracted expanding �Eg1 , �Ecv1(2) , α1(N ), and β1(N ) as
a function of the number of layers in the quantum well
approximation presented in Ref. [37]. In such approximate
framework, the out-of-plane wave vector kz depends on the

FIG. 21. Feynman diagram of the interlayer spin-flip loops due
to the interfacial electric fields experienced by the electrons in the
outer Se orbitals of the first and N th layers. Dotted, dashed, and solid
lines follow the same convention as in Fig. 7.

number of layers as kz = π
az

+ nπ
(N+2ν)az

and the wave func-
tions for both the conduction and the valence bands are
approximated as the eigenstates of a quantum well size L =
(N + 2ν)az [�1

c ≈ �1
v ≈

√
2

(N+2ν)az
cos ( πz

(N+2ν)az
)]. From this

quantum well model, a 1
(N+2ν)3 dependence of the interfacial

SOC strength is expected, as confirmed by the fit presented in
Fig. 22. Given the smallness of the interfacial SOC strength

FIG. 22. Interfacial SOC as a function of the number of layers
in the absence of an externally applied electric field Ez. (Dashed)
Fit of the interfacial SOC strength as a function of the number of
layers. A 1

(N+2ν )3 dependence is expected from the quantum well
model presented in Ref. [37].
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compared to the layer-number-dependent Dresselhaus SOC,
any contribution coming from the hBN/InSe interface will be
neglected for the rest of our analysis.

APPENDIX D: LÖWDIN PARTITIONING METHOD

In order to obtain the third-order corrections to the hy-
brid k · p tight-binding Hamiltonian, the standard method
of Löwdin partitioning [62] is applied. The total multilayer
Hamiltonian is written in the basis of the unperturbed subband

eigenstates obtained from diagonalizing the Ĥ0 part of the
Hamiltonian in Eq. (20b),

Ĥ = Ĥ0 + Ĥ ′, (D1)

where Ĥ ′ is the perturbative part, namely, the projection of
δĤ in the orthogonal subband basis formed by Ĥ0 (H ′

ρω ≡
〈ρ|δĤ |ω〉). In the partitioning method, two diagonal blocks
are defined A and B and a unitary transformation is applied
to the entire Hamiltonian matrix in order to remove the

nonblock-diagonal elements. The set A is defined as the elements within the lowest conduction subband c1,

ĤA =
(〈c1↑|ĤA|c1↑〉 〈c1↑|ĤA|c1↓〉

〈c1↓|ĤA|c1↑〉 〈c1↓|ĤA|c1↓〉

)
, (D2)

while the set B are the matrix elements within the valence subbands or the upper conduction subbands,

ĤB =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

〈v1↑|ĤB|v1↑〉 〈v1↑|ĤB|v1↓〉 〈v1↑|ĤB|v2↑〉 〈v1↑|ĤB|v2↓〉 . . .

〈v1↓|ĤB|v1↑〉 〈v1↓|ĤB|v1↓〉 〈v1↓|ĤB|v2↑〉 〈v1↓|ĤB|v2↓〉 . . .

〈v2↑|ĤB|v1↑〉 〈v2↑|ĤB|v1↓〉 〈v2↑|ĤB|v2↑〉 〈v2↑|ĤB|v2↓〉 . . .

〈v2↓|ĤB|v1↑〉 〈v2↓|ĤB|v1↓〉 〈v2↓|ĤB|v2↑〉 〈v2↑|ĤB|v2↑〉 . . .

...
...

...
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (D3)

where the numerical indices such as 1 and 2 refer to the first or second subbands. The nonblock-diagonal elements Hnbd are the
elements mixing the terms of the A and B blocks, namely,

Ĥnbd =
(〈c1↑|Ĥ |v1↑〉 〈c1↑|Ĥ |v1↓〉 〈c1↑|Ĥ |v2↑〉 . . .

〈c1↓|Ĥ |v1↑〉 〈c1↓|Ĥ |v1↓〉 〈c1↓|Ĥ |v2↑〉 . . .

)
. (D4)

The expression in Eq. (D1) is rewritten in terms of Ĥ ′
1 (the matrix containing the perturbations within blocks A and B) and Ĥ ′

2
(the nonzero perturbations between sets A and B):

Ĥ = Ĥ0 + Ĥ ′
1 + Ĥ ′

2. (D5)

Transforming the Hamiltonian with a unitary transformation of the form eŜ ,

H̃ = e−ŜĤeŜ, (D6)

the deeper valence band states are projected into the lowest conduction subband. From the definition of the A block, the matrix
elements 〈c1↑|Ĥ |c1↓〉 and 〈c1↓|Ĥ |c1↑〉 are the terms responsible for the SOC splitting. We get the following expressions for the
block and nonblock-diagonal matrix elements:

Ĥbd =
∞∑
j=0

1

(2 j)!
[Ĥ (0) + Ĥ (1), Ŝ](2 j) +

∞∑
j=0

1

(2 j + 1)!
[Ĥ (2), Ŝ](2 j+1),

Ĥnbd =
∞∑
j=0

1

(2 j + 1)!
[Ĥ (0) + Ĥ (1), Ŝ](2 j+1) +

∞∑
j=0

1

(2 j)!
[Ĥ (2), Ŝ](2 j). (D7)

The nonblock-diagonal terms are then set to 0, forcing the third order in the perturbation Hamiltonian (�H (3)) to be

�H (3)
mm′ = −1

2

∑
l,m′′

[
H ′

ml H
′
lm′′H ′

m′′m′

(Em′ − El )(Em′′ − El )
+ H ′

mm′′H ′
m′′lH

′
lm′

(Em − El )(Em′′ − El )

]

+ 1

2

∑
l,l ′

[
H ′

ml H
′
ll ′H

′
l ′m′

(Em − El )(Em − El ′ )
+ H ′

ml H
′
ll ′H

′
l ′m′

(Em′ − El )(Em′ − El ′ )

]
, (D8)

where (m, m′) are elements within A and (l, l ′) are elements within B. Having identified the loops responsible for the SOC
splitting shown in Figs. 7–9 and 10, the mixing between the conduction and the deeper valence bands projected into the lowest
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conduction subband has the form

�H (3)
11 = 2

j=N∑
j=1

η=N∑
η=1

〈c↓|δĤ |v↑
2,η〉〈v↑

2,η|δĤ |v j,↑〉〈v j,↑|δĤ |c↑〉
�Ecv2�Ecv j

+ 2
j=N∑
j=1

η=N∑
η=1

〈c↓|δĤ |v↓
1,η〉〈v↓

1,η|δĤ |v j,↑〉〈v j,↑|δĤ |c↑〉
�Ecv1�Ecv j

+ 2
η=N∑
η=1

〈c↓|δĤ |v↑
2,η〉〈v↑

2,η|δĤ |v↑
1,η〉〈v↑

1,η|δĤ |c↑〉
�Ecv1�Ecv2

+ 2
η=N∑
η=1

〈c↓|δĤ |c↓
1,η〉〈c↓

1,η|δĤ |v↓
2,η〉〈v↓

2,η|δĤ |c↑〉
�Ecc1�Ecv2

. (D9)

Knowing the origin of the three-step loop processes described in Sec. IV, the Hamiltonian that contributes to the SOC in the
absence of a relevant interfacial term can be decomposed as

�H (3)
11 = �H ′

11 + �H ′′
11 + �H ′′′

11, (D10)

where the different terms correspond to the different mechanisms behind SOC in band c:

�H ′
11 = 2

[
j=N∑
j=1

κ=N∑
κ=1

(
b54λ15t�

cv

�Ecv1�Ecv j

+ b16λ46t�
cv

�Ecv2�Ecv j

)
ακ

(
β

j
κ+1 − β

j
κ−1

)( ξ=N∑
ξ=1

αξβ
j
ξ

)]
(s × k),

�H ′′
11 = 2

[
j=N∑
j=1

κ=N∑
κ=1

( Eκdcvλ15b54

�Ecv j �Ecv1

+ Eκdcvλ46b16

�Ecv j �Ecv2

)(
ακβ

j
κ

)( ξ=N∑
ξ=1

αξβ
j
ξ

)
+

η=N∑
η=1

α2
η

(Eηdv1v2 b54λ46

�Ecv1�Ecv2

+ Eηdc1cbc1v2
16 λ46

�Ecc1�Ecv2

)]
(s × k),

�H ′′′
11 = 2

[
j=N∑
j=1

κ=N∑
κ=1

(
b54λ15δcv

�Ecv1�Ecv j

+ b16λ46δcv

�Ecv2�Ecv j

)
ακ

(
β

j
κ+1 + β

j
κ−1

)( ξ=N∑
ξ=1

αξβ
j
ξ

)

+
η=N∑
η=1

(
bc1v2

16 λ46δc1c

�Ecc1�Ecv1

)
× αη(αη+1 + αη−1)

]
(s × k). (D11)

Finally, using Eq. (D9) the interfacial contribution to the SOC strength coming from the dominant ϒ
t/b
cv term in Eq. (C2) has the

form

�H (I )
11 = 2

[
j=N∑
j=1

(
b54λ15

�Ecv j �Ecv1

+ b16λ46

�Ecv j �Ecv2

)(
ϒ t

cvα1β
j
1 − ϒb

cvαNβ
j
N

)( ξ=N∑
ξ=1

αξβ
j
ξ

)]
(s × k). (D12)

Considering the limit where the applied electric field is zero, this term simplifies to

�H (I )
11 = 2

[
b54λ15

�Eg1�Ecv1

+ b16λ46

�Eg1�Ecv2

](
ϒ t

cvα1β
1
1 − ϒb

cvαNβ1
N

)
(s × k). (D13)
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