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Abstract—EdgeAI is an emerging AI accelerator technology 

which is capable of delivering improved AI performance at both a 

lower cost and a lower power level. With the aim of implementation 

in large quantities and in safety-critical environments, it is 

imperative to understand how Single Event Effects (SEE) affect the 

reliability of this new family of devices, and to propose efficient 

hardening solutions. Through neutron beam experiments and fault-

injection analysis of a COTS EdgeAI device, we are able to identify 

the device's SEE failure-modes, separate the error rate 

contributions of the device's different resources, and characterise 

the device's SEE reliability. During this analysis we discovered that 

the vast majority of single bit flips have no appreciable effect on the 

output. After this analysis, we propose a hardening solution which 

implements TMR in the device without changing its physical 

architecture. We experimentally validate this solution and show that 

we are able to correct 96% of the misclassifications (critical errors) 

with nearly-zero overhead. 

 

Index Terms—Artificial neural networks, embedded systems, 

fault tolerance, reliability, safety-critical 

I. INTRODUCTION 

RTIFICIAL Neural Networks (ANNs) are today adopted 

in various domains that range from high performance 

computing to data analysis and autonomous vehicles for 

automotive and aerospace applications. While general purpose 

devices such as GPUs or FPGAs are widely used to prototype 

ANNs, this new programming paradigm has pushed the demand 

for dedicated, efficient, and low-cost Commercial-Off-The-

Shelf (COTS) devices for the execution and acceleration of 

ANNs. These emerging devices, named EdgeAI, bring the once 

computationally expensive process of decision making via a 

neural network down to a lower cost and a lower power level 

(the NeuroShield discussed here consumes 0.38W under load, 

the Quadro GV100 GPU consumes 250W [1]). 

The huge computing power of high-end GPUs is required to 

solve highly complex problems, such as detecting objects in a 

scene. If adopted in self-driving cars, these problems need to be 

solved in real-time (i.e., at least 40 frames per second), forcing 

the use of highly expensive, power hungry parallel devices. 

Besides costs, the huge number of available resources in GPUs 

makes them highly susceptible to faults [5]. The lower 

computing capabilities of EdgeAI devices limit the number of 

object classes that can be identified and detection (intended as 

the location in space of the object) is normally not supported. 

While unsuitable to real-time object detection, Edge AI devices 

have a range of applications: classification, anomaly detection, 

and noise removal, and are currently extremely popular in 

Internet of Things (IoT) applications [2][3]. The expected high 

distribution of IoT devices increases the probability of seeing a 

radiation-induced corruption. It is then fundamental to evaluate 

EdgeAI device’s Failure In Time, and eventually propose 

effective hardening solutions to improve their reliability if the 

error rate is found to be too high.  

EdgeAI devices usually embed a general-purpose CPU 

(typically ARM based), that acts as an interface, and a 

programmable accelerator that implements the neural network 

which is defined and trained by the user. EdgeAI devices are a 

very attractive alternative for the execution of ANNs when 

compared to the expensive and/or power-hungry GPUs and 

FPGAs; especially for applications with very limited power 

requirements. Additionally, FPGAs and GPUs have previously 

been shown to have serious reliability weaknesses, mostly due 

to their inefficient mapping of ANNs [4][5]. As dedicated 

accelerators are likely to be considered for the execution of 

ANNs in safety-critical applications [6], it is mandatory to 

deeply investigate their reliability, identify eventual 

weaknesses and failure modes, and propose efficient hardening 

solutions. 

This work aims to characterize Edge AI device reliability 

using the COTS NeuroShield as a case study. The NeuroShield 

is a 576 neurons accelerator, that can be configured (through 

learning) to identify several patterns [8][9]. The flexibility of 

the architecture allows the user to perform single or multi layers 

perceptions connecting the neutrons in the device or even 

connecting various devices in a chain. For our testing we only 

implement a single layer perceptron. While the results we 

present are focused on a specific accelerator, the methodology 

we adopted remains valid for any EdgeAI device. Through 

fault-injection, we investigated how errors propagate through 

the device. Then, through neutron beam experiments we 

measured the FIT rates of an ANN running on the NeuroShield 

and separated the error rate contributions of its different 

resources. Finally, based on our analyses, we propose a 

hardening method which increases the hamming distance of the 

dataset categories using Triple Modular Redundancy (TMR). 

We experimentally validate our solution and show that we 

correct 96% of the misclassifications (critical errors) with 

nearly-zero overhead.  

After a brief background on Neural Network reliability and 

EdgeAI architectures (Section II), we discuss the experimental 

setup (Section III and IV) and how the cross-section of the 

NeuroShield was determined (Section V). We then present error 
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rate estimation results (Section VI), propose an efficient 

hardening solution for EdgeAI devices (Section VII), and 

evaluate it (Section VIII). Section IX then draws conclusions. 

II. BACKGROUND 

A. Neutron Effects in Neural Networks 

On an ANN accelerator affected by radiation-induced faults, 

you would expect to see the following effects: 

 
• No effect observed on the output (the fault is masked). 

• Silent Data Corruption (SDC) that modifies the network 

output. SDC does not necessarily affect the accuracy as 

some corruptions can lead to correct classifications when 

the corrupted output has a value which is sufficiently close 

to the correct one.  

• Program / device crash requiring reboot or power cycle. 

The probability of events occurring as well as the overall 

impact of the event on the ANN is dependent on the 

implementation. As an example, GPU accelerated 

Convolutional Neural Networks (CNN) can see their reliability 

significantly impacted by neutron effects; even when Error-

Correcting Code (ECC) is used. This is due to the GPU’s 

microarchitecture having a tendency to propagate single faults, 

affecting several output elements [5]. On SRAM FPGAs, errors 

in the configuration memory have been shown to alter the 

implemented circuit, leading to misdetection [4]. On an EdgeAI 

device such as IBM's TrueNorth, it has been shown that 

although overall accuracy remains roughly constant, categories 

can show an increase or decrease in accuracy [7]. Our work will 

look for further effects in Edge AI devices and propose and 

validate a hardening solution. 

B. NM500 Architecture and Neutron Effects 

The Device Under Test (DUT) in this work is an Arduino 

shield (developed by General Vision, produced by nepes) 

known as the NeuroShield [8][9]. This device implements a 

singular NM500 chip, an Edge AI Accelerator. In our tests, the 

chip contained a single layer neural network of up to 576 neuron 

cells. Each cell consists of 6 registers, to control behaviour, 

several logic gates, and a block of 256-byte, 8-bit memory to 

store a model [10]. The network’s behaviour is controlled by 15 

Network Control Registers (NWCRs). These registers control 

the process of learning new patterns, such as when and how to 

learn. The NWCRs also allow the classification method to be 

switched between Radial Basis Function (which allows the 

network to return an uncertain classification) and K-Nearest 

Neighbours (which will always return a classification) [11]. 

The NM500 classifies input vectors in the following way. 

An input vector is fed into each neuron simultaneously. This 

input passes through various logic blocks within each neuron, 

Fig. 1. This logic compares the input against a unique internal 

model to produce a value known as distance, the summation of 

the bitwise differences between an input vector and the neurons 

internal model. This can be thought of as the Confidence of the 

Classifying Neuron and will be referred to in this way for the 

remainder of the paper. Once the neurons have processed the 

input, the network logic identifies a singular neuron with the 

highest level of confidence in its classification and propagates 

that classification to the output. The selected neuron is known 

as the Firing Neuron. This process is shown in Fig. 2. 

 

 
Fig. 1 A representation of the logic within each of the 576 neurons within the 

NM500 chip. A neuron produces a classification based on the distance 

(difference between the input and the internal model), normalized with the 

influence field.  

 
Fig. 2. A representation of the NM500‘s architecture showing the data flow. 

In total, there are approximately 1,212,000 bits in the 

NM500 chip that can be corrupted, calculated from the NM500 

User Manual [10].  

One of the contributions of our reliability evaluation is to 

understand, with controlled fault-injection, the possible sources 

for errors (Section IV-D) and to propose effective hardening 

solutions. Due to the architecture of the device, in fact, some of 

these bits are more influential in their effects on the ANN than 

others. The architecture itself of EdgeAI devices, then, is likely 

to be a promising target for efficient (and effective) hardening. 

For instance, a bit flip in a neuron model would have an almost 

unnoticeable effect, as it would only cause a small change to the 

confidence of the classifying neuron [12]. A bit flip in the 

NWCRs FORGET register, on the contrary, could have much 

more disastrous consequences. In fact, if the network was told 

to forget its knowledge, every neuron’s category would be set 

to 0, and no inputs would be classified until the network is re-

trained. Another area with a potentially significant effect on the 

output is the category register of each neuron. All 576 neurons 

contain one of these 16-bit registers which stores a number 

which eventually makes up the classification output of the 

network. A SEU here would result in the neuron reporting an 

incorrect category for all classifications it is involved in. It is 

within this register that the hardening method proposed in 

Section VII focused its attention. 
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III. DATASETS USED IN EXPERIMENTS 

Datasets are large collections of pre-classified input patterns 

(commonly images) which are used for training and testing a 

neural network. A dataset commonly used for experimenting 

with neural networks is MNIST, a collection of 70,000 images 

of handwritten digits from 0 to 9 [13]. Datasets are also usually 

split into a training set and a testing set, MNIST is split into 

60,000 training images, and 10,000 testing images. The work 

presented here uses the full MNIST training set for all training 

applications and a randomly obtained subset of the MNIST 

testing set for testing applications. 

We have selected a reduced dataset to decrease the time 

required to process all the images. To process the full data set 

of 10,000 images it would take over 30 seconds, while 2 

seconds are sufficient to process the reduced dataset of 600 

images. The data set reduction is necessary to: 

 

1. Decrease the chance of multiple neutrons causing 

corruption during the processing of the dataset.  

2. Increase the number of tests performed. 

The subset of images was selected randomly while 

guaranteeing an equal number of images for each category. The 

selected subset of images has practically the same accuracy of 

the full MNIST dataset (79% vs 80%). 

A. Modifying the Datasets 

Due to the NM500’s architecture, the maximum input 

length is 256 bytes. However, the MNIST dataset contains 

images of 784 bytes in length. By down sampling the MNIST 

images with a mean-box-filtering technique [14], the images 

were reduced to 256 bytes, making them compatible with the 

device. Since this approach is used to reduce computational 

complexity even in powerful ANN devices [15], we claim that 

this is still an effective test case scenario. The accuracy of the 

network with the down sampled dataset was approximately 

80%. A comparison between one of the original and 

downscaled images is shown in Fig. 3. 

 

 
Fig. 3. Comparison of original 28x28 pixel MNIST image (left) to its down-

scaled 16x16 pixel counterpart generated with Mean Box Filtering. Down-

scaled image is also an example of a NeuroShield input pattern. 

IV. EXPERIMENTAL SETUP USED AT CHIPIR 

The setup described in this section was utilised for all the 

neutron radiation experiments performed in this work. The only 

variation in setup was the distance between the ChipIr beam-

stop and the DUT due to space limitations in the beamline. 
The experiments were controlled and monitored by a 

LabVIEW program running on a computer located in ChipIr’s 

screened room. This computer communicated with an Arduino 

Due, located inside ChipIr’s block house via an RS232 UART 

serial connection. The Arduino was responsible for data output 

and operation of the NeuroShield. To prevent radiation from 

interfering with the Arduino’s functions, the NeuroShield was 

connected via a custom-made shield extension board. Finally, a 

Newport motorised linear stage controlled the radiation 

exposure by moving the NeuroShield, the DUT, into and out of 

the beam as desired. An image of the setup used at ChipIr is 

shown in Fig. 4. 

The expected neutron flux at the ChipIr beam-stop is (5.6 ± 

0.6)×106 n cm-2 s-1 (with neutron energies greater than 10 MeV 

[18]). The neutron flux of the beamline was characterised with 

calibrated activation foils [16] and silicon detectors [17], which 

are also used as an active monitor during the irradiation. Due to 

the nature of the neutron source and high energies of neutrons 

in use, the beam is divergent even when passed through the 

collimator. The best approximation of the neutron transport is a 

point-like source at 13.6 meters from the standard user position 

(ChipIr beam-stop) [18]. As a result, all measurements of 

neutron flux taken from the activation foils and silicon detectors 

positioned at the front of ChipIr must be corrected according to 

the inverse square law. 

 

 
Fig. 4. The experimental setup at ChipIr, ready to be irradiated. 

V. DETERMINATION OF THE CROSS-SECTION 

A. Experimental Methodology 

The experimental setup presented in Section IV was utilised 

here. The DUT was positioned 0.8m away from the ChipIr 

beam-stop with a collimated beam size of 70x70mm. 
The network was initialised with a previously generated 

knowledge file containing a snapshot of the contents of every 

register on the network (i.e., the network's weights). This file 

was generated by the Arduino after successfully training the 

network with the dataset described in Section III. It took 

approximately 2 seconds for the knowledge file to be read from 

an external SD card and written to the network. To ensure initial 

accuracy of the DUT’s register contents, the process of 
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initialising the knowledge was performed outside of the neutron 

beam before being validated through a singular out-of-beam 

test. Following validation of the knowledge, the device was 

traversed into the path of the neutron beam for 30 seconds. 

A test duration of 30 seconds was chosen because it was 

found through early experimentation that any longer than a 

minute would cause errors to begin to saturate and increased the 

likelihood of observing a knowledge failure error (mass bit 

corruption due to error induced in network control logic). By 

using 30 seconds, it enable us to maintain a usable error 

throughput whilst minimising the likelihood of a neutron 

striking the same bit more than once. After the time elapsed, the 

device was traversed out of the path of the beam. The now 

corrupted contents of the network were then output via a serial 

link to the external monitoring computer running the LabVIEW 

program, where it was logged ready for analysis. 

For calculating the total number of bit flips induced in the 

device, the output after exposure was compared to a control 

output with no exposure. The difference between these two 

outputs became the number of errors, Ne. The expected neutron 

flux at the ChipIr beam-stop is (5.6 ± 0.6)×106 n cm-2 s-1 (with 

neutron energies greater than 10 MeV [18]). To account for the 

divergence of the flux, the flux was adjusted according to the 

inverse square law to give an expected neutron flux at the DUT 

of (5.0 ± 0.54)×106 n cm-2 s-1. The particle fluence was then 

calculated by multiplying the expected neutron flux at the DUT 

by the time of exposure, 30 seconds. Finally, the cross-section 

of the device for a singular test was calculated using (1). Where 

σ is the per-bit cross-section, Ne is the number of errors, and ϕ 

is the neutron fluence. 

𝜎 =
𝑁𝑒

𝜙
                                        (1) 

B. C. Cross-Section of the NeuroShield 

Over the course of the experiment, the DUT was exposed to 

approximately 3 hours of neutron radiation, considering a 

terrestrial sea-level neutron flux of 3.6×10-3 n cm-2 s-1 [19], this 

equated to approximately 533,000 device-years of atmospheric 

exposure. During this time, a total of 2646 bit-errors were 

observed. From this, the per-bit cross-section of the 

NeuroShield was found to be (4.9 ± 0.2)×10-8 cm2, giving a FIT 

rate of 635 single bit corruptions in 109 device-hours of 

operation. This was found to be comparable to that of SRAMs 

of a similar technology node: (4.42 ± 1.49)×10-8 cm2 [20] 

VI. DETERMINATION OF THE ERROR RATES 

A. Error Types 

Each classification (output from the NeuroShield) is 

composed of three pieces of information: Category, Confidence 

of the Classifying Neuron, and Neuron Identification Number. 

When a SEU is induced, a change can be present in one or more 

of these three pieces of information. 

Each distinct classification can thus contain one or more of 

the following four error types: 

 
• Category Error (CE) - The category information of the 

classification is different than expected: that is, a 

misclassification has occurred. Think of the network 

classifying a picture of the number 2 as a number 6. 

• Distance Error (DE) - The distance, confidence of the 

classifying neuron, information of the classification is 

different than expected: think of the network’s confidence 

in its classification being changed. 

• Firing Neuron Error (NE) - The classification’s firing 

neuron is different than expected. The new neuron can 

either classify the input correctly or incorrectly, thus NE 

can be accompanied by CE and almost always by DE. 

• Knowledge Failure (KF) - The network’s knowledge has 

become damaged such that the input could not be 

classified. Note the difference between CE; KF can be 

thought of as an inability or refusal to classify an input. 

 

The proportions of these errors in a test should be 

proportional to the number of bits responsible for causing them 

(each error type’s critical bits). For example, bit flips in the 

registers which store neuron models should cause DE to be 

present in the output. Since neuron model bits make up 95.5% 

of the total bits, DE should account for 95.5% of all errors 

observed in testing. This section will aim to test this 

relationship, thus identifying which device bits are most critical 

for each failure mode and inform where hardening efforts 

should be focused for most benefit. 

B. Experimental Methodology 

In order to test for bit flips as-fast-as-possible, a new test set 

was produced from the contents of each neuron cell’s model (an 

example of a neuron model is shown in Fig. 5; notice the 

similarity to the MNIST images of Fig. 3). This new test set 

consisted of 576 images, one for each neuron cell’s model. A 

single test refers to the classification of all 576 of these images 

(576 input patterns). An error is said to occur when any part of 

a test is different from expected; each error can be categorised 

based on the four categories presented in Section VI-A. When 

this test was processed by the network, the NM500 will output 

the contents of its neurons in the most time and size efficient 

manner. It is the equivalent of reading each neuron register in 

the NM500 sequentially via the SPI interface but much quicker. 

The time savings occur due to the read operation making use of 

the parallel arrangement of the neurons. This test set has the 

added benefit of ensuring every single neuron in the network is 

examined, an important consideration for evaluating the 

radiation hardness of the device. 
Testing consisted of two separate phases: first was extensive 

fault-injection analysis, a testing method in which device bits 

are flipped artificially to simulate the impact of SEUs on a 

system [21]. Second was an experiment involving device 

operation under exposure to neutron radiation, this provided a 

realistic fault model and thus allowed a realistic determination 

of the DUT’s FIT rate for each error type. 
The fault-injection was controlled by the Arduino which 

selected a random register and bit location and flipped its 

contents. As this method requires the registers to be writable via 

the NeuroShield’s SPI interface, two neuron cell registers were 

inaccessible and thus un-injectable. Furthermore, since a lot of 
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the NWCRs were un-injectable and predicted to be responsible 

for solely KF, none of them were included in the injection 

process. This had the added benefit of increasing throughput by 

removing the need for power cycling of the device in the event 

of KF. 

 
Fig. 5. Pixel values of a neuron cell’s model. The representation is based on the 

MNIST images in Fig. 3 and shows the similarity between neuron models and 

the input patterns used to generate them. The image from Fig. 3 would make up 
an input vector and the image form Fig. 5 would make up a neurons unique 

model. The more different these 2 images are, the larger the “distance” between 

them, and the smaller the confidence of the classifying neuron 

The DUT was positioned to be 2.5m away from the ChipIr 

beam-stop with a collimated beam size of 70x70mm. The 

network was always trained with the knowledge file produced 

from the down-sampled dataset presented in Section III. The 

device was power cycled before each test. 

The network was first initialised with a previously generated 

knowledge file containing a snapshot of the contents of every 

register on the network. Then, the device was traversed into the 

beam and classifications were performed until an error was 

detected. Once an error was detected, the device was traversed 

out of the beam and all results were output to the external 

monitoring computer running a LabVIEW program. 

C. Experimental Predictions 

Each error type's probability of occurrence was initially 

garnered by first assuming them to be directly proportional to 

the size of their responsible registers. In order to determine 

which registers are responsible for each error type, a 

combination of theoretical device operation analysis and highly 

controlled fault-injection was used. The results of these 

analyses are presented in the third column of Table I. 
Following this, the Bit Proportion of each error type is 

calculated by dividing the total bit size of contributing registers 

by the total device bits, shown in the fourth column of Table I. 
Also shown in the third column of Table I are No Error 

types, this occurs when the registers produce no output effect 

when corrupted due to either not being involved in the 

classification processes or through self-correction. 
Conveniently, the two un-injectable neuron cell registers, 

are thought to have such a small effect on the output in response 

to single bit flips, that they can be assumed to present a No 

Error type. Furthermore, following the injection of faults into 

the Influence Field registers of the neurons, it was found that a 

single bit flip was very unlikely to cause an output error (none 

were observed). Thus, the un-injectable neuron cell registers 

have been combined with the Influence Field registers to make 

up Other Neuron Reg. in the first column of Table I. 

 
TABLE I 

REGISTERS, THEIR SIZE AND POSSIBLE ERROR TYPES 
Register Size (bits) Error Type Bit Proportion 

NWCRs 278 KF (70) 
 No Error (208) 

0.00567% 
0.0168% 

Neuron Memory 576 * 2048 DE 95.5% 
Neuron Context Reg. 576 * 8 NE 0.373% 

Neuron Category Reg. 576 * 16 CE 0.746% 
Other Neuron Reg. 576 * 72 No Error 3.36% 
Total Device Bits:  1,235,222 

  

 

The two neuron cell registers which could not be injected 

were the Distance Register and the Identifier Register [12]: 

• Distance Register (16-bit) - Stores the confidence of the 

classifying neuron. Bit flips are self-corrected due to 

recalculations of this value. 

• Identifier Register (24-bit) - Stores the location of the 

neuron in the network. The value is output as the Neuron 

Identification Number, bit-flips do not affect the 

classification and only cause difficulties with identifying 

problematic neurons. 

 

The Bit Proportions of Table I can be thought of as each 

error type’s probability of occurrence. By combining the DUTs 

per-bit cross-section from Section V with each error type’s 

probability of occurrence, the Expected FIT for each type could 

be calculated and is shown in the third column of Table II. 

Bit Proportions of the Distance Register and the Identifier 

Register (576 * (16+24) bits) have been combined with those 

of No Error NWCRs (208 bits), to produce the Un-injectable 

No Error probability. Finally, the remaining Bit Proportions of 

Other Neuron Reg. (576 * (72 - 40) bits) make up the Injectable 

No Error probability. These values are shown in Table II. 
 

TABLE II 
PREDICTED ERROR PROBABILITIES AND RATES 

Error Type Error Probability Expected FIT 
DE 95.5% 610 
CE 0.746% 4.8 
NE 0.373% 2.3 
KF 0.00567% 0.036 

Un-injectable No Error 1.89% - 
Injectable No Error 1.40% - 

 

D. Error Probabilities from Fault-Injection 

The fault-injection performed a total of 35,094 bit-flips, 

2.9% of the device’s total bits, taking approximately 50 hours. 

The results are shown in Table III. Throughout the entirety of 

the testing, no KF was observed. Since NWCRs were not 

injected, this adds credence to the idea that KF originates in the 
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NWCRs. It is important to note that KF could still occur as a 

result of bit flips in either the Identifier or Distance registers but 

since they cannot be written to via the SPI interface they could 

not be investigated here. 

 
TABLE III 

FAULT-INJECTION PREDICTIONS VS RESULTS 
Error Type Predicted Probability Injected Error Probability 

DE 95.5 % 97.4 % 
CE 0.746 % 0.707 % 
NE 0.373 % 0.430 % 

Injectable No Error 1.40 % 1.48 % 

Since the results are in reasonable agreement with the 

predictions, it can be assumed that the critical bits for DE, CE, 

and NE have been identified. This provides a basis for Section 

VII where the hardening method will aim to reduce the 

criticality of the bits responsible for CE. 

E. Error Rates from Neutron Radiation 

Radiation testing involved approximately 14 hours of 

operation under neutron exposure, this equates to 

approximately 2,500,000 device-years of operation in the 

earth’s atmosphere. A total of 2,818 errors were observed 

during the testing. In Fig. 6, the predicted FIT Rates from the 

third column of Table II are shown alongside the FIT Rates 

measured from the experiment. No KF errors were observed 

during testing, however this is likely due to needing 98 hours of 

radiation to expect to see even a single KF event. Furthermore, 

no Arduino or DUT crashes were observed. 

From the data shown in Fig. 6, DE is confirmed to be the 

most likely error type to occur with CE being more likely than 

NE. The larger discrepancy for NE is unexpected and further 

testing will be needed to identify the cause. 
The error rates determined in this section provide a 

benchmark upon which the hardening method presented in 

Section VII-B can be evaluated. 

 

 

Fig. 6. A graph with a logarithmic y-axis comparing the predicted FIT Rates 

with the experimental FIT Rates obtained from the beamline. 

VII. HARDENING METHOD DEVELOPMENT 

A. Critical Errors and Critical Bits 

For the purposes of this hardening method, a critical error 

will be defined as one where a bit flip in the device results in an 

input pattern being classified incorrectly. When related back to 

the error types and their rates presented in Section VI, it can be 

seen that even though DE occurs most frequently, only CE and 

KF are guaranteed to produce a critical error. Since KF occurs 

so rarely (as evidenced by the radiation experiment of Section 

VI-E), only the bits responsible for CE will be targeted for 

hardening. From the fault-injection of Section VI-D, we know 

that CE is caused by bit flips in the neuron cell category 

registers and so this is where the hardening method will focus 

its attention. 

B. The Hardening Method 

In Section VI-A, error types were defined, and their 

corresponding critical bits identified. In Section VII-A a critical 

error was defined and CE’s critical bits (the neuron cell 

category registers) were chosen as the area to harden. In order 

to harden these bits, it is necessary to first understand their 

function as part of the wider system. 
The category register is a 16-bit register located within each 

of the 576 neuron cells [12]. Thus, there are a total of 9,216 

critical bits for the CE error type that will need to be considered. 

Of these 16 bits per register, only 15 represent the dataset’s 

categories; the 16th is a reserved Neuron Degenerated Flag, 

which (if set) shows that care should be taken when relying on 

the neuron’s response [10]. It is important to understand that a 

bit flip in any of these 16 bits would cause a CE and thus a 

critical error. Since only 4 bits are being used to represent the 

MNIST dataset’s 10 categories, 11 bits remain unused in each 

category register. 
Triple Modular Redundancy (TMR) has been demonstrated 

as an effective hardening solution in FPGAs [22][23]. 

Typically, this method involves the repetition of device 

components such as memory registers. Since we do not have 

the ability to change the physical architecture of the 

NeuroShield, we must look at how we can implement repetition 

with the hardware already available on the device. As 

established previously, there are 11 unused bits in each category 

register when representing the MNIST categories, these bits can 

be used to add Informational Redundancy at no additional cost. 

More specifically, the hardening method will implement TMR 

by repeating the 4 bits required for the MNIST categories 3 

times within each of the category registers. This method can be 

thought of as a majority voting system where each copy of the 

category data is used to represent a vote for the correct output. 

The most common of these three votes becomes the final output 

of the device, the classification, Fig. 7. 

It is worth mentioning that arithmetic coding has been used 

in the past to improve the reliability of data storage and 

transmission [23][24]. Cyclic Redundancy Checks are a popular 

method, but their complexity made it difficult to consider them 

for implementation on this device. 
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Fig. 7. The TMR decoding process. The black 111 shows redundant bits which 
can be ignored. The green 0110 shows the uncorrupted votes containing the 

correct category. The red 0100 shows a vote with a corrupted 3rd bit. Once the 

modal average is taken, 0110 becomes the output. 

The method was implemented by replacing the category of 

all entries in the dataset with the TMR equivalent category. If 

the category was originally 6 (000 0000 0000 0110 in 15-bit 

binary), it would be replaced with 30310 (111 0110 0110 0110 

in 15-bit binary). Once the MNIST dataset was modified in this 

manner, the network was re-trained, and a new knowledge file 

containing the contents of all registers was produced. 

The efficacy of the hardening method we have designed 

depends on the number of classes the CNN needs to classify. 

The higher the number of classes, the lower the redundant bits 

available. Given the TMR requirements, with the 16-bit 

register, we will still guarantee error correction for a dataset of 

up to 2^5 = 32 classes and detection (with DMR) for up to 2^7 

= 128 classes. The NeuroShield, as other EdgeAI devices, are 

not meant to be employed in highly complex scenarios, such as 

autonomous cars, where hundreds of different classes of objects 

need to be identified. These devices are designed for Internet of 

Things (IoT) applications, where 128 classes are more than 

sufficient. We then claim that the proposed solution is valid for 

real-world use cases of EdgeAI devices. 

This is evidenced to be more than sufficient for current real-

world use-cases of this device such as pass/fail inspections 

which require only 2 categories [3], and an industrial olive 

pitting machine where only 4 categories are required [25] 

It is important to note that a separate device is needed to 

implement the output decoding logic. This could be performed 

by the attached microcontroller or even by a dedicated circuit. 

A dedicated circuit composed of low-power Schottky devices 

was simulated in LTspice and was shown to add no more than 

approximately 200ns of propagation delay. 

VIII. HARDENING METHOD EVALUATION 

A. Experimental Methodology 

The hardening method was evaluated using the same 

neutron radiation test presented in Section VI-B with the 

experimental setup presented in Section IV. The only difference 

being the modifications to the categories of the MNIST dataset 

used to train the network. The DUT was positioned to be 2.5m 

away from the ChipIr beam-stop with a collimated beam size of 

70x70mm. The decoding of the classification output was 

performed post irradiation at the data analysis stage in 

MATLAB. 

B. Error Rates from Neutron Radiation 

The device was exposed to the same amount of neutron 

radiation as in the radiation test of Section VI-E. A total of 22 

critical errors were observed in the output of the DUT, this was 

reduced by over 95% to 1 critical error once passed through the 

decoding logic. The critical error cross section was reduced 

from (2.2 ± 0.6)×10-10 cm2 to  (9.7 ± 2.4)×10-12 cm2 (shown in 

Fig. 8), a very good result, which highlights the effectiveness of 

even a simple hardening solution in reducing the impact of 

Single Event Effects (SEE) in COTS EdgeAI devices. 

The hardening solution we propose is designed based on the 

experimental observations and is dedicated to the NeuroShield, 

which is why it results to be so efficient. Generic solutions, such 

as DMR, can always be applied and are highly generic. 

However, they come with a not negligible overhead. While the 

proposed solution is dedicated to the NeuroShield device, there 

is no reason why an efficient, dedicated, and experimentally-

tuned hardening solution should not be found for other 

accelerators. As we have shown in our paper, by analysing with 

both fault injection and beam experiments the behaviour of an 

EdgeAI device affected by transient faults, it is possible to 

design highly efficient and effective hardening solutions. 

 

 
Fig. 8. A graph with a logarithmic y-axis comparing the critical error cross-

section of the DUT, before and after hardening. 

IX. CONCLUSION 

This work has examined the effects of SEE on a COTS 

EdgeAI accelerator, the NeuroShield. The cross-section 

measured in Section V is comparable to that of similar SRAM 

technology nodes. The device’s critical error FIT Rate, 4.8, 

already seems promising for use in applications requiring good 

reliability. The TMR hardening method presented in Section 

VII-B and evaluated in Section VIII has been shown to perform 

very well, reducing the number of critical errors by 96%. While 

this solution is validated only for the NeuroShield device, we 

have shown that it is possible, by analyzing fault injection and 

beam experiment results, to design dedicated (and thus highly 

efficient) hardening solutions for EdgeAI devices. 
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