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Abstract

The usability and performance of code coupling libraries are compared. In this work, MUI, MOOSE,

preCICE, OpenPALM and PLE are considered. To compare performance, a 3D field exchange example

was provided by the Scientific Computing Department at STFC. It is intended that this is a sufficiently

general example to ensure this work applied to a wider range of the UK’s Computational Collaborative

Projects and High-End Computing Consortia.

1 Introduction

As available computational power increases, there is a growing interest in the use of large-scale multi-

physics solvers in a range of life science, physical science and engineering projects. In most cases, a

single solver will not offer all of the required capabilities and, hence, a coupling framework is required to

translate data between solvers and co-ordinate their separate calculations. A number of code coupling

libraries have been developed and, over the course of this project’s work, many of them ran their first ever

training workshops and have gained more and more support. Many have reached a level of maturity for

us to compare their attributes and performance when used on large-scale problems. This document walks

through some of the available code coupling libraries, followed by a performance comparison with a 3D

field exchange example.

2 Code coupling perspectives

What is required of a code coupling library depends on the multi-physics problem a developer is trying

to put together. Over the course of this project, literature and documentation has universally agreed

that a code-coupling library should be a helpful tool to make two large-scale codebases talk to each other

without having to write a third codebase yourself to do that. A developer can safely use a library for

mass data-send between coupled components knowing this is the appropriate tool for this task, organising
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Figure 1: Coupling through a communication interface

computing allocation between the sections is straight-forward, and the work required to put this together

is certainly less than writing this from scratch yourself. Using a library has the advantage of letting

different scientific codebases stand alone in their own right as separate codebases: many agree that this

is a better solution than creating monolithic ‘do-everything’ programs, which can take a long time and

can lead to situations where a team of developers have a codebase where certain individuals know how

parts of it work but nobody really knows how the full codebase works as the original solvers are no longer

discernible from each other.

However, how far this sentiment has been taken varies across the libraries. Some libraries have gained

popularity through focusing on being lightweight. That is, they only handle sending data points between

the separate solvers. Some developers say fundamentally for code-coupling to work, all that needs to occur

from a computational perspective is data transfer from one solver to another [1]. Two of the libraries

in this report follow this approach of creating a lightweight communication framework, namely MUI in

Section 3.1 and PLE in Section 3.5, see Figures 1 and 2. This approach certainly has its advantages,

mainly that it allows for extremely general coupling: the only requirement is that the coupled variables’

data is associated with a single point in space. This strategy is the most flexible in terms of its capability

of combining codebases.

Other libraries take a more traditional approach: defining a mathematical schema for coupling. A

multi-physics system consists of more than one component, each governed by its own principles for

evolution or equilibrium, typically conservation or constitutive laws [2]. Some libraries encapsulate this

idea when building applications using their software and they rely on your coupled problem’s ability to be

stated in an algebraic form such as a coupled equilibrium problem,

F1(u1, u2) = 0 (1a)

F2(u1, u2) = 0 (1b)

or a coupled evolution problem

∂tu1 = f1(u1, u2) (2a)

∂u2 = f2(u1, u2) (2b)

and then formulate your problem in terms of a single residual that includes all of your components

F (u) =

(
F1(u1, u2)

F2(u1, u2)

)
= 0 (3)
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If this is possible, then Equation 3 may be solved with an algorithm such as Jacobian-free Newton-

Krylov (JFNK) [3], implemented with a non-linear implicit solver such as PETSc [4], SUNDIALS [5] or

Trilinos [6]. This approach is possible for many code-coupling fields, such as in fluid structure interaction,

nuclear fission, conjugate heat transfer, climate modelling, crack propagation: examples and strategies of

which are all given in great detail in [2]. If this residual-based approach seems well suited to your work,

then MOOSE in Section 3.2 should be of interest to you. While these kinds of solvers may save some

computational scientists a lot of time, more general examples of coupling may not easily be expressed in

an algebraic form such as in Equation 1 or Equation 2, nor would this be necessary. For more general

examples, such as a mechanics program and an analysis program wanting to run in parallel rather than

writing results of each solver to a file, the lighter communication-framework approach to coupling would

be more appropriate.

3 Overview of chosen libraries

3.1 MUI

The Multiscale Universal Interface (MUI) is an open source code-coupling library originally developed

by Brown University [7]. The primary developers and maintainers of MUI today are UKRI-STFC at

Daresbury Laboratory [8]. There are practical training materials on MUI available which were very

helpful over the course of this project: there is a GitHub repository of demo examples available [9],

and the developers hold training events, for example, in February 2020 there was a training event at

Daresbury Laboratory on high-performance code-coupling as part of the Hartree Centre IROR Training

Series. The MUI project aims to create “ . . . a light weight plugin library that can glue together essentially

all numerical methods including, but not limited to, Finite Difference, Finite Volume, Finite Element,

Spectral Method, Spectral Element Method, Lattice Boltzmann Method, Molecular Dynamics, Dissipative

Particle Dynamics and Smoothed Particle Hydrodynamics” [7]. MUI achieves this portability as it is very

lightweight and straight-forward to use plus existing solvers do not have to be refactored before using it.

You can integrate MUI into a code in around 10 new lines, as is shown below in Section 3.1.1. Due to this,

MUI has been the quickest library to learn to use over the course of this project.

MUI provides a small set of programming interfaces to conduct send and receive messages between

domains through an interface. In this way it does not put restrictions on the multi-physics solvers

themselves: “MUI also follows PLE’s philosophy of not prescribing how the physics of a problem should

be coupled, only that coupling should be achieved by passing data through an interface. Assuming the

data in question is associated with a point structure then the only requirement is that the data can be

associated with a single point in space” [1]. The entire library is header-based and the only external

library is the Message Passing Interface (MPI). It can be used in the same way any other C++ standard

library would be used, without the need for pre-compilation. However, it has the bonus advantage of not

interfering with pre-existing MPI communications within the pre-existing solvers, as Figure 2 and the

example in 3.1.1 demonstrate.

3.1.1 Demonstration

Here is a short example of how to implement a MUI interface with two coupling components. This example

sends just one variable value from one domain to another through the MUI interface. What follows is
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Figure 2: Solvers push and fetch data points through the MUI interface [7]

very similar to the first example from the MUI Demo’s GitHub repository [9].

First, clone the latest release of MUI from their GitHub repository [10] as shown in Listing 1.

1 $ git clone https :// github.com/MxUI/MUI.git

Listing 1: Clone MUI

Nothing further needs to be done here for MUI itself, just take note of where the mui.h header file is

kept.

Create hello.cpp with the include shown in Listing 2. This is the only reference to the MUI download

necessary to allow us to create a MUI interface.

1 #include "MUI/mui.h"

2

3 int main(int argc , char ** argv)

4 {

5 return 0;

6 }

Listing 2: Include MUI header

We need to provide a name for each domain and a name for the coupling interface. Together, this

will create the Uniform Resource Identifier, URI, a string which takes the form mpi:// domain name /

interface name. The URI is submitted to the MUI interface as shown in Listing 3.

1 #include "MUI/mui.h"

2

3 int main(int argc , char ** argv)

4 {

5 std:: string domain_name ( argv [1] );

6 std:: string interface_name ( argv [2] );

7 std:: string uri( "mpi://" + domain_name + "/" + interface_name );

8
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9 mui:: uniface1d interface(uri);

10

11 std::cout << "MUI_Interface : " << uri << std::endl;

12

13 return 0;

14 }

Listing 3: Submit URI

Alternatively, the URI could have been declared using a template header file as shown in the other

demos [9]. When declaring with a template of your own design, you can specify what data types you

would like to be used with your interface and its dimensionality. However, in this short example this

information has been declared in main as shown in Listing 4 but for your own projects you would most

likely use a template for this configuration.

13 mui:: sampler_exact1d <double > spatial_sampler;

14 mui:: chrono_sampler_exact1d chrono_sampler;

15 mui:: point1d push_point;

16 mui:: point1d fetch_point;

Listing 4: Configure MUI

We create a piece of data to be sent from one domain to the other domain. This data is then pushed

to the interface using the interface.push command. Here it is given the simple name of data. This is

followed by the interface.commit command. The second domain receives this information data with

interface.fetch, with its reference data as shown in Listing 5

These crucial commands are the MUI wrappers for the MPI send and receive messages. For further

detail on this, definitions for the push, commit and fetch functions can be found in the uniface.h header

file in your clone of MUI. These commands are also overloaded such that you can provide different

arguments depending on your URI set up.

18 // Push value to interface

19 double push_value ( std::stod(argv [3]) );

20 push_point [0] = 0;

21 interface.push( "data", push_point , push_value );

22 std::cout << "Domain " << domain_name << " has pushed " << push_value << std::endl;

23

24 // Commit

25 interface.commit( 0 );

26

27 // Fetch value

28 int time = 0;

29 fetch_point [0] = 0;

30 double fetch_value = interface.fetch( "data", fetch_point , time , spatial_sampler ,

chrono_sampler );

31 std::cout << "Domain " << domain_name << " has received " << fetch_value << std::endl

;

32

33 return 0;

34 }

Listing 5: MUI push, commit and fetch commands

Finally, compile using your normal mpic++ as shown in Listing 6
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Figure 3: One point send and receive in MUI

1 $ mpic++ -std=c++11 -O3 hello.cpp -o hello

Listing 6: Compile MUI application

Run with mpirun as shown in Listing 7, specifying the name of each domain, the name of the interface,

and the value you intend to send from the respective domains. In this example we have a simulation

domain and an analysis domain sending float values to each other through the global interface.

The result is also demonstrated in Figure 3

1 $ mpirun -np 1 ./ hello simulation global_interface 12.34 : -np 1 ./hello analysis

global_interface 56.78

2 rank 0 identifier mpi :// simulation/global_interface domain size 1 peer number 1

3 rank 1 identifier mpi :// analysis/global_interface domain size 1 peer number 1

4 MUI Interface : mpi:// simulation/global_interface

5 MUI Interface : mpi:// analysis/global_interface

6 Domain simulation has pushed 12.34

7 Domain analysis has pushed 56.78

8 Domain simulation has received 56.78

9 Domain analysis has received 12.34

Listing 7: Run MUI application

In the previous example we say ./hello in the mpirun command twice. However, to make each

domain do something different, you would have two different executables, one for each domain, which

would be knitted together with MUI with the correct send and receives in each program. For example, you

could have one executable simulation work, and another analysis work, which would be put together

such as in Listing 8,

1 $ mpirun -np 1 ./ simulation_work simulation global_interface 12.34 : -np 1 ./

analysis_work analysis global_interface 56.78

Listing 8: Run multiple MUI enabled applications

allowing the user to implement a coupled problem of two different programs, with data exchange between

them. If the two executables simulation work and analysis work had their own MPI communication

prior to adding MUI, this would not be interfered with. The np flag values above could be changed to

whatever you liked for each piece of work. In this way, MUI allows easy co-ordination of solvers and

computing allocation.

3.2 MOOSE

The Multiphysics Object-Oriented Simulation Environment (MOOSE) is a finite-element framework

developed by Idaho National Laboratory [11]. Development of MOOSE started in 2008 and was made
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Figure 4: The MOOSE framework. MOOSE acts as a bridge between your physics and other software;

libMesh and PETSc. Source: MOOSE training slides [13].

open-source in 2014. In Summer 2020, MOOSE updated their website and training materials: there is an

excellent training video from their two-day virtual workshop in June 2020, which is freely available on

YouTube [12] with slides [13]. This was the most helpful material in learning how to use MOOSE because

the MOOSE team explain how your mathematical equations can be translated into MOOSE C++ objects

in a very accessible way. MOOSE has been the most transparent and resource-rich coupler over the course

of this project and on their website you can find help on anything related to MOOSE, including help with

general Object Orientated Programming in C++ and material on Finite-Element Modelling.

MOOSE was also one of the most straight-forward couplers to access and install. MOOSE is available

on GitHub [14]. In this work, their provided Conda environment was used to manage dependencies, which

worked very well. Building applications and tests worked exactly as described in the documentation

and could not be faulted. Software quality is stated as a strong priority for MOOSE: they follow a

Nuclear Quality Assurance Level 1 (NQA-1) development process. MOOSE includes a test suite and

documentation system to allow for agile development while maintaining a NQA-1 process. More detail

about their software quality standards can be found on their website [15].

As with the other libraries, MOOSE helps you make two pieces of code talk to each other, without

having to write a third piece of code to do that. However, how exactly it does this is quite different to

the other couplers that are more communication-framework based. Rather than explicitly stating data

points to share between coupling components, far less work is required from the user with MOOSE. They

state in their training material “If you understand your physics, you should be able to use MOOSE” [12],

the idea being that if you know the equations that represent your model and you can write them down

in a list, this should be quite easy to translate into a MOOSE input file. MOOSE is a “fully-coupled,

fully-implicit multiphysics solver”, that is if you have 15 equations, you can put them all together in one

MOOSE input file and solve them all at the same time. They say they have made their input file system

“The simplest input that we can get from you that explains your physics”, and then from this, MOOSE

then can do all of the more difficult multi-physics solving for you, and is automatically parallel. This is

demonstrated in Section 3.2.1. Under the hood, MOOSE uses PETSc [4] for its non-linear solvers, and

directly relies on libMesh [16] for its finite-element framework, see Figure 4.
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3.2.1 Demonstration

Since MOOSE works in such a different way to the other couplers featured in this report, the single

variable exchange example shown in 3.1.1 and 3.4.1 doesn’t put forward the key ideas of how MOOSE is

intended to be used, or its advantages. That is, you write a set of mathematical equations down, put

them into a MOOSE input file, and let MOOSE solve it. And so, instead, the following example shows

how you would do that. This example demonstrates how to solve two equations where two variables are

coupled together, through writing the appropriate input file and then building a MOOSE application.

This example is taken from Example 3 in their examples set, which is available online [13].

We access MOOSE via GitHub [14] and we use their provided Conda environment to manage

dependencies such as MPI, PETSc and libMesh. Their ‘Getting Started’ instructions on their website [11]

explain how to do this and were completely faultless in this project.

We use MOOSE to solve for u and v with the following problem statement

−∇ · ∇u+∇v · ∇u = 0 (4a)

−∇ · ∇v = 0 (4b)

over a 3D domain Ω, which in this instance is a cup shaped object provided by an Exodus file. We have

u = v = 0 on the top of the cup, u = 2 and v = 1 on the bottom, and natural boundary conditions

∇u · n̂ = 0, ∇v · n̂ = 0.

In their virtual workshop, the MOOSE team recommend you approach turning your strong-form PDEs

into MOOSE code by transforming them into weak-form. They recommend that, in general, if you’re not

too familiar with finite-element methods, the following should get you through using MOOSE successfully

without having to learn the underlying theory behind why this works.

The MOOSE team recommend that if you don’t already know how to turn the PDE into weak-form,

then the following process should be followed:

1. Write down the strong-form PDE;

2. Rearrange so that the right-hand side is equal to zero in all equations;

3. Multiply by φi, which is a test function;

4. Integrate over your domain Ω, applying integration-by-parts and the divergence theorem to arrive

at the desired derivative order and generate boundary integrals.

Applying this process to Equation 4, the weak-form is given by

(∇uh,∇φi)︸ ︷︷ ︸
Diffusion

+ (∇vh · ∇uh, φi)︸ ︷︷ ︸
Convection

= 0 ∀φi (5a)

(∇vh,∇φi)︸ ︷︷ ︸
Diffusion

= 0 ∀φi (5b)

with test functions φi, and finite-element solutions uh and vh. For more information on this, the virtual

workshop has plenty of details about shape functions, numerical integration and quadrature.
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We must now represent the three terms in Equation 5 in terms of MOOSE Kernel objects. MOOSE

C++ objects always start with a capital letter. Usually in MOOSE it is required that the user creates

their own custom Kernel objects. We need two diffusion Kernels, one to act on each variable u and v,

and a convection Kernel. In this instance, a Diffusion object is already defined in MOOSE but we must

define a convection object inherited from the Kernel object in MOOSE.

In defining the convection Kernel, first we must register the object with MOOSE, see Listing 9.

Then we must provide its contribution to the residual and its Jacobian. That is, we override the

computeQpResidual() and computeQpJacobian(), using the already provided attributes u, grad u,

test, grad test, phi, grad phi, q point, i, j and qp. See Listing 10.

1 registerMooseObject("ExampleApp", ExampleConvection);

Listing 9: Registering a MOOSE object

1 Real

2 ExampleConvection :: computeQpResidual ()

3 {

4 return _test[_i][_qp] * (_grad_some_variable[_qp] * _grad_u[_qp]);

5 }

6

7 Real

8 ExampleConvection :: computeQpJacobian ()

9 {

10 return _test[_i][_qp] * (_grad_some_variable[_qp] * _grad_phi[_j][_qp]);

11 }

Listing 10: Defining a MOOSE Kernel object

Now we can create the all-important MOOSE input file. The input file is written with six parts -

Mesh, Variables, Kernels, Boundary Conditions, Executioner and Outputs.

This file will include everything about our multi-physics problem and will be passed as an input to

MOOSE when we run the MOOSE app.

First, we define the domain of the problem, the Mesh, which can be from an input file or you could

define a more simple Cartesian domain with boundaries. In Listing 11 we are providing an Exodus file.

1 [Mesh]

2 file = ‘mug.e’

3 []

Listing 11: Provide a Mesh

Next, we give MOOSE all of the variables in our problem, ‘diffused’ and ‘convected’, with linear

Lagrange shape functions. See Listing 12.

4 [Variables]

5 [./ convected]

6 order = FIRST

7 family = LAGRANGE

8 [../]

9

10 [./ diffused]

11 order = FIRST

12 family = LAGRANGE

13 [../]

9



14 []

Listing 12: Provide Variables

Now we define the three Kernels discussed earlier. We use the pre-defined Diffusion Kernel object

twice, and then our user-defined ExampleConvection object, always providing too the variable the Kernel

is supposed to be acting on. See Listing 13.

15 [Kernels]

16 [./ diff_convected]

17 type = Diffusion

18 variable = convected

19 [../]

20

21 [./ conv]

22 type = ExampleConvection

23 variable = convected

24

25 # Couple a variable into the convection kernel using local_name = simulationg_name

syntax

26 some_variable = diffused

27 [../]

28

29 [./ diff_diffused]

30 type = Diffusion

31 variable = diffused

32 [../]

33 []

Listing 13: Provide Kernels

Next, we define boundary conditions for the problem, as discussed earlier the cup as u = v = 0 on the

top and u = 2, v = 1 on the bottom. See Listing 14

34 [BCs]

35 [./ bottom_convected]

36 type = DirichletBC

37 variable = convected

38 boundary = ‘bottom ’

39 value = 1

40 [../]

41

42 [./ top_convected]

43 type = DirichletBC

44 variable = convected

45 boundary = ‘top ’

46 value = 0

47 [../]

48

49 [./ bottom_diffused]

50 type = DirichletBC

51 variable = diffused

52 boundary = ‘bottom ’

53 value = 2

54 [../]

55

56 [./ top_diffused]
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Figure 5: Convected Variable Figure 6: Diffused Variable

57 type = DirichletBC

58 variable = diffused

59 boundary = ‘top ’

60 value = 0

61 [../]

62 []

Listing 14: Provide BCs

We select the solver for our problem in the Executioner block. Here we use PJFNK [3], which is

the default. Alternative solver types are JFNK, Newton and FD for debugging. The virtual training

video [12] goes into these solvers in more detail. See Listing 15.

63 [Executioner]

64 type = Steady

65 solve_type = ‘PJFNK ’

66 []

Listing 15: Provide the Executioner

Finally, we say what kind of output we want. We can output to the console, and to an Exodus file.

See Listing 16.

67 [Outputs]

68 execute_on = ‘timestep_end ’

69 exodus = true

70 []

Listing 16: Provide Outputs

All we need to do now is, in the MOOSE Conda environment, run make, and run the generated app

with the input file passed as an input argument. You should see the two variables converge on your

console. It will also give you an out.e file of your coupled variables, diffused and convected, which you

can view in Paraview, or even in MOOSE’s own graphical front end, called Peacock. See Figures 5 and 6.

3.3 preCICE

The Precise Code Interaction Coupling Environment (preCICE) [17] is an open source coupling library

which aims to couple existing solvers together, creating what they call ‘partitioned’ simulations. In this

11



way, they are motivated similarly to MUI in Section 3.1, wanting the highest flexibility possible in reusing

existing components. Their team have particular interests in coupling codes relating to fluid-structure

interaction and conjugate heat transfer simulations, but stress that they are not limited to such fields.

preCICE has been developed by doctoral candidates from the Technical University of Munich and the

University of Stuttgart.

Similarly to MOOSE, an input file has to be written to couple your code with preCICE. preCICE

is configured with XML file, for which they do provide a reference guide [18]. One particular quirk of

preCICE is that in this XML file, you can establish an m2n communication channel (i.e. from m processes

of Solver1 to n processes of the Solver2) based on TCP/IP sockets. This makes preCICE particularly

different to other libraries here that rely on MPI for communication between solvers. You can change

this to use MPI ports if you wish but the preCICE team recommend using sockets. Once this XML

configuration is complete, the user can then insert calls to the preCICE API in original solvers, and at

this stage preCICE is very similar to MUI.

The preCICE Team ran their first workshop in February 2020, material from which is available on

their website and their YouTube channel. They provide quite elaborate examples in their official tutorials

and, hence, a new user may prefer to learn how to use preCICE using the solverdummy code shown below,

which is also available under their examples on GitHub [19]. During this work, their step-by-step XML

configuration guide [20] and their step-by-step ‘Couple your code’ guide [21] were found to be the most

helpful resources when learning how to use preCICE. If you need help using preCICE, you can also post

questions on their Discourse forum [22]. The preCICE Team list their main reference guide [23] as well as

dissertations of main preCICE developers as ‘Starting Points’ in their own literature guide. However, we

would recommend using the resources mentioned previously over these if you are a completely new user.

preCICE is available on GitHub [19]; it is also possible to build it using Spack. preCICE did successfully

build on ARCHER2 but this was not an easy process and this has been documented in Appendix B. If

you intend to use preCICE on a HPC system, this appendix item, or possibly one of their other cluster

examples [24], may be of use to you. We also encountered difficulty building preCICE on our local

machines. There is a demo virtual-machine to run preCICE [25], which we did find very useful as we could

try out some examples before having to go through the difficult process of building the library ourselves.

3.3.1 Demonstration

All of the following can be run on the preCICE demo virtual machine [25]. We would highly recommend

using this if this is your first time looking into preCICE, as trying to build preCICE both with Spack and

from source was quite difficult in this project.

As with the other couplers, this demonstration will show how to exchange variables between two

solvers, SolverOne and SolverTwo. preCICE uses meshes and so, rather than exchanging one variable

as shown in 3.1.1 and 3.4.1, a size 3× 3 field will be exchanged between the two solvers. The following

example is available on preCICE’s GitHub [19] called solverdummies. It is used in their build testing

and equivalent C, C++ and Fortran examples are available.

First, we must write a .xml file providing our desired configuration for the coupled program. As shown

in Listing 17, this consists of five parts: data, mesh, participant, m2n, and coupling-scheme.

1 <precice -configuration >

2 <solver -interface dimensions="3">

3 <data .../>
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4 <mesh .../>

5 <participant .../>

6 <m2n .../>

7 <coupling -scheme .../>

8 </solver -interface >

9 </precice -configuration >

Listing 17: preCICE Configuration Steps

The first component to declare in this file is the data we wish to exchange between solvers. In this

case, we will have one data entry for each solver.

10 <data:vector name="dataOne" />

11 <data:vector name="dataTwo" />

Listing 18: Coupling Data

After this, in your code you can now access these coupled variables using the preCICE API, using

getDataID as shown in Listing 19.

1 int dataOneID = interface.getDataID("dataOne", meshID);

2 int dataTwoID = interface.getDataID("dataTwo", meshID);

Listing 19: Coupling data with preCICE API

The next component to declare is the meshes we wish to use. Similarly to before, we will have one

mesh entry for each solver. These will have access to both data variables to read and write on each side.

12 <mesh name="MeshOne">

13 <use -data name="dataOne" />

14 <use -data name="dataTwo" />

15 </mesh >

16 <mesh name="MeshTwo">

17 <use -data name="dataOne" />

18 <use -data name="dataTwo" />

19 </mesh >

Listing 20: Coupling meshes

And now in your code you can access the mesh vairables using the preCICE API as shown in Listing 21.

1 int meshOneID = interface.getMeshID("MeshOne");

2 int meshTwoID = interface.getMeshID("MeshTwo");

Listing 21: Coupling meshes with preCICE API

The coupled simulation has a solver on each side, of which we need at least two. These solvers are

defined through providing a participant for each solver. This definition is one of the most important as it

brings many of the other components together. The participant provides the mesh and if a participant

uses more than one mesh, you can define a mapping between those. There are three mapping types:

nearest-neighbor, nearest-projection and some radial-basis function mappings. You can also give

these mappings directions and constraints. The reader should refer to preCICE’s documentation on

mappings for further information [26].

20 <participant name="SolverOne">

21 <use -mesh name="MeshOne" provide="yes" />

22 <write -data name="dataOne" mesh="MeshOne" />
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23 <read -data name="dataTwo" mesh="MeshOne" />

24 </participant >

25 <participant name="SolverTwo">

26 <use -mesh name="MeshOne" from="SolverOne" />

27 <use -mesh name="MeshTwo" provide="yes" />

28 <mapping:nearest -neighbor

29 direction="write"

30 from="MeshTwo"

31 to="MeshOne"

32 constraint="conservative" />

33 <mapping:nearest -neighbor

34 direction="read"

35 from="MeshOne"

36 to="MeshTwo"

37 constraint="consistent" />

38 <write -data name="dataTwo" mesh="MeshTwo" />

39 <read -data name="dataOne" mesh="MeshTwo" />

40 </participant >

Listing 22: Coupling participants

Near the top of your code, you should create a preCICE interface object with the same name as you

gave the participant in the configuration file.

1 SolverInterface interface("SolverOne", configFileName , commRank , commSize);

Listing 23: Coupling interface with preCICE API

You should also define the coordinates of your mesh using this interface since the participant provides

the mesh. In solverdummies, this is done in the following way:

1 interface.setMeshVertices(meshID , numberOfVertices , vertices.data(), vertexIDs.data());

Listing 24: Mesh coordinates with the preCICE API

For your participants to exchange data, they need a defined communication channel. The default

communication channel is based on TCP/IP sockets. preCICE express that you can use MPI ports

as an alternative to TCP/IP sockets but state in their documentation that they recommend you use

TCP/IP sockets instead. Programs you write using MPI for the communication channel will also generate

warnings suggesting you use sockets as the MPI ports program can cause problems. You establish a

parallel connection of m processes of SolverOne to n processes of SolverTwo in the following way.

41 <m2n:sockets from="SolverOne" to="SolverTwo" />

Listing 25: Communication channel

And so if you wanted to try using MPI ports, you can swap the sockets argument in Listing 25 for

mpi.

The last part to configure is the coupling-scheme. You must define which participants are coupled

together and the data which is exchanged in this coupling. You can choose an implicit or explicit coupling

scheme and also decide if participants should be executed either in serial or parallel. With implicit schemes,

participants are executed multiple times until convergence, whereas for explicit schemes you define this

behaviour. A very simple coupling scheme is shown in Listing 26.

42 <coupling -scheme:serial -implicit >
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43 <participants first="SolverOne" second="SolverTwo" />

44 <max -time -windows value="2" />

45 <time -window -size value="1.0" />

46 <max -iterations value="2" />

47 <min -iteration -convergence -measure min -iterations="5" data="dataOne" mesh="MeshOne" />

48 <exchange data="dataOne" mesh="MeshOne" from="SolverOne" to="SolverTwo" />

49 <exchange data="dataTwo" mesh="MeshOne" from="SolverTwo" to="SolverOne" />

50 </coupling -scheme:serial -implicit >

Listing 26: Coupling scheme

With this the configuration file is now finished. Many of the preCICE API calls have been shown

above but the full file can be shown in their solverdummy example on Github [19]. On the preCICE

virtual machine, this code exists at

1 ~/ precice/examples/solverdummies/cpp/solverdummy.cpp

Listing 27: preCICE VM solverdummies location

At this location, you can run cmake . and make to compile your coupled program. To run, enter the

command given in Lsting 28 and your coupled program should print the variable exchanges to the console.

1 ./ solverdummy ../ precice -config.xml SolverOne MeshOne & ./ solverdummy ../ precice -config.

xml SolverTwo MeshTwo

Listing 28: Run preCICE solverdummies on their Virtual Machine

3.4 OpenPALM

OpenPALM (Projet d’Assimilation par Logiciel Multimethodes) is another coupling library enabling a

user to execute components of code concurrently with communication between. OpenPALM comes in

two parts; PrePALM and PALM. PrePALM is the graphical user interface and PALM is the driver of

coupling framework itself. PALM handles the elementary components of the coupling algorithm with MPI

communication to exchange data between.

On the OpenPALM website, it states they have had simulations of 130,000 cores on Titan, 130,000

cores on Turing and 12,000 cores on Curie [27]. It is also provided in [2] as one of the successes in

multi-physics software. It has a lengthy user guide [28] and does not appear to be restricted to any

particular scientific field. For these reasons, OpenPALM was of great interest in this investigation into

high-performance code-coupling.

The OpenPALM team is joint between CERFACS and ONERA. CERFACS have also created another

coupling library called OASIS [29], dedicated to geophysical applications. In contrast to OASIS, OpenPALM

provides a more generic interpolation framework based on an unstructured mesh formalism [30], provided

by the CWIPI library developed by ONERA [31].

OpenPALM applications are implemented via a user interface called PrePALM. The user designs their

coupling algorithm into sequential and parallel sections, loops, conditional executions, and communication

between components. The designed algorithm is presented to the user clearly in a window as seen in

Figure 7. OpenPALM stress you can create parallel code “. . . without anything to know about MPI, only

by drawing! It is one of the PALM features: one can make parallel computing without any further specific

knowledge” [28].
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Figure 7: The PrePALM Interface. This example was sourced from OpenPALM’s website [27].

You cannot create a coupled application in OpenPALM without creating a scheme in the GUI such as

in Figure 7. This does not mean you cannot use OpenPALM on a remote machine but you would not

attempt to use PrePALM on a supercomputer. It is expected that you ‘build’ your application on a local

machine with the PrePALM interface, that is you generate all of the ‘palm’ files through this interface.

These files are not machine specific, you can copy this automatically generated source code to the remote

machine. Given the remote machine has the PALM library installed, you can amend the Make.include

file to provide paths for the PALM installation and the MPI compilers on the remote machine, and the

coupled application can compile and run remotely.

3.4.1 Demonstration

Similar to in Section 3.1.1 with MUI, here we demonstrate how to send a single variable value from one

coupling branch to another with OpenPALM.

After installing PALM and PrePALM with the user guide, launch PrePALM from the terminal as

shown in Listing 29

1 $ prepalm

Listing 29: Launch the PrePALM interface

The PrePALM window should launch with a blank canvas for your coupling program, as shown in

Figure 8.

While the menu on the left has Branches selected, click Insert. A window should appear to give your

branch a name and even a colour of your choice. This will result in a new branch appearing on the canvas.

Double click on this to edit the branch code, the window shown in Figure 9 will appear. You could attach
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Figure 8: Launching PrePALM

‘PALM units’ in the branch code window, i.e. your own source files, which can be either a .c, .cpp, .f or

.f90 file, and you can do a mixture too. In this simple example, we will just write the send and receive

calls in PrePALM itself.

Figure 9: Creating branches in PrePALM

Under Declarations, we create an integer to send from the branch b1 and give a value. Under

BEGIN b1 we can click and call PALM Put and provide the variable to send as shown in Figure 10. This is

equivalent to MPI Send.

Next, create another branch b2 in the same way as b1 was created. It will appear on the canvas

alongside b1. You can click and drag these around as you please. This time b2 will have a PALM GET call

shown in Figure 11, the equivalent of MPI Receive.

The two branches will be presented side by side on the canvas, with a little dot on each representing

int send and int recv. These can be linked in the interface by clicking on them both. This is shown in

Figure 12.

From the top left go to File, then save your design by clicking Save Prepalm file (.ppl). Then
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Figure 10: Using PALM PUT in PrePALM

Figure 11: Using PALM GET in PrePALM

generate the Palm service files by clicking Make Palm files. You will have to choose if you are using

mpi1mode or mpi2mode in the window that comes up here. Prepalm will then generate many palm service

files from this, in this example with mpi1mode this will create 15 various palm files. More files would be

created as you added more of your own source code to the design. These files are not machine specific.

Create a Make.include file, providing the path to $PALMHOME where your installation of PALM exists,

as well as the F90, F77, CC and C++ compiler paths. Now in the terminal, you should be able to run make

which will create the palm main executable. Run this with mpiexec as shown in Listing 30.

1 $ mpiexec -np 1 ./ palm_main

2 Hello from branch b1! Sending value: 1234

3 Hello from branch b2! Received: 1234

Listing 30: Run OpenPALM application

This example has achieved a very similar result to the earlier demonstration with MUI in Section

3.1.1.
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Figure 12: Completed PrePALM implementation

3.4.2 Requirements and Building

Over the course of writing this report, there was great difficulty with building PALM. Appendix C

documents some steps taken when we investigated porting OpenPALM onto a HPC system.

3.5 PLE

The Point Location Exchange library, PLE, is part of Code Saturne [32], a CFD software released by EDF,

which is open-source. PLE was specifically designed to simplify parallel couplings using a minimalist API

and dependencies. The library allows location of points on meshes and compare themselves to MUI and

preCICE [33]. It is used to couple Code Saturne to other EDF codebases, such as EDF’s thermal software

SYRTHES [34]. Code Saturne is available on GitHub [35] with PLE included in this repository [36]. PLE

has Doxygen documentation [37]. It also featured in CIUK in 2019 [38] in a presentation about Exascale

CFD code.

PLE provides a framework through which data can be passed between different solvers. PLE creates

an interface between two solvers, an MPI communicator is created for each interface, thus allowing

pre-existing MPI functionality within the original solvers. Data is transferred between solvers at specfic

spatial points [1]. In this way, it works in a very similar way to MUI in Section 3.1.

However, apart from the Doxygen documentation, unfortunately, PLE does not have anything further

that we could find such as a user guide to help new users learn how to use PLE. Regretfully, because of

the lack of support in this way, it is difficult to justify recommending PLE as the coupling library that

a team should use if they have never used it before. While it does appear to be a current and popular

choice, we would recommend using MUI instead as the two libraries work in a very similar way and MUI

has more support for new users.
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4 Performance Comparison

The same code-coupling example has been implemented in each library to compare their at-scale perfor-

mance. Prior to this work, this example was originally implemented in MUI and it was part of the testing

suite used by the MUI contributors in the Scientific Computing Department at STFC. In this project, this

example was translated into the most equivalent problem statement in the other code coupling libraries

featured in this report.

The example in this section is a simple 3D field exchange problem. A field u is created of the form

u(~x) = ~x. This is then exchanged with a field v(~x) by setting v(~x) = u(~x), see Figure 13. How exactly

v(~x) is set to be u(~x) is different in every library in this report.

SolverOne SolverTwo

Figure 13: 3D Field Exchange Benchmark Case

This problem statement was chosen because it is the most general code-coupling problem of two

variables that could be thought of and has easy scalability. The primary intention behind this being

that it would ensure this project’s work applied to the widest audience of CCPs and HECs interested in

high-performance coupling, as it would zone-in on the mechanism of coupling variables together as much

as possible.

4.1 Set-up

This comparison was carried out on ARCHER2 [39], the UK National Supercomputing Service. At the

time of performing the benchmark runs, the full ARCHER2 system was not yet available to users. As

such the four cabinet system of ARCHER2 was used in all cases. The four cabinet system consisted of

1,024 compute nodes, each with dual AMD EPYC Zen2 (Rome) 64 core processors.

At the time of writing, all of the libraries listed in this report have been fairly recently released. Almost

all of them ran their first public workshops over the course of this project. It is thought that this may have

contributed to there being considerable difficulty in building these libraries on ARCHER2 and even just on

our local machines. To combat this, where package manager solutions existed, this was taken advantage

of. For MUI, being the most lightweight, we only needed to use the ARCHER2 GNU environment with

gcc/10.1.0, using heterogeneous job submissions, see Appendix A. For MOOSE, we used the provided
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Figure 14: 3-D field exchange example with MUI. Run times are shown plotted against number of points

on the side of a cube, using 64 processes per coupled domain (left), and plotted against number of MPI

processes per coupled domain, using 256 points on the side of a cube (right).

Conda environment. preCICE was built with Spack, see Appendix B.

4.2 Results

4.2.1 MUI

The applicability of MUI to large-scale simulations can be seen most transparently of all the libraries

featured in this report. We can see its scalability both by increasing the number of points and by increasing

the number of processes in Figure 14. We believe this is because it is a lightweight communication framework

only depending on MPI, and so its scaling reflects this. MUI jobs were submitted as two heterogeneous

jobs. For more information regarding submitting heterogeneous jobs for this library on ARCHER2, see

Appendix A.

4.2.2 MOOSE

We consider the time it takes to run a MOOSE app implementing the objects shown in Figure 13 with a

corresponding Kernel. The time taken can be seen as a function of the number of points or the number

of processes as shown in Figure 15.

It should be noted that MOOSE does a lot of work when it implements a MOOSE app, i.e. creating

all of the objects described in Section 3.2.1. This may be superfluous to your own coupling problem

statement or may be very useful to you if you have a problem complementary to what is described in

Keyes et al. [2] mentioned earlier. You should take this into consideration when you choose which library

is most appropriate for your work. It was decided that the field exchange problem shown in Figure 13 was

the minimum initialisation required for a coupled problem, i.e. a domain for the simulation to take place

and, therefore, this data preparation would be in common with nearly all coupling problems.
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Figure 15: 3-D field exchange example with MOOSE. Run times are shown plotted against number of

points on the side of a cube, using 64 processes (left), and against number of MPI processes, using 32

points on the side of a cube (right).

4.2.3 preCICE

preCICE was the most difficult library to port onto ARCHER2, both by trying to build from source and

with Spack. Eventually, we successfully built preCICE with Spack and OpenMPI but this needed specific

configuration, see Appendix B.

We were able to run the field exchange example using the TCP/IP socket option for the communication

protocol. The implementation with sockets is shown in Figure 16 with time taken shown as a function of

the number of points.

The option of configuring the coupling communication messages specifically with MPI on ARCHER2

unfortunately was not successful. This is advertised as an option on their website, however, it is not

described as their preferred method in the documentation. It was not clear to us why they stated this

preference for the sockets method when we were initially researching coupling options. However on

running our example, we were met with the following message when configured to use MPI:

1 preCICE:WARNING: preCICE was compiled with OpenMPI and configured to use <m2n:mpi />,

which can cause issues in connection build -up. Consider switching to sockets if you

encounter problems.

Listing 31: preCICE using MPI for coupling communication messages

which did not happen when using sockets.

While this is unfortunate, it is still worth considering preCICE with using their preferred TCP/IP

sockets method for communication, as with these options, it does work well, Figure 16. Indeed, you may

actually prefer that it does not use MPI for the coupling mechanism if you are concerned that adding

more MPI messages may be problematic when you already use MPI in your applications. While MUI

does appear to do this well, you may still personally lack confidence that this would transfer to your own

example and you may prefer to avoid trying this entirely, and preCICE gives you the option of doing that

using the sockets method.
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Figure 16: 3-D field exchange example with preCICE using the TCP/IP sockets communication protocol.

Run times are shown plotted against number of points on the side of a cube.

4.2.4 Direct comparison of libraries

The communication mechanism responsible for sending and receiving each point in Figure 13 is the

difference of interest when comparing these libraries. How developers have chosen to implement this

varies considerably. As such, the most universal way to compare the libraries’ applicability to large-scale

simulations is to consider their run-time as a function of the number of points in the field-exchange.

5 Conclusion

In this work, we have investigated what libraries are currently available to couple scientific codebases

together. In particular, we aimed to find software that could be run as part of large scale, high performance

simulations.

Initially, we investigated using MUI, MOOSE, preCICE, OpenPALM and PLE. Nearly all of these

libraries were running their first tutorials and workshops over the duration of this project: some time was

spent going through this material and understanding which problems each library would be appropriate

for.

In this initial stage, we ruled out some of those libraries, namely OpenPALM and PLE. While

OpenPALM did have large amounts of documentation available, we still had difficulty building Open-

PALM applications on our machines, meaning we could not replicate their claimed applicability to

high-performance simulations. In this initial stage, PLE was shown to have limited documentation. This

was a problem when we tried to create basic coupling applications using PLE. It was decided this was not

an appropriate avenue to consider. Not only would it have been time consuming to try and learn how to

use PLE using their limited documentation but we were aware that this would also be true of anyone we
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recommended PLE to and, so, for this reason we did not take investigating PLE further than this.

We were able to run tutorial examples of MUI, MOOSE and preCICE on the machines available

to us and, hence, more time was spent focusing on these when coming up with universal case-studies

for comparison. The chosen case study to implement in each of these libraries one by one was the

field-exchange example shown in Figure 13. This example was chosen because it was the most general

code-coupling problem that we could think of. Our primary intention in making this choice was ensuring

this project’s work applied to the widest audience of CCPs and HECs interested in high-performance

coupling. We wanted to zone-in on the mechanism of coupling variables together as much as possible and

limit the compute time for anything that wasn’t the coupling aspect of the example.

The result of this comparison was positive. We were able to provide evidence that MUI, MOOSE

and preCICE with the sockets method are valid options for high performance code coupling. This

is a fortunate result, as these three library options are all quite different and this provides the reader

with options to consider for their own specific coupling problems. Primarily, one should consider if their

problem fits under the category of a ‘multi-physics’ simulation as described by Equation 1 and 2, or a

more general coupling problem that can be simplified down to communication messages. For the former,

we recommend using MOOSE because it has been written precisely for people who have a list of coupled

mathematical equations that they want to put into code. For the latter, we recommend either using MUI

or preCICE. MUI uses MPI for its communication protocol, which you might like, but you might also

prefer to keep your existing MPI implementation as it is without complicating your application by adding

more messages. If this is the case, you could consider preCICE instead using TCP/IP sockets method. If

you do chose to do this, however, we hope that you bear in mind that you may have a lot more difficulty

building applications with preCICE compared to MUI, as the list of dependencies is far greater. In any

case, we were pleased with this outcome as we are able to provide two options for the so-called ‘general’

type of coupling applications. A summary of our findings is provided in Table 1.
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Library Advertised as

high

performance

General coupling

or multi-physics

Documentation

available

Proven

performance in

this work

Recommended

MUI 3 General

Coupling

3 3 3

MOOSE 3 Multi-physics 3 3 3

preCICE 3 General

Coupling

3 3 3

OpenPALM 3 General

Coupling

3 7 7

PLE 3 General

Coupling

7 7 7

Table 1: Overall comparison chart
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A Running MUI with Heterogeneous Jobs on ARCHER2

Jobs using MUI should be submitted to the slurm cluster as heterogeneous jobs. We followed the

ARCHER2 documentation to do this [40]. In short, if you would like to try out running some of the demo

examples above, the following command should enable you to do this the same way as if you were on your

own local machine.

1 salloc --nodes=1 --tasks -per -node=2 --cpus -per -task=1 --time =0:10:0 --partition=standard

--qos=standard --account=<account -name > : --nodes=1 --tasks -per -node=2 --cpus -per -

task=1 --time =0:10:0 --partition=standard --qos=standard --account=<account -name >

Listing 32: Heterogeneous jobs on ARCHER2 with salloc

26



B Building preCICE on ARCHER2

The most straightforward way to successfully build preCICE on ARCHER2 was to use Spack with some

specific configurations. The following was found to be considerably easier than compiling from source or

specifying pre-installed dependencies.

In /work, clone Spack.

1 $ git clone -b develop https :// github.com/spack/spack.git

Listing 33: Clone Spack

Source Spack, allowing you to use Spack commands.

1 $ source spack/share/spack/setup -env.sh

Listing 34: Source Spack

You need to specify the location of Slurm on your system for Spack if you intend to submit jobs using

the scheduler. Specifically, you need to find an include/ directory containing .h files such as pmi.h and

slurm.h, and a lib64/ directory containing libraries such as libpmi.so and libpmi2.so. The following

commands may help you locate these on your system:

1 $ whereis slurm

2 $ whereis libpmi

3 $ whereis libpmi2

4 $ whereis srun

5 $ whereis sinfo

Listing 35: Find system’s Slurm installation

At the time of writing, the two directories were found at the locations below. As the two were not

located in the same parent directory, a new directory had to be created with symlinks to the correct

include/ and lib64/.

1 $ mkdir slurm_hub

2 $ cd slurm_hub

3 $ ln -s /usr/inlcude/slurm include

4 $ ln -s /usr/lib64 lib64

Listing 36: Create slurm hub/ directory

Next, in the $HOME/.spack directory, you will have to amend or create a packages.yaml file, providing

the above slurm location

1 packages:

2 slurm:

3 buildable: false

4 externals:

5 - spec: slurm

6 prefix: /path/to/slurm_hub

Listing 37: Specify pre-installed dependency for Spack

Now we can use Spack to build preCICE. You must first use the GNU environment.

1 $ module restore PrgEnv -gnu

Listing 38: Use GNU Environment
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Export compiler name variables for ARCHER2

1 $ export CC=cc export CXX=CC export FC=ftn export F77=ftn export F90=ftn

Listing 39: Use GNU Environment

Then you can use the following command to configure MPI using the --with-slurm flag, which is not

the default. It may take a long time to complete, but this is normal. At the time of writing this completes

with no warnings or errors.

1 $ spack install precice ^boost@1 .74.0 ^openmpi +pmi schedulers=slurm

Listing 40: Build preCICE

To run preCICE jobs you must use the interactive nodes on ARCHER2. This is because Spack needs

to use your $HOME/.spack directory to do basic Spack commands. Unfortunately, Spack always looks

for /home/<project name> and during this work no method was found to redirect this. You can run

the solverdummy example code in the following way as an interactive job. Note that you must provide

arguments for <account name> and <spec>.

1 $ salloc --nodes=1 --tasks -per -node=2 --cpus -per -task=1 --time =0:5:0 --partition=standard

--qos=standard --account=<account_name >

2 $ source spack/share/spack/setup -env.sh

3 $ spack load precice

4 $ cd $SPACK_ROOT/opt/spack/cray -sles15 -zen2/gcc -10.2.0/ precice -2.2.1-<spec >/share/precice
/examples/solverdummies/cpp/

5 $ cmake .

6 $ make

7 $ ./ solverdummy ../ precice -config.xml SolverOne MeshOne & ./ solverdummy ../ precice -config

.xml SolverTwo MeshTwo

Listing 41: Interactive job on ARCHER2
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C OpenPALM Building and Requirements

The OpenPALM GUI, PrePALM, is written in Tcl/Tk and C, and also requires the STEPLANG interpreter.

Configuration of the GUI on the local machine was very straightforward.

The OpenPALM’s coupling library itself, PALM, requires MPI, as well as a Fortran 90 and C compiler.

The PALM library allows configuration with MPI-1 mode and MPI-2 mode. It is stated in the OpenPALM

documentation that users are not encouraged to use the MPI-1 mode, unless the MPI-2 mode is unavailable.

Over the course of writing this report, there was great difficulty with building PALM. On ARCHER 1

and ARCHER 2 building the library was only possible with very old versions of OpenMPI. The user guide

specifies using OpenMPI 1.2.7, dated August 25th 2008 [41], despite the user guide itself being dated

April 2019. Indeed, it was necessary to use the 2008 release of OpenMPI for successful building. It was

not at all possible to use the default Cray MPICH libraries on ARCHER 1 or ARCHER 2. It was also

difficult to find a compatible GNU suite. On ARCHER 1, PALM would only compile successfully using

gcc/4.8.1, and compilers newer than this were not recognised. However, in this instance it is not clear

that this is due to age, as on ARCHER 2 gcc/9.3.0 was recognised by PALM and built.

After taking this caution above with compiler choices, both MPI-1 mode and MPI-2 mode were built.

However, on a local linux machine, on ARCHER 1 and on ARCHER 2, the MPI-2 mode was found to be

extremely error prone when attempting to build very simple applications such as those found in tutorials

from the user guide, even with using OpenPALM’s provided solutions. Therefore, over the course of this

work, only MPI-1 mode was used. This is unfortunate as it states in their documentation that the original

PALM development was based on the MPI-2 standard. MPI-1 mode is described as being the “restrained”

and “degraded” version of PALM in their documentation. There are features which are only possible with

the MPI-2 standard, for example you cannot relaunch blocks multiple times with MPI-1 mode and so the

source code has to be amended to cope with this limited functionality. Running applications with MPI-1

mode was still difficult and inconsistent, with still some tutorial examples still not running but this was

completely impossible with MPI-2 mode.

PALM could only be built on Linux machines successfully, although their website does have user guides

for installing on a Mac this was not possible at all in my experience.

Attempts were made to create the 3D field exchange implementation in OpenPALM in MPI-1 mode,

however on ARCHER 1 and ARCHER 2 this did not run reliably and there was indication that the

communication between the two sides were not working as expected and, for this reason, this does not

feature in the performance comparison. This could be down to not using the MPI-2 mode as advertised,

however, given the other difficulties described in this report, this is not clear.

It is unfortunate that there was such difficulty to use OpenPALM over the course of this report, as

OpenPALM appeared to be a prime candidate for code coupling at scale, given the quoted successes on

their website as stated earlier. As well as this, it also initially appeared to be one of the more user-friendly

libraries, having a lengthy user guide with plenty of very thorough examples. However, having made this

assessment in Software Outlook that such problems exist, the difficulties with OpenPALM are presented in

this report in the hope that it will save time for the CCPs and HECs we support. Research groups looking

to choose a code coupling library for their multi-physics work would hopefully take the recommendation

from this report to use one of the other libraries featured in this document, where there was more success

in building applications.
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