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Working Notes of  Distributed Computing Group 

 

Evaluation of Workstation Specialists’ 
 WS-Tesla x8 GPU Server 

 

 

Recently we have published a report
1
 where we evaluated our Tesla based GPU cluster. Our general conclusion 

was that GPU based solutions should now belong to the arsenal of available HPC technologies. For appropriate 

types of workload, the technology developed by NVIDIA offers high speedups, high density of compute power 

as well as considerable savings in terms of money and power. The momentum achieved by the success of Tesla 

C1060 continues with the release of Tesla C2050 (code name Fermi). People generally agree that general 

purpose GPU (GPGPU) is an interesting technology but once the decision to deploy a GPU cluster has been 

reached, most are confronted with the question: what is the most optimal configuration for GPU deployment in 

an HPC solution. As usual, the answer is “it depends”. In some situations, e.g. visualisation server, a single card 

per server might be sufficient; for others, as high number of GPUs per server as possible; yet for others, highest 

bandwidth to GPUs is a must. Two other conclusions were drawn in the report: i) the importance of the power 

required by the host, ii) relatively poor scaling across GPU-enabled servers. These two points prompt to 

question the efficiency of a solution based around 1U or 2U host servers which typically cannot accommodate 

GPUs inside, especially if more than two GPUs are needed, and therefore require a Tesla server. One 

alternative is to use a 4U server with two Tylersburg Intel 5520 chipsets and eight PCI Express Gen2 16x-wide 

slots. The effective bandwidth per GPU will remain the same as in a server with one chipset, two PCI Express 

slots and PCI Express bridge in the Tesla server splitting each slot into two but the advantages are lower host 

power and the ability to drive eight GPUs in a single box. It is exactly this type of server which is being offered 

by WS-Tesla x8 GPU server from Workstation Specialists
2
 and we were very delighted when we were allowed 

to evaluate it. 

Setup 

The majority of Intel servers on the market today feature a single Chipset I/O Hub (IOH). Depending on the 

chipset, configurations with 36 and 24 PCI Express lanes are possible using Intel 5520 and Intel 5500 chipsets 

respectively
3
. This enables building servers with dual and single 16-lane PCI Express slots although in practice 

8-lane wide slots are used more frequently in servers. The simplest topology assumes that the CPU sockets and 

IOH are directly connected using Intel’s Quick Path Interconnect (QPI), see Figure 1A. For example, the host 

servers of our GPU cluster employ single Intel 5520 chipset and therefore support two 16-lane PCI Express 

slots plus a 4-lane slot used by Infiniband card. Using two GPUs in such a setup would be the most optimal 

solution from the bandwidth point of view. However it is also possible to increase the GPU density and make 

pairs of GPUs share the bandwidth of a 16-lane PCI Express slot (dual GPU setup). In the Tesla servers used in 

our cluster, this is done through PCI Express bridges and PCI Express adapter cards which plug into the hosts. 

 

However Intel also envisaged a reference configuration with two Tylersburg chipsets, see Figure 1B. It allows 

increasing the number of full 16-lane PCI Express slots to four and using up to eight GPUs if the bandwidth is 

shared. This is the topology used by WS-Tesla x8 server. It is a dual socket 4U server with two chipsets 

supporting eight PCI Express Gen2 16-lane wide slots. Notice however that in contrast to the first topology 

which requires only one hop to pass the data between CPU and IOH, the second topology may need two hops. 

 

The WS-Tesla x8 server used in our evaluation featured Intel Xeon E5520 processor and 24 GB of DDR3 

RAM. Clocked at 2.27 GHz, the processor is the slowest in the Xeon E-range. However, since the heavy lifting 

is supposed to be done by the accelerators, 80 Watt TDP and low frequency should minimise the power budget 

                                                           
1
 “Comparison of traditional and GPU-based HPC solutions from Power/Performance point of view”, Igor 

Kozin. November 2009. http://www.cse.scitech.ac.uk/disco/publications/WorkingNotes.Power.pdf 
2
 http://www.workstationspecialist.com/ 

http://www.workstationspecialist.com/hpc/personal_super_computer/ 
3
 “Intel 5520 Chipset and Intel 5500 Chipset Datasheet”, March 2009. 

http://www.intel.com/assets/pdf/datasheet/321328.pdf  



required by the host. Besides, the E-range supports 1066 MHz DDR3 which delivers the bandwidth much 

higher than that of QPI. Therefore the host seems to be ideal in sense of minimising the power and maintaining 

the memory bandwidth to feed the CPUs. A bottleneck may appear in suboptimal bandwidth between IOH and 

GPUs due to sharing of PCI Express lanes if the maximal number of GPUs is used. However this should be no 

worse than the bandwidth offered by the Tesla server.  

 

 
 

The picture below shows the rear view of WS-Tesla x8 server. The server came to us without GPUs and we 

installed eight M1060 cards taken temporary from two Tesla S1070 servers. It must be noted that M1060 is 

passively cooled but the blower fans seen in Figure 2 were perfectly adequate even under very heavy load. 

Another point worth noting is that there were no appropriate fixtures for the cards in the box since M1060 has 

no bracket and instead is screwed to the board of S1070 using four nuts. The cards were simply plugged into 

the slots of WS-Tesla x8 and not fixed to the chassis. There were no issues with this but that may be inadequate 

in production environment. In comparison, C1060 comes with a fixing bracket as well as with an active fan 

which allows using slightly higher clock and therefore takes more power. The server came with a single hard 

drive on which we installed Scientific Linux 5.3, the latest NVIDIA driver 195.36.08 and CUDA 2.3. 

 

 

 
 

Figure 2: Rear view of Workstation Specialists WS-Tesla x8 server with the top lid open. 
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A: Single chipset topology B: Dual chipset topology 

Figure 1: Two possible topologies based on Intel 5520 Chipset I/O Hub (adapted from “Intel 

5520 Chipset and Intel 5500 Chipset Datasheet”). 



Initial system assessment 

Although the topology of the system is symmetrical as follows from the Figure 1B, asymmetry may happen 

dynamically if a process is running on a CPU wants to access a GPU which is attached to an IOH two hops 

away from the CPU rather than one hop to the adjacent IOH. The latency of such an access will obviously take 

a bit longer but there is nothing unusual about it since if CPU0 tries to access memory attached to CPU1 it will 

also take a bit longer. Because GPU is meant to be a high throughput device it is more important to make sure 

that memory bandwidth can be sustained. Towards this end we assessed the bandwidth between host memory 

and GPU devices using the bandwidth test which can be found in the CUDA SDK. The test was run 

consecutively on across all cores and GPU devices with process to core binding using taskset tool. The results 

are presented in the tables below. 

 

Table 1: Host to device bandwidth (MB/s) using pageable memory. 

0 1 2 3 4 5 6 7

0 3699 3669 3700 3693 3675 3682 3678 3679

1 3704 3702 3703 3705 3727 3722 3727 3727

2 3722 3723 3670 3681 3703 3711 3716 3701

3 3708 3708 3703 3704 3728 3727 3728 3727

4 3715 3727 3714 3734 3712 3699 3694 3705

5 3702 3704 3700 3697 3723 3722 3718 3721

6 3701 3721 3718 3730 3708 3711 3712 3717

7 3705 3705 3705 3705 3728 3727 3727 3725

GPU devices

cores

 
 

Table 2: Device to host bandwidth (MB/s) using pageable memory. 

0 1 2 3 4 5 6 7

0 2895 2895 2894 2894 1815 1814 1815 1815

1 1799 1799 1797 1798 2865 2866 2865 2863

2 2896 2897 2896 2895 1815 1815 1816 1816

3 1799 1799 1799 1798 2865 2865 2866 2866

4 2895 2896 2896 2896 1816 1816 1815 1816

5 1799 1799 1799 1799 2865 2861 2865 2865

6 2895 2896 2892 2895 1815 1815 1816 1815

7 1799 1799 1798 1799 2862 2865 2865 2865

GPU devices

cores

 
 

Table 3: Host to device bandwidth (MB/s) using pinned memory. 

0 1 2 3 4 5 6 7

0 5741 5733 5762 5766 4732 4732 4732 4732

1 4687 4687 4687 4688 5747 5741 5758 5755

2 5742 5733 5763 5765 4731 4732 4732 4731

3 4687 4687 4687 4687 5746 5748 5758 5752

4 5742 5725 5764 5764 4732 4732 4731 4731

5 4687 4687 4686 4687 5747 5741 5758 5755

6 5742 5733 5763 5766 4732 4732 4732 4732

7 4687 4687 4687 4687 5746 5747 5758 5755

GPU devices

cores

 
 

Table 4: Device to host bandwidth (MB/s) using pinned memory. 

0 1 2 3 4 5 6 7

0 3286 3286 3286 3286 1884 1884 1884 1884

1 1862 1862 1863 1862 3243 3243 3243 3243

2 3286 3286 3286 3286 1884 1884 1884 1884

3 1862 1862 1862 1863 3243 3243 3243 3243

4 3286 3286 3286 3286 1884 1884 1884 1884

5 1862 1862 1862 1862 3243 3243 3243 3243

6 3286 3286 3286 3286 1884 1884 1884 1884

7 1862 1862 1862 1862 3243 3243 3243 3243

cores

GPU devices

 



The tables clearly demonstrate that GPU devices 0–3 have affinity to even cores which belong to CPU0 

whereas GPU devices 4–7 have affinity to odd cores which belong to CPU1. Furthermore the numbers split into 

high and low depending on affinity. The only table which shows no splitting is Table 1 where host to device 

memory bandwidth is reported and the memory option was set to “pageable”. It is instructive to compare these 

results with the bandwidths we obtained on our GPU cluster
1
 which is based on Supermicro single chipset 

motherboards. Table 5 shows that with the right affinity the bandwidths are comparable for all but device to 

host pinned memory transfers. This turns out to be a problem of dual IOH configurations. It seems that in a dual 

IOH setup device to host transfers cannot take the full advantage of pinned memory. The same is true for device 

to host bandwidths if there is no affinity. Overall we observe that device to host transfers are particularly 

penalised in the dual IOH configuration and the bandwidths of host to device transfers are roughly comparable. 

At this time we do not know when the dual IOH setup problem is going to be fixed but it is very clear that 

maintaining proper core to GPU binding is crucially important. 

 

Table 5: Comparison of bandwidths (MB/s) of data transfers between CPU and GPU in single and dual 

IOH configurations. 

IOH x1 IOH x2 

host to device: 3672 3702/3716

device to host: 3023 2880/1807

host to device: 5499 5751/4709

device to host: 5291 3264/1873

 --memory=pageable

 --memory=pinned

 
 

 

Application performance 

NAMD
4
 is known to run very efficiently on both traditional processors and GPUs. That is why we selected this 

molecular dynamics code as our test application. We run two tests: APOA1, the standard NAMD benchmark 

(model of a lipoprotein particle found in the bloodstream) and STMV (satellite tobacco mosaic virus). The 

former test comprises 92K atoms including lipid, protein and water. APOA1 benchmark is a moderately sized 

simulation suitable for long timescale studies. STMV test case is a larger benchmark comprising 1M atoms. 

Both tests were setup so that they do 500 simulation steps and compute energies only each 100th step. The 

latter is very important since energy calculations are done on the CPU in double precision and if the energies 

are compute every step no acceleration is observed. Presented below in the table are the best elapsed times of 

our runs.  

 

Table 6: Elapsed times in seconds of APOA1 and STMV benchmarks running on CPU and GPU. 

 

CPU GPU speedup CPU GPU speedup

1 741 99 7.5 1094

2 385 58 6.6 608

4 200 37 5.5 2402 371 6.5

8 104 25 4.1 1257 218 5.8

APOA1 STMV

# proc

 
 

 

We observe an impressive speedup when running APOA1 and STMV benchmarks on GPUs. The speedup is 

slightly lower for APOA1 on large number of processes because it is a smaller test and start up time becomes 

an important factor. In order to get more adequate assessment of performance on the APOA1 test, the number 

of steps was increased from 500 to 5000 steps. These took 218 seconds of wall clock time using 8 GPUs which 

works out as 0.044 s/step (the program reported 0.041 s/step or 0.47 days/ns). This means 500 steps could be 

                                                           
4
 James C. Phillips, Rosemary Braun, Wei Wang, James Gumbart, Emad Tajkhorshid, Elizabeth Villa, 

Christophe Chipot, Robert D. Skeel, Laxmikant Kale, and Klaus Schulten. Scalable molecular dynamics with 

NAMD. Journal of Computational Chemistry, 26:1781-1802, 2005. 

http://www.ks.uiuc.edu/Research/namd/ 



done in 22 seconds and the speed up might have been 4.7 which is still lower than on STMV. For the record, 

the time per step for STMV benchmark as reported by NAMD was 0.37 s/step or 4.27 days/ns.  

 

The results in Table 6 can be contrasted with the ones obtained on our Tesla S1070 cluster with Infiniband 

interconnect. The host processors used in the cluster are Intel Xeon E5540 which is about 10% quicker than 

E5520 used in the WS-Tesla x8 server. The elapsed time of running APOA1 test for 500 steps on four GPUs 

took 39 seconds on our cluster versus 37 seconds on the server which means the timing is roughly comparable. 

However STMV test took only 338 seconds on four GPUs of our cluster versus 371 seconds on WS-Tesla x8. 

The difference remained on eight GPUs (ie on two Infiniband connected servers versus fully loaded WS-Tesla 

x8): 180 seconds versus 218 seconds. Without GPUs, the benchmark times were always quicker on the cluster 

in line with the 10% clock difference. Thus the difference might be due to poorer bandwidth in dual IOH 

systems. 

 

Another benchmark we were able to run was Linpack. The details about running Linpack on NVIDIA GPUs 

can be found elsewhere
5
. It suffices to say that for optimal performance we used matrix size N = 38400, block 

size NB = 1920 and environmental variables splitting the workload between CPU and GPU on DTRSM and 

DGEMM were set to 0.9. We achieved ~ 350 GFlops performance which corresponds to ~50% efficiency, ie 

half of the theoretical peak performance. 

Power measurements 

Following our power measurements on the GPU cluster, we used the same methodology to measure power 

consumption of the WS-Tesla x8 server. Again we use an energy profile logger SP Max 512. Voltage was read 

directly from the mains by directly connecting it to the power outlet; current was measured through induction 

clamps. The device was placed inside of the rack together with a laptop through which the power logger was 

controlled remotely. The readings were taken in the increments of 1 second. SP Max 512 offers true RMS 

measurements with the accuracy of +/– 0.25% of the range plus CT (Current Transformer) error. A 10 A CT 

input lead was used which therefore determined the accuracy. We estimated that at 600W load our error should 

be around 1%. 
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Figure 3: Power profile of running APOA1 benchmark on WS-Tesla x8 server equipped with eight GPUs 

(note, that the number of steps was increased from 500 steps to 5000). 

 

The server consumed about 300 W in idle regime without GPUs and about 470 W when they were placed 

inside but not initialised. Once the GPUs were initialised we observed the same phenomenon as previously
1
 

when the power goes up and never comes back in the idle regime even though we were using the latest 

                                                           
5
 Massimiliano Fatica, “Accelerating linpack with CUDA on heterogenous clusters” in ACM International 

Conference Proceeding Series, vol. 383, pp. 46–51 (2009). 



NVIDIA drivers. The power of the server with eight initialised GPUs nearly doubled to nearly 800 W. This 

seems like a lot of excessive power being wasted while the server is doing nothing. However this is still 

favourable compared to the idle power of our GPU cluster where the idle power of two Tesla servers and two 

hosts required to drive eight GPUs amounts to 1140 W. 

 

While running NAMD, the power was typically slightly over 1 kW. It took about 350 kJ (~ 380 W average 

power) to accomplish 5000 steps of APOA1 benchmark on 8 Xeon cores and 235 kJ (~1080 W average power) 

on 8 GPUs which is ~ 1.5 energy saving on top of getting the results quicker. The power profile of running 

APOA1 test on 8 GPUs is presented in Figure 3. 

 

For STMV, the difference in energy was nearly a factor of two. The average power while running the 

benchmark on eight GPUs was ~ 1060 W totalling in 230 kJ of energy. In comparison, in order to run the test 

on the host itself it required ~ 370 W and 465 kJ. Table 7 compares the present measurements with some of our 

previous results. The second column reports the performance and power metrics for two Infiniband connected 

Xeon E5520 servers. They finished STMV test in about 600 seconds and consumed slightly fewer than 600 W. 

This system took the maximum energy and the longest time. The same Xeon host and a Tesla S1070 server 

(second column) needs more energy but takes less time. Finally the WS-Tesla x8 server (forth column) runs 

nearly three times quicker than two Xeon servers and saves 50% energy. 

 

Table 7: Comparison of running STMV benchmark on different setups. 

 

NAMD, STMV 

benchmark, 500 

steps

4x Xeon 

E5520       

(2 servers)

2x Xeon 

E5520 & 

S1070

ratio to 

4x Xeon

WS-tesla 

x8 server ratio to 

4x Xeon

Elapsed Time /sec 599 338 1.8 218 2.7

Avg Power /W 581 740 0.8 1060 0.5

Total Energy /kJ 353 254 1.4 230 1.5  
 

Unlike NAMD, Linpack requires high double precision performance which is not too impressive on M1060. 

Still the WS-Tesla x8 server improved on power performance efficiency scoring 0.3 GFlops/W which is better 

than 0.27 GFlops/W we obtained on our Tesla cluster and 0.24 GFlops/W on Intel Nehalem. 

Conclusion 

It is quite clear that the aggregation of eight GPUs into a single host provides a clear advantage in terms of 

power efficiency. Running NAMD on the host takes about 370 W and that is the approximate amount of power 

we can save if we use it to drive eight GPUs instead of only four. We can also work out that average amount of 

power per GPU while running NAMD is about 86 W. This appears to be comparable to the power consumed by 

a powerful CPU.  

 

The performance of the WS-Tesla x8 server is comparable to the one observed on our Tesla cluster. For 

example, the elapsed timing of APOA1 benchmark is rather close. Linpack also showed similar performance. 

However STMV benchmark was consistently slower by about 40 seconds. Because STMV test is larger and 

requires more memory, this may be related to the issue of poor bandwidth from GPU to CPU on dual IOH 

systems and further investigation is required. Unfortunately it is not clear yet when the bandwidth issue of dual 

IOH systems is going to be fixed. Nevertheless the use of servers which can accommodate eight GPUs inside 

4U form factor presents a solution offering very high compute density and power efficiency. It is especially 

advantageous for applications which do not require high bandwidth to GPU devices and/or substantial part of 

the workload being computed on the CPU host. 
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