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Abstract 
The complexation of NiCl2 with 2,2’-Bipyridine was followed using quasielastic neutron scattering 
to observe reaction progress. Water adsorption in chabazite with time resolution was observed 
using strain induced in the aluminosilicate framework with a high-resolution engineering 
diffractometer. These reactions illustrate the recent progress and possibilities in using neutron 
probes to observe realistic catalytic reactions as they progress. 

Introduction 
In the field of catalysis, understanding the 
relationship between the catalyst structure  
and the selectivity/reactivity is fundamental 
for the rational development of future reaction 
processes. Catalytic systems alter with 
changes in environmental conditions such as 
temperature, pressure and gas/liquid 
composition; establishing these relationships 
between structure and performance under 
relevant conditions is thus vital for optimum 
catalyst design. [1] 
 In situ spectroscopy is indispensable for 
the characterisation of catalysts in a multitude 
of chemical reactors and environmental cells. 
[1,2]  Despite in situ studies enabling catalyst 
observation under controlled conditions, lack 

of reaction product analysis prevents a direct 
relationship between structure (surface/bulk) 
and performance (activity/selectivity) from 
being deduced – especially when employing 
vacuum or non-reaction conditions. [1] 
Combining time-resolved in situ 
characterisation with online reaction product 
analysis gives rise to operando spectroscopy, 
[2,3] where both the catalyst characterisation 
and the product analysis are performed 
simultaneously. 
  Neutrons’ ability to interact with 
nuclei of atoms allow penetration deep into a 
catalyst bed, or through thick reactor walls 
necessary for reactions in extreme conditions; 
as well as preserving the integrity of the 



sample which can often be altered or damaged 
by other techniques such as x-rays. This weak 
interaction, coupled with the difficulty 
creating intense sources result in neutron flux 
limiting the technique. Larger samples are 
required and extended data collection times, 
which limits the time-resolution possible 
during in situ measurement. Nevertheless, 
neutrons have been extensively exploited for 
the study of functional materials: [4] using 
neutron diffraction to elucidate the positions 
of adsorbed hydrogen-containing molecules 
within microporous catalysts [5,6] and 
probing reaction kinetics. [7] Neutron 
diffraction techniques are well suited for 
operando studies, such as those reported for 
batteries, [8] proton conductors, [9] catalysts 
[10-13] and ammonia storage. [14-17] 
 Incoherent inelastic neutron scattering 
(IINS) involves a significant transfer of energy 
(ΔE≠0) which corresponds to the energy 
required to excite vibrational quanta of the 
analyte. [17] This technique is mostly 
restricted to vibrational modes that involve H 
atoms, due to hydrogen’s inherent, 
exceptionally large incoherent scattering cross 
section. [18] This property has been exploited 
in studies of catalyst deactivation and coking, 
[19-22] catalyst supports,  [23] and reaction 
intermediates. [24] Furthermore, INS was 
used to study adsorption of ethene and 
propene on carbon [25]  as well as the 
interaction of methanol with η-alumina. [26] 
Neutron spectroscopy is more severely 
impacted by flux-limitation as the inelastic 
scatter is much weaker than the elastic 
scattering at practical measurement 
temperatures. Another limitation in terms of 
in situ and operando studies, is the Debye-
Waller factor of the scattering law. [17,27] This 
describes the thermal motion of the system 
and leads to extreme broadening of the peaks, 
resulting in a decreased resolution and 
'smearing out' of features. This can be reduced 
by cooling the sample; ergo spectra are 
typically recorded below 30 K, [28] limiting its 
application to studies under practical 

operating conditions. Hence, a “react & 
quench” approach has been implemented in 
most in situ INS studies. [29,30] Nevertheless, 
an operando INS method was described by 
Parker in 2011 during a study on the role of 
hydroxyl groups in low temperature CO 
oxidation. [31] It was thus shown that it is 
possible to eschew the “react & quench” 
approach under certain favourable conditions; 
this in turn has spurred an interest in operando 
INS studies. [32] 
 Quasielastic neutron scattering (QENS) 
concerns low energy motions and the 
resultant small changes in energy (ΔE～0) i.e., 
QENS measures the Doppler broadening of a 
neutron beam scattered from atoms in motion. 
[33] From quantifying surface hydrogen 
dissociation temperature [34] to measuring the 
diffusion constants in microporous materials, 
[35] QENS yields information about motions 
occurring over picosecond to nanosecond time 
scales and Angstrom lengths; [33] providing 
the most precise means of measuring 
microporous transport, as indicated by 
decades of research output. [36-39] Ability to 
make measurements at higher temperatures 
renders QENS to be a more suitable technique 
for operando studies. O’Malley et al., for 
example, have reported methoxylation within 
H-ZSM-5 zeolite occurring at room 
temperature following a combination of in situ 
QENS and INS measurements, and density 
functional theory (DFT) calculations. [40] 
More recently, Martinez et al. documented the 
first operando QENS investigation of water 
dynamics in a state-of-the-art ionomer 
membrane, mounted in a working fuel cell; 
[41] whilst Silverwood and  Garcia Sakai 
investigated propane diffusion within ZSM-5 
and demonstrated, for the first time, a QENS 
measurement of an adsorbed phase in 
equilibrium with a flowing gas. [42] 
 This study presents two recent in situ 
measurements that could be easily adapted to 
operando investigations with neutron 
diffraction and QENS spectroscopy. The 
diffraction measurement was used to measure 



strain within a heterogenous catalyst (SSZ13) 
as a function of time under dry and 100% 
humidity conditions; whilst QENS was 
employed in an attempt to quantify changes in 
the dynamic behaviour of ligands (i.e., the 
flexibility of said ligands) within a 
homogenous catalyst during metal 
complexation.  

Zeolites are widely used as catalysts in the 
petrochemical industry and beyond, although 
the interaction between pore walls and 
sorbates is not well understood. The fact that 
the pore encompasses the sorbate introduces 
additional steric effects and restricts diffusion 
and co-sorption of reactants. Their charged 
framework provides the possibility of single-
site catalysis from metallic cations and they 
display both Lewis and Brønsted acidity, 
which is key for their role as solid acid 
catalysts. The Brønsted acid site has been 
shown to critically depend on the hydration 
level of the zeolite due to the formation of 
hydronium ion-water clusters, [43] and 
hydrothermal treatment of zeolites post 
synthesis is often used to dealuminate the 
framework, either to decrease the number of 
acid sites or to open meso- and macro-pores to 
improve diffusion characteristics. [44,45] 

Reactions in which water is produced as a side 
product or appears as an impurity in feed 
streams can therefore modify the catalyst 
topology and chemical selectivity over time. 
One such reaction is the selective catalytic 
reduction of NOx with ammonia that is used 
in the remediation of vehicle diesel exhaust, 
which uses a source of ammonia to reduce 
toxic nitrogen oxides to produce nitrogen and 
water. Additionally water may be present in 
the feed from the engine, and the catalyst must 
remain stable and active over extended time 
conditions that vary considerable in 
temperature and feed composition both with 
time onstream and position in the catalyst 
monolith. An understanding of the effects of 
water under reaction conditions is thus of 
considerable interest, [45] especially as it has 

been shown to be beneficial under certain 
conditions. [46] 

Bipyridine and phenanthroline (and related) 
ligands are widely used within nickel 
catalysis. [47,48] The reasons for their efficacy 
in a range of reactions likely stems from their 
redox non-innocence. [49] The solvents used 
for these types of reactions are important and 
are typically very polar and consist of nitriles, 
alcohols and amides with DMA and DMF 
appearing regularly. The methanol used in 
this study has a dielectric constant within the 
range of the solvents which are most 
commonly used. However, subtle changes in 
ligand structure can lead to quite diverse 
changes in catalyst speciation and catalytic 
reactivity, [50] and the ligand-catalyst complex 
is typically formed in situ from a nickel(II) 
precursor and the ligand. Our aims here were 
to understand whether we can use QENS to 
probe the formation of the ligand-catalyst 
complex in situ, as this is otherwise a very 
difficult reaction to monitor. If the ligand-
catalyst complex does not form during a 
catalytic reaction, then the reaction will either 
not proceed, or the catalyst speciation will be 
different, potentially leading to different 
reactivity and/or selectivity. 
 
Both studies yielded results that demonstrate 
the utility of this approach and aim to inspire 
future operando studies to address other 
catalytic and chemical systems.  
 

Experimental 
Homogeneous and heterogenous reactions 
were measured using quasielastic neutron 
scattering and high-resolution diffraction 
measurements using the IRIS and Engin-X 
instruments at the ISIS neutron and muon 
source in the UK. 
 
Liquid measurements 
QENS measurements of [NiCl2(DME)] and 
2,2’-Bipyridine (bpy) reactants in methanol-d4 
were made at 320 K along with the pure 



solvent. For the complexation reaction, the 
[NiCl2(DME)] and bpy were mixed 
immediately before measurement, and data 
repeatedly acquired for 240 min at 320 K. The 
IRIS spectrometer was utilised with the 
pyrolytic graphite (002) analyser which 
provides an energy transfer window of 1 meV 
around the elastic peak with a resolution of 
0.0175 meV. The total scattering intensity was 
obtained by integrating between ¯0.5 and 0.5 
meV, with the elastic component integrated 
over the range ¯0.0175—0.0175. The inelastic 
intensity was calculated as the difference 
between the two, with the EISF derived from 
these results. All measurements were made in 
indium-sealed aluminium sample cans with 
annular geometry to minimise multiple 
scattering. 

 
Figure 1Plots of the integrated scattering intensities a-c showing the 
Q-dependence of the independent components and d-f the intensity 
as a function of time for the liquid-phase reaction 

  
Solid measurements 
Commercial-grade chabazite was kindly 
supplied by Johnson Matthey. A sample was 
loaded in a cylindrical plug flow stainless steel 
reactor of nominal diameter 16 mm with CF 
flanges sealed with copper gaskets. He gas 
flow was managed using a custom mass flow 

controller system supplied by Bronkhorst. 
Saturated water vapour loading of the gas 
could be obtained by passing the gas flow 
through a heated bubbler volume that 
contained water heated to 42 °C. Trace-heated 
stainless steel lines transferred the gas to the 
sample position. Data was collected at the 
front and rear of the catalyst bed alternately. 
Only the data collected at the rear of the bed is 
shown here. To improve the visibility of 
trends within the data each diffraction peak 
was fitted to a Gaussian function.  
The zeolite was initially treated with water 
vapour flow with the reactor held at 47 °C. 
After 133 minutes the water dosing system 
was bypassed, and dry gas flow was passed 
through the reactor. At 921 minutes the 
sample was heated to 80 °C under dry flow. 
 

Results 
Homogeneous liquid reaction 
Plots of the integrated intensities are 
presented in Figure 1. Plots a—c show the Q 
dependence of the individual components, 
with d—f showing the intensity as a function 
of time in the reacting system. It is clear from 
Fig 1a that there is greater inelastic intensity 
for the solution containing the Bipy NiCl2 
complex at higher Q when compared with the 
other components, indicating greater motion 
within the dynamic window of the 
instrument. It is expected that this arises from 
the mobility of the ligand protons, although 
solvent dynamics in the solvation sphere 
cannot be excluded. Either way this indicates 
improve access to the metal complexation site. 
Figure 1d shows an increase in the inelastic 
intensity above 1.5 Å-1 from 50 minutes. 
followed by a drop in intensity that is 
consistent with the growth and decay of an 
intermediate in the formation of the metal 
complex. As this is an in situ measurement in 
a sealed vessel changes cannot be attributed to 
variation in the total scattering cross section 
unless components are precipitating and 
settling out in the bottom portion of the 
sample can below the beam. This can be 



discounted by observing the EISF, which acts 
as a normalisation to the total scattering. It 
must therefore be due to a change in the 
dynamics of the system caused by reaction. 
 
Heterogenous gas/solid reaction 
Figure 2 shows the evolution of selected 
diffraction peaks from the zeolite catalyst with 
time as both raw data and fitted Gaussian 
functions. The first red line corresponds to the 
switch from water saturated gas flow to dry 
gas at 133 min. The second red line indicates 
the onset of heating to 80 °C at 921 min 
onstream. The peak around 3.53 Å shows the 
greatest response, with a shift to lower d-
spacing with intial water dosing. This 
continues after the water vapour generator is 
bypassed up to 400 minutes. This shows slow 
diffusion of the water within the zeolite pores 
migrating to the bulk from the surface. After 
this time the peak position is stable under 
these conditions. Heating at 921 minutes sees 
a shift in the peak back to its original position. 
The peaks at 2.84 and 2.88 Å show less 
pronounced changes in the initial dosing and 
continuous dry flow stages, but changes are 
clear upon the final heating stage. The 2.84 Å 
peak shows the same trends as the 3.53 Å 
peak, but the 2.88 Å shows the opposite effect, 
which demonstrates the anisotropic 
contraction of the zeolite on water adsorption.  
 

 
Figure 2 Diffraction measurement from chabazite catalyst as a 
function of time. Lines at 133 and 921 min show the termination of 
water dosing and the onset of heating respectively 

Discussion 
Clear variation in the samples investigated as 
a function of reaction time confirms the 
possibility of operando neutron scattering in 
both quasielastic and diffraction regimes 
under batch and flow conditions. Ligand 
flexibility in liquid-phase catalysis has 
dynamic steric affects that affect the direction 
of reaction and have only been treated in a 
cursory manner. We have shown that QENS 
offers a new method to characterise these 
motions. This work represents the first 
experiment to show that ligand re-
arrangement may be used to follow the 
reaction in a homogenous catalyst. As with 
increasingly ligands it becomes more difficult 
to distinguish electronic and steric effects this 
provides a way to quantify the dynamic steric 
inhibition that occurs through ligand 
displacement around the active metal. 
 
In the solid phase mechanical stress has been 
shown to affect catalytic activity [51] and that 
the contraction and expansion of zeolites 
differs between sorbate gases. [52-54] Changes 



in the geometry of zeolitic frameworks will 
also affect the shape-selectivity of these 
materials. It is therefore necessary to 
distinguish the mechanical and chemical 
effects caused by guest molecules in the pores, 
especially in the dynamic conditions of co-
adsorption and reaction. It is hoped that this 
work will inspire future measurements 
facilitated by the penetration of neutrons 
under more extreme conditions than 
conventional techniques. 
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Supporting information for: 
Operando Neutron Scattering – Following 
Reactions in Real Time Using Neutrons 

k 
SYNTHESIS 
General.  Nickel dichloride hexahydrate was obtained from Preston Chemicals and used to prepare 
[NiCl2(DME)] according to a literature method1. 2,2’-Bipyridine (bpy) was obtained from Fluorochem and 
methanol-d4 was obtained from Sigma-Aldrich. Methanol was obtained from Fisher Scientific and dried on 
magnesium/iodine and distilled prior to use. 
[NiCl2(bpy)]. Dimethoxyethane nickel dichloride (657 mg, 3 mmol), 2,2’-bipyridine (468 mg, 3 mmol) and 
a magnetic stirrer bar were loaded into a microwave vial followed by dry methanol (3 mL). The vial was 
sealed with a septum-fitted cap and the reaction was stirred at room temperature overnight. The reaction 
mixture was then transferred to a round bottom flask before the addition of diethyl ether (10 mL). The 
resulting precipitate was isolated by vacuuum filtration. The precipitate was then washed with ethanol (10 
mL) and diethyl ether (2 x 10 mL). The product is a dry free flowing green powder which was weighed and 
transferred to a labelled vial (85% yield). 1H NMR (D3OD, 400 MHz): δH = 157.09 ppm (br s), 58.67 (br s), 
43.20 (br s), 14.81 (br s).  
ANALYSIS 
Static Samples. Saturated solutions were prepared of each analyte and loaded into vanadium cans. In each 
case, 0.25 mL of solution was used. 
Bpy:    0.246 g in 1 mL D3OD    (30% w/w)  
[NiCl2(bpy)]:   0.108 g in 1 mL D3OD    (12% w/w)   
In Situ Reaction Samples. Solutions of each component were mixed in a vanadium can prior to analysis. 
[NiCl2(DME)] was found to be soluble to 20% w/w and bpy to 30% w/w. The product [NiCl2(bpy)] was 
found to be soluble to ca. 12-14% w/w so the experiment was designed to give a conversion of product in 
solution at 12.8% by weight in D3OD. 
(DME)NiCl2:   42 mg in 0.5 mL D3OD   0.125 mL of solution used for analysis 
BIPY:    30 mg in 0.5 mL D3OD   0.125 mL of solution used for analysis 
 

1. Ward, L. G. L., & Pipal, J. R. (2007). Anhydrous Nickel(II) Halides and their Tetrakis(ethanol) and 1,2-Dimethoxyethane 
Complexes. Inorganic Syntheses, 154–164. doi:10.1002/9780470132449.ch30 
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